Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
mSystems ; 4(4)2019 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-31455640

RESUMO

Gut microbial ß-glucuronidase (GUS) enzymes play important roles in drug efficacy and toxicity, intestinal carcinogenesis, and mammalian-microbial symbiosis. Recently, the first catalog of human gut GUS proteins was provided for the Human Microbiome Project stool sample database and revealed 279 unique GUS enzymes organized into six categories based on active-site structural features. Because mice represent a model biomedical research organism, here we provide an analogous catalog of mouse intestinal microbial GUS proteins-a mouse gut GUSome. Using metagenome analysis guided by protein structure, we examined 2.5 million unique proteins from a comprehensive mouse gut metagenome created from several mouse strains, providers, housing conditions, and diets. We identified 444 unique GUS proteins and organized them into six categories based on active-site features, similarly to the human GUSome analysis. GUS enzymes were encoded by the major gut microbial phyla, including Firmicutes (60%) and Bacteroidetes (21%), and there were nearly 20% for which taxonomy could not be assigned. No differences in gut microbial gus gene composition were observed for mice based on sex. However, mice exhibited gus differences based on active-site features associated with provider, location, strain, and diet. Furthermore, diet yielded the largest differences in gus composition. Biochemical analysis of two low-fat-associated GUS enzymes revealed that they are variable with respect to their efficacy of processing both sulfated and nonsulfated heparan nonasaccharides containing terminal glucuronides.IMPORTANCE Mice are commonly employed as model organisms of mammalian disease; as such, our understanding of the compositions of their gut microbiomes is critical to appreciating how the mouse and human gastrointestinal tracts mirror one another. GUS enzymes, with importance in normal physiology and disease, are an attractive set of proteins to use for such analyses. Here we show that while the specific GUS enzymes differ at the sequence level, a core GUSome functionality appears conserved between mouse and human gastrointestinal bacteria. Mouse strain, provider, housing location, and diet exhibit distinct GUSomes and gus gene compositions, but sex seems not to affect the GUSome. These data provide a basis for understanding the gut microbial GUS enzymes present in commonly used laboratory mice. Further, they demonstrate the utility of metagenome analysis guided by protein structure to provide specific sets of functionally related proteins from whole-genome metagenome sequencing data.

2.
Nat Commun ; 8: 14118, 2017 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-28165446

RESUMO

Asthma is a chronic airway disease characterized by inflammation, mucus hypersecretion and abnormal airway smooth muscle (ASM) contraction. Bacterial permeability family member A1, BPIFA1, is a secreted innate defence protein. Here we show that BPIFA1 levels are reduced in sputum samples from asthmatic patients and that BPIFA1 is secreted basolaterally from healthy, but not asthmatic human bronchial epithelial cultures (HBECs), where it suppresses ASM contractility by binding to and inhibiting the Ca2+ influx channel Orai1. We have localized this effect to a specific, C-terminal α-helical region of BPIFA1. Furthermore, tracheas from Bpifa1-/- mice are hypercontractile, and this phenotype is reversed by the addition of recombinant BPIFA1. Our data suggest that BPIFA1 deficiency in asthmatic airways promotes Orai1 hyperactivity, increased ASM contraction and airway hyperresponsiveness. Strategies that target Orai1 or the BPIFA1 deficiency in asthma may lead to novel therapies to treat this disease.


Assuntos
Asma/fisiopatologia , Glicoproteínas/fisiologia , Contração Muscular/fisiologia , Músculo Liso/fisiopatologia , Proteína ORAI1/metabolismo , Fosfoproteínas/fisiologia , Adulto , Idoso , Animais , Brônquios/citologia , Células Epiteliais/metabolismo , Feminino , Técnicas de Silenciamento de Genes , Glicoproteínas/química , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Knockout , Pessoa de Meia-Idade , Simulação de Acoplamento Molecular , Proteína ORAI1/química , Proteína ORAI1/genética , Fosfoproteínas/química , RNA Interferente Pequeno/metabolismo , Proteínas Recombinantes/metabolismo , Mucosa Respiratória/citologia , Mucosa Respiratória/metabolismo , Mucosa Respiratória/fisiopatologia , Escarro/fisiologia , Adulto Jovem
3.
Toxicology ; 306: 108-13, 2013 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-23435180

RESUMO

The breast cancer resistance protein (Bcrp) is an efflux transporter that participates in the biliary and renal excretion of drugs and environmental chemicals. Recent evidence suggests that pharmacological activation of the peroxisome proliferator activated receptor alpha (PPARα) can up-regulate the hepatic expression of Bcrp. The current study investigated the regulation of hepatic and renal Bcrp mRNA and protein in mice treated with the PPARα agonist perfluorooctanoic acid (PFOA) and the ability of PFOA to alter human BCRP function in vitro. Bcrp mRNA and protein expression were quantified in the livers and kidneys of male C57BL/6 mice treated with vehicle or PFOA (1 or 3mg/kg/day oral gavage) for 7 days. PFOA treatment increased liver weights as well as the hepatic mRNA and protein expression of the PPARα target gene, cytochrome P450 4a14. Compared to vehicle-treated control mice, PFOA increased hepatic Bcrp mRNA and protein between 1.5- and 3-fold. Immunofluorescent staining confirmed enhanced canalicular Bcrp staining in liver sections from PFOA-treated mice. The kidney expression of cytochrome P450 4a14 mRNA, but not Bcrp, was increased in mice treated with PFOA. Micromolar concentrations of PFOA decreased human BCRP ATPase activity and inhibited BCRP-mediated transport in inverted membrane vesicles. Together, these studies demonstrate that PFOA induces hepatic Bcrp expression in mice and may inhibit human BCRP transporter function at concentrations that exceed levels observed in humans.


Assuntos
Transportadores de Cassetes de Ligação de ATP/biossíntese , Caprilatos/toxicidade , Fluorocarbonos/toxicidade , Rim/efeitos dos fármacos , Fígado/efeitos dos fármacos , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Western Blotting , Sistema Enzimático do Citocromo P-450/metabolismo , Família 4 do Citocromo P450 , Técnica Indireta de Fluorescência para Anticorpo , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Humanos , Rim/enzimologia , Rim/metabolismo , Fígado/enzimologia , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Tamanho do Órgão/efeitos dos fármacos , PPAR alfa/agonistas , PPAR alfa/metabolismo , RNA Mensageiro/química , RNA Mensageiro/genética , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA