Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 118(39)2021 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-34548400

RESUMO

The Plasmodium falciparum proteasome is a potential antimalarial drug target. We have identified a series of amino-amide boronates that are potent and specific inhibitors of the P. falciparum 20S proteasome (Pf20S) ß5 active site and that exhibit fast-acting antimalarial activity. They selectively inhibit the growth of P. falciparum compared with a human cell line and exhibit high potency against field isolates of P. falciparum and Plasmodium vivax They have a low propensity for development of resistance and possess liver stage and transmission-blocking activity. Exemplar compounds, MPI-5 and MPI-13, show potent activity against P. falciparum infections in a SCID mouse model with an oral dosing regimen that is well tolerated. We show that MPI-5 binds more strongly to Pf20S than to human constitutive 20S (Hs20Sc). Comparison of the cryo-electron microscopy (EM) structures of Pf20S and Hs20Sc in complex with MPI-5 and Pf20S in complex with the clinically used anti-cancer agent, bortezomib, reveal differences in binding modes that help to explain the selectivity. Together, this work provides insights into the 20S proteasome in P. falciparum, underpinning the design of potent and selective antimalarial proteasome inhibitors.


Assuntos
Compostos de Boro/farmacologia , Malária Falciparum/tratamento farmacológico , Plasmodium falciparum/efeitos dos fármacos , Complexo de Endopeptidases do Proteassoma/química , Inibidores de Proteassoma/farmacologia , Administração Oral , Animais , Compostos de Boro/administração & dosagem , Compostos de Boro/química , Domínio Catalítico , Humanos , Malária Falciparum/enzimologia , Malária Falciparum/parasitologia , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Modelos Moleculares , Plasmodium falciparum/enzimologia , Inibidores de Proteassoma/administração & dosagem , Inibidores de Proteassoma/química
2.
PLoS Pathog ; 15(5): e1007761, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31071194

RESUMO

Plasmodium falciparum mediates adhesion of infected red blood cells (RBCs) to blood vessel walls by assembling a multi-protein complex at the RBC surface. This virulence-mediating structure, called the knob, acts as a scaffold for the presentation of the major virulence antigen, P. falciparum Erythrocyte Membrane Protein-1 (PfEMP1). In this work we developed correlative STochastic Optical Reconstruction Microscopy-Scanning Electron Microscopy (STORM-SEM) to spatially and temporally map the delivery of the knob-associated histidine-rich protein (KAHRP) and PfEMP1 to the RBC membrane skeleton. We show that KAHRP is delivered as individual modules that assemble in situ, giving a ring-shaped fluorescence profile around a dimpled disk that can be visualized by SEM. Electron tomography of negatively-stained membranes reveals a previously observed spiral scaffold underpinning the assembled knobs. Truncation of the C-terminal region of KAHRP leads to loss of the ring structures, disruption of the raised disks and aberrant formation of the spiral scaffold, pointing to a critical role for KAHRP in assembling the physical knob structure. We show that host cell actin remodeling plays an important role in assembly of the virulence complex, with cytochalasin D blocking knob assembly. Additionally, PfEMP1 appears to be delivered to the RBC membrane, then inserted laterally into knob structures.


Assuntos
Membrana Eritrocítica/parasitologia , Eritrócitos/parasitologia , Malária Falciparum/parasitologia , Peptídeos/metabolismo , Plasmodium falciparum/patogenicidade , Proteínas de Protozoários/metabolismo , Membrana Eritrocítica/metabolismo , Eritrócitos/metabolismo , Humanos , Malária Falciparum/metabolismo , Microscopia Eletrônica de Varredura , Peptídeos/química , Proteínas de Protozoários/química , Virulência
3.
Anal Chem ; 87(3): 1590-5, 2015 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-25553489

RESUMO

Polymyxin is the last-line therapy against Gram-negative 'superbugs'; however, dose-limiting nephrotoxicity can occur in up to 60% of patients after intravenous administration. Understanding the accumulation and concentration of polymyxin within renal tubular cells is essential for the development of novel strategies to ameliorate its nephrotoxicity and to develop safer, new polymyxins. We designed and synthesized a novel dual-modality iodine-labeled fluorescent probe for quantitative mapping of polymyxin in kidney proximal tubular cells. Measured by synchrotron X-ray fluorescence microscopy, polymyxin concentrations in single rat (NRK-52E) and human (HK-2) kidney tubular cells were approximately 1930- to 4760-fold higher than extracellular concentrations. Our study is the first to quantitatively measure the significant uptake of polymyxin in renal tubular cells and provides crucial information for the understanding of polymyxin-induced nephrotoxicity. Importantly, our approach represents a significant methodological advancement in determination of drug uptake for single-cell pharmacology.


Assuntos
Antibacterianos/metabolismo , Química Farmacêutica , Túbulos Renais/metabolismo , Microscopia de Fluorescência/métodos , Polimixinas/metabolismo , Análise de Célula Única/métodos , Síncrotrons , Animais , Antibacterianos/análise , Células Cultivadas , Corantes Fluorescentes , Humanos , Radioisótopos do Iodo , Túbulos Renais/citologia , Modelos Moleculares , Estresse Oxidativo , Polimixinas/análise , Ratos , Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA