Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 6363, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36289205

RESUMO

Type 1 diabetes (T1D) is an autoimmune disease that results in the destruction of insulin producing pancreatic ß-cells. One of the genes associated with T1D is TYK2, which encodes a Janus kinase with critical roles in type-Ι interferon (IFN-Ι) mediated intracellular signalling. To study the role of TYK2 in ß-cell development and response to IFNα, we generated TYK2 knockout human iPSCs and directed them into the pancreatic endocrine lineage. Here we show that loss of TYK2 compromises the emergence of endocrine precursors by regulating KRAS expression, while mature stem cell-islets (SC-islets) function is not affected. In the SC-islets, the loss or inhibition of TYK2 prevents IFNα-induced antigen processing and presentation, including MHC Class Ι and Class ΙΙ expression, enhancing their survival against CD8+ T-cell cytotoxicity. These results identify an unsuspected role for TYK2 in ß-cell development and support TYK2 inhibition in adult ß-cells as a potent therapeutic target to halt T1D progression.


Assuntos
Diabetes Mellitus Tipo 1 , Insulinas , Humanos , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/metabolismo , Insulinas/metabolismo , Interferon-alfa/farmacologia , Interferon-alfa/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , TYK2 Quinase/genética , TYK2 Quinase/metabolismo , Células Secretoras de Insulina
2.
Nat Biotechnol ; 40(7): 1042-1055, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35241836

RESUMO

Transplantation of pancreatic islet cells derived from human pluripotent stem cells is a promising treatment for diabetes. Despite progress in the generation of stem-cell-derived islets (SC-islets), no detailed characterization of their functional properties has been conducted. Here, we generated functionally mature SC-islets using an optimized protocol and benchmarked them comprehensively against primary adult islets. Biphasic glucose-stimulated insulin secretion developed during in vitro maturation, associated with cytoarchitectural reorganization and the increasing presence of alpha cells. Electrophysiology, signaling and exocytosis of SC-islets were similar to those of adult islets. Glucose-responsive insulin secretion was achieved despite differences in glycolytic and mitochondrial glucose metabolism. Single-cell transcriptomics of SC-islets in vitro and throughout 6 months of engraftment in mice revealed a continuous maturation trajectory culminating in a transcriptional landscape closely resembling that of primary islets. Our thorough evaluation of SC-islet maturation highlights their advanced degree of functionality and supports their use in further efforts to understand and combat diabetes.


Assuntos
Transplante das Ilhotas Pancreáticas , Ilhotas Pancreáticas , Células-Tronco Pluripotentes , Animais , Glucose/metabolismo , Humanos , Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Transplante das Ilhotas Pancreáticas/métodos , Camundongos , Células-Tronco Pluripotentes/metabolismo
3.
Front Endocrinol (Lausanne) ; 13: 837450, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35250887

RESUMO

Congenital hyperinsulinism (CHI) is a severe inherited neonatal disorder characterized by inappropriate insulin secretion caused by genetic defects of the pancreatic beta cells. Several open questions remain in CHI research, such as the optimal treatment for the most common type of CHI, caused by mutations in the genes encoding ATP-sensitive potassium channels, and the molecular mechanisms of newly identified CHI genes. Answering these questions requires robust preclinical models, particularly since primary patient material is extremely scarce and accurate animal models are not available. In this short review, we explain why pluripotent stem cell derived islets present an attractive solution to these issues and outline the current progress in stem-cell based modeling of CHI. Stem cell derived islets enable the study of molecular mechanisms of CHI and the discovery of novel antihypoglycemic drugs, while also providing a valuable model to study the biology of variable functional states of beta cells.


Assuntos
Hiperinsulinismo Congênito , Ilhotas Pancreáticas , Animais , Hiperinsulinismo Congênito/tratamento farmacológico , Humanos , Insulina/metabolismo , Secreção de Insulina , Ilhotas Pancreáticas/metabolismo , Células-Tronco/metabolismo
4.
Diabetologia ; 64(3): 630-640, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33404684

RESUMO

AIMS/HYPOTHESIS: Congenital hyperinsulinism caused by mutations in the KATP-channel-encoding genes (KATPHI) is a potentially life-threatening disorder of the pancreatic beta cells. No optimal medical treatment is available for patients with diazoxide-unresponsive diffuse KATPHI. Therefore, we aimed to create a model of KATPHI using patient induced pluripotent stem cell (iPSC)-derived islets. METHODS: We derived iPSCs from a patient carrying a homozygous ABCC8V187D mutation, which inactivates the sulfonylurea receptor 1 (SUR1) subunit of the KATP-channel. CRISPR-Cas9 mutation-corrected iPSCs were used as controls. Both were differentiated to stem cell-derived islet-like clusters (SC-islets) and implanted into NOD-SCID gamma mice. RESULTS: SUR1-mutant and -corrected iPSC lines both differentiated towards the endocrine lineage, but SUR1-mutant stem cells generated 32% more beta-like cells (SC-beta cells) (64.6% vs 49.0%, p = 0.02) and 26% fewer alpha-like cells (16.1% vs 21.8% p = 0.01). SUR1-mutant SC-beta cells were 61% more proliferative (1.23% vs 0.76%, p = 0.006), and this phenotype could be induced in SUR1-corrected cells with pharmacological KATP-channel inactivation. The SUR1-mutant SC-islets secreted 3.2-fold more insulin in low glucose conditions (0.0174% vs 0.0054%/min, p = 0.0021) and did not respond to KATP-channel-acting drugs in vitro. Mice carrying grafts of SUR1-mutant SC-islets presented with 38% lower fasting blood glucose (4.8 vs 7.7 mmol/l, p = 0.009) and their grafts failed to efficiently shut down insulin secretion during induced hypoglycaemia. Explanted SUR1-mutant grafts displayed an increase in SC-beta cell proportion and SC-beta cell nucleomegaly, which was independent of proliferation. CONCLUSIONS/INTERPRETATION: We have created a model recapitulating the known pathophysiology of KATPHI both in vitro and in vivo. We have also identified a novel role for KATP-channel activity during human islet development. This model will enable further studies for the improved understanding and clinical management of KATPHI without the need for primary patient tissue.


Assuntos
Hiperinsulinismo Congênito/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Ilhotas Pancreáticas/metabolismo , Receptores de Sulfonilureias/metabolismo , Animais , Diferenciação Celular , Linhagem Celular , Proliferação de Células , Hiperinsulinismo Congênito/genética , Hiperinsulinismo Congênito/patologia , Hiperinsulinismo Congênito/fisiopatologia , Feminino , Predisposição Genética para Doença , Humanos , Células-Tronco Pluripotentes Induzidas/patologia , Células-Tronco Pluripotentes Induzidas/transplante , Secreção de Insulina , Ilhotas Pancreáticas/patologia , Ilhotas Pancreáticas/fisiopatologia , Transplante das Ilhotas Pancreáticas , Masculino , Camundongos Endogâmicos NOD , Camundongos SCID , Mutação , Fenótipo , Receptores de Sulfonilureias/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA