Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
J Ethnopharmacol ; 325: 117885, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38331123

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: The Timosaponin BⅡ (TBⅡ) is one of the main active components of the traditional Chinese medicine Anemarrhena asphodeloides, and it is a steroidal saponin with various pharmacological activities such as anti-oxidation, anti-inflammatory and anti-apoptosis. However, its role in acute ulcerative colitis remains unexplored thus far. AIM OF THE STUDY: This study aims to investigate the protective effect of TBⅡ against dextran sulfate sodium (DSS)-induced ulcerative colitis in mice and elucidate its underlying mechanisms. METHODS: Wild-type (WT) and NLRP3 knockout (NLRP3-/-) mice were applied to evaluate the protective effect of TBⅡ in DSS-induced mice colitis. Pharmacological inhibition of NLRP3 or adenovirus-mediated NLRP3 overexpression in bone marrow-derived macrophages (BMDM) from WT mice and colonic epithelial HCoEpiC cells was used to assess the role of TBⅡ in LPS + ATP-induced cell model. RNA-seq, ELISA, western blots, immunofluorescence staining, and expression analysis by qPCR were performed to examine the alterations of colonic NLRP3 expression in DSS-induced colon tissues and LPS + ATP-induced cells, respectively. RESULTS: In mice with DSS-induced ulcerative colitis, TBⅡ treatment attenuated clinical symptoms, repaired the intestinal mucosal barrier, reduced inflammatory infiltration, and alleviated colonic inflammation. RNA-seq analysis and protein expression levels demonstrated that TBⅡ could prominently inhibit NLRP3 signaling. TBⅡ-mediated NLRP3 inhibition was associated with alleviating intestinal permeability and inflammatory response via the blockage of communication between epithelial cells and macrophages, probably in an NLRP3 inhibition mechanism. However, pharmacological inhibition of NLRP3 by MCC950 or Ad-NLRP3 mediated NLRP3 overexpression significantly impaired the TBⅡ-mediated anti-inflammatory effect. Mechanistically, TBⅡ-mediated NLRP3 inhibition may be partly associated with the suppression of NF-κB, a master pro-inflammatory factor for transcriptional regulation of NLRP3 expression in the priming step. Moreover, co-treatment TBⅡ with NF-κB inhibitor BAY11-7082 partly impaired TBⅡ-mediated NLRP3 inhibition, and consequently affected the IL-1ß mature and secretion. Importantly, TBⅡ-mediated amelioration was not further enhanced in NLPR3-/- mice. CONCLUSION: TBⅡ exerted a prominent protective effect against DSS-induced colitis via regulation of alleviation of intestinal permeability and inflammatory response via the blockage of crosstalk between epithelial cells and macrophages in an NLRP3-mediated inhibitory mechanism. These beneficial effects could make TBⅡ a promising drug for relieving colitis.


Assuntos
Colite Ulcerativa , Colite , Saponinas , Animais , Camundongos , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , NF-kappa B/metabolismo , Lipopolissacarídeos/metabolismo , Inflamassomos/metabolismo , Colite/tratamento farmacológico , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Anti-Inflamatórios/efeitos adversos , Saponinas/farmacologia , Saponinas/uso terapêutico , Trifosfato de Adenosina/metabolismo , Sulfato de Dextrana/toxicidade , Camundongos Endogâmicos C57BL , Colo/metabolismo
2.
Br J Pharmacol ; 181(8): 1221-1237, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37926864

RESUMO

BACKGROUND AND PURPOSE: The mammalian target of rapamycin (mTOR) pathway plays critical roles in intrinsic chemoresistance by regulating Fanconi anaemia complementation group D2 (FANCD2) expression. However, the mechanisms by which mTOR regulates FANCD2 expression and related inhibitors are not clearly elucidated. Extracts of Centipeda minima (C. minima) showed promising chemosensitizing effects by inhibiting FANCD2 activity. Here, we have aimed to identify the bioactive chemosensitizer in C. minima extracts and elucidate its underlying mechanism. EXPERIMENTAL APPROACH: The chemosensitizing effects of arnicolide C (ArC), a bioactive compound in C. minima, on non-small cell lung cancer (NSCLC) were investigated using immunoblotting, immunofluorescence, flow cytometry, the comet assay, small interfering RNA (siRNA) transfection and animal models. The online SynergyFinder software was used to determine the synergistic effects of ArC and chemotherapeutic drugs on NSCLC cells. KEY RESULTS: ArC had synergistic cytotoxic effects with DNA cross-linking drugs such as cisplatin and mitomycin C in NSCLC cells. ArC treatment markedly decreased FANCD2 expression in NSCLC cells, thus attenuating cisplatin-induced FANCD2 nuclear foci formation, leading to DNA damage and apoptosis. ArC inhibited the mTOR pathway and attenuated mTOR-mediated expression of E2F1, a critical transcription factor of FANCD2. Co-administration of ArC and cisplatin exerted synergistic anticancer effects in the A549 xenograft mouse model by suppressing mTOR/FANCD2 signalling in tumour tissues. CONCLUSION AND IMPLICATIONS: ArC suppressed DNA cross-linking drug-induced DNA damage response by inhibiting the mTOR/E2F1/FANCD2 signalling axis, serving as a chemosensitizing agent. This provides insight into the anticancer mechanisms of ArC and offers a potential combinatorial anticancer therapeutic strategy.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Anemia de Fanconi , Neoplasias Pulmonares , Humanos , Animais , Camundongos , Carcinoma Pulmonar de Células não Pequenas/patologia , Cisplatino/farmacologia , Neoplasias Pulmonares/patologia , Serina-Treonina Quinases TOR/metabolismo , DNA , Mamíferos/metabolismo , Fator de Transcrição E2F1/metabolismo , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/metabolismo
3.
JAMA Ophthalmol ; 141(12): e232964, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38127082

RESUMO

This case report discusses a diagnosis of pigmented vitreous cyst in a man aged 18 years who presented with a 2-week history of seeing a floater in his right eye.


Assuntos
Cistos , Corpo Vítreo , Humanos , Seguimentos , Corpo Vítreo/patologia , Cistos/patologia
4.
J Org Chem ; 88(23): 16649-16654, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37967371

RESUMO

Herein, we present a novel method for the N-arylation of amino acid esters using α-bromoacetaldehyde acetal and acetoacetate via an I2-mediated metal-free benzannulation strategy, which disclosed the first synthetic application of N-arylation of amino acids using nonaromatic building blocks. The synthesized N-arylated amino acid derivatives were found to possess promising selective inhibition against human hepatocellular liver carcinoma cells, human melanoma cells, and human normal liver cells, with an IC50 value as low as 16.79 µg·mL-1.


Assuntos
Aminoácidos , Ésteres , Humanos , Aminoácidos/química , Ésteres/química , Metais
5.
J Agric Food Chem ; 70(38): 12041-12054, 2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36124900

RESUMO

Vitexin, one of the major active components in hawthorn, has been shown to possess multiple pharmacological activities. Here, we sought to investigate the effect of vitexin on an ameliorating dextran sodium sulfate (DSS)-induced ulcerative colitis (UC) mouse model and further explored its potential mechanism. The results indicated that vitexin administration could significantly alleviate the signs of colitis via suppressing body weight loss, reducing disease activity index (DAI) score, and mitigating colonic damage. Also, vitexin treatment in colitis mice markedly inhibited the production of pro-inflammation cytokines (such as IL-1ß, IL-6, and TNF-α). Meanwhile, vitexin also could markedly down-regulate the phosphorylation levels of p65, IκB, and STAT1. Moreover, vitexin also dose-dependently increased the expressions of muc-2, ZO-1, and occludin proteins in colonic tissues of colitis mice. Further studies revealed that vitexin dramatically modulated the disturbed intestinal flora in colitis mice. Vitexin is beneficial for regulating abundances of some certain bacteria, such as Bacteroides, Helicobacter, Alistipes, Lachnospiraceae_NK4A136_group, and Lachnospiraceae_UCG-006. Interestingly, the correlation analysis indicated that key microbes were strongly correlated with colitis features, such as pro-inflammatory cytokines and gut barrier. Collectively, these results demonstrated that vitexin treatment alleviated inflammation, intestinal barrier dysfunction, and intestinal flora dysbiosis in colitis mice. Vitexin is expected to be a promising compound for UC treatment.


Assuntos
Apigenina , Colite Ulcerativa , Colite , Animais , Apigenina/uso terapêutico , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/genética , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/genética , Colo/metabolismo , Citocinas/genética , Citocinas/metabolismo , Sulfato de Dextrana , Modelos Animais de Doenças , Inflamação/tratamento farmacológico , Interleucina-6/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Ocludina/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
6.
Cell Mol Gastroenterol Hepatol ; 14(2): 271-293, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35526796

RESUMO

BACKGROUND & AIMS: Excessive acetaminophen (APAP) intake causes oxidative stress and inflammation, leading to fatal hepatotoxicity; however, the mechanism remains unclear. This study aims to explore the protective effects and detailed mechanisms of sirtuin 6 (SIRT6) in the defense against APAP-induced hepatotoxicity. METHODS: Hepatocyte-specific SIRT6 knockout mice, farnesoid X receptor (FXR) knockout mice, and mice with genetic or pharmacological activation of SIRT6 were subjected to APAP to evaluate the critical role of SIRT6 in the pathogenesis of acute liver injury. RNA sequences were used to investigate molecular mechanisms underlying this process. RESULTS: Hepatic SIRT6 expression was substantially reduced in the patients and mice with acute liver injury. The deletion of SIRT6 in mice and mice primary hepatocytes led to high N-acetyl-p-benzo-quinoneimine and low glutathione levels in the liver, thereby enhancing APAP overdose-induced liver injury, manifested as increased hepatic centrilobular necrosis, oxidative stress, and inflammation. Conversely, overexpression or pharmacological activation of SIRT6 enhanced glutathione and decreased N-acetyl-p-benzo-quinoneimine, thus alleviating APAP-induced hepatotoxicity via normalization of liver damage, inflammatory infiltration, and oxidative stress. Our molecular analysis revealed that FXR is regulated by SIRT6, which is associated with the pathological progression of ALI. Mechanistically, SIRT6 deacetylates FXR and elevates FXR transcriptional activity. FXR ablation in mice and mice primary hepatocytes prominently blunted SIRT6 overexpression and activation-mediated ameliorative effects. Conversely, pharmacological activation of FXR mitigated APAP-induced hepatotoxicity in SIRT6 knockout mice. CONCLUSIONS: Our current study suggests that SIRT6 plays a crucial role in APAP-induced hepatotoxicity, and pharmacological activation of SIRT6 may represent a novel therapeutic strategy for APAP overdose-induced liver injury.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Receptores Citoplasmáticos e Nucleares , Sirtuínas , Acetaminofen/toxicidade , Animais , Glutationa/metabolismo , Inflamação , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores Citoplasmáticos e Nucleares/genética , Sirtuínas/genética
7.
J Chromatogr Sci ; 60(5): 478-485, 2022 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-34929736

RESUMO

A simple, rapid and sensitive analytical method was developed for the determination of toosendanin in rat plasma using liquid chromatography tandem mass spectrometry (LC-MS/MS). Andrographolide was selected as the internal standard, and the plasma samples were extracted by liquid-liquid extraction with diethyl ether. Chromatographic separation was performed on a Dikma Spursil C18, 3.5 µm (150 × 2.1 mm i.d) analytical column with 85% methanol:water (v/v) containing 0.025% formic acid (pH = 3.9) as mobile phase. The flow rate was 0.25 mL/min, and the total run time was 3 min. Detection was performed with a triple-quadrupole tandem mass spectrometer using negative ion mode electrospray ionization (ESI) in the multiple reaction monitoring (MRM) mode. The MS/MS ion transitions monitored were m/z 573.1 â†’ 531.1 and 349.0 â†’ 287.0 for toosendanin and andrographolide, respectively. Good linearity was observed over the concentration range of 3.125-500 ng/mL in 100 µL of rat plasma with a correlation coefficient ˃0.9997. Intra- and inter-assay variabilities were ˂8.5% in plasma. The recovery and the matrix effect were in the range 71.8-73.5% and 96.4-103.8%, respectively. The analyte was stable under various conditions (at room temperature, during freeze-thaw settings, in the autosampler, and under deep-freeze conditions). The method was successfully applied to a pharmacokinetic study of toosendanin after its oral administration in rats at a dose of 10 mg/kg.


Assuntos
Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas em Tandem , Animais , Cromatografia Líquida de Alta Pressão/métodos , Cromatografia Líquida/métodos , Ratos , Ratos Sprague-Dawley , Reprodutibilidade dos Testes , Espectrometria de Massas por Ionização por Electrospray/métodos , Espectrometria de Massas em Tandem/métodos , Triterpenos
8.
Phytomedicine ; 82: 153438, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33422953

RESUMO

BACKGROUND: 5-Hydroxy-4-methoxycanthin-6-one (PQ-A) is the main active compound in Ramulus et Folium Picrasmae, a Chinese herbal medicine commonly used in colitis treatment. PURPOSE: To clarify PQ-A's role and mechanism in colitis treatment based on a non-targeted metabolomics study. METHODS: Rats with ulcerative colitis (UC) established with 4% dextran sulfate sodium (DSS) were orally treated with PQ-A. Body weight, disease activity index (DAI), colon length, biochemical parameters (MDA and SOD), and histopathological score in colon tissue were measured. A UPLC-Q-TOF-MS/MS approach-based metabolomics analysis was conducted to explore the underlying mechanisms of PQ-A in colitis treatment. Inflammatory cytokines (TNF-α, IL-1ß, IL-6, and IL-10) concentrations in serum and their protein levels in the colon were determined. CD3 and NF-κB/p65 immunohistochemistry in the colon was semi-quantified. The related protein or mRNA in IKK-NF-κB/p65 signaling pathway was measured by Western blotting or RT-PCR, respectively. Potential molecular interactions between PQ-A and NF-κB/p65 was predicted using DS 2.5 software. RESULTS: PQ-A significantly prevented body weight loss and colonic shortening in colitic rats, and reduced the DAI and histopathologic score as well. PQ-A decreased MDA levels in the UC rat serum and increased those of SOD. Metabolomics results revealed forty-nine differential metabolites as biomarkers of DSS-induced colitis, demonstrating that the path-mechanism of colitis involved the perturbation of eight metabolic pathways, including alpha-linolenic acid and linoleic acid metabolism, sphingolipid metabolism, retinol metabolism, bile acid metabolism, et al. Thirty-six biomarkers were especially reversed to normal-like levels by PQ-A via regulation of alpha-linolenic acid and linoleic acid metabolism, sphingolipid metabolism, and retinol metabolism, which effectively hinted the potential pharmacological mechanism of PQ-A related to NF-κB/p65 inflammatory signaling. Molecular docking results predicted high affinity interaction between PQ-A and NF-κB/p65, involving hydrogen-bond interactions at five amino acid residues, suggesting NF-κB/p65 as a target. PQ-A decreased TNF-α, IL-1ß, and IL-6 concentrations in serum and their protein levels in colon tissue in colitic rats. CD3, MYD88, p-IκBα, NF-κB/p65, and p-NF-κB/p65 expression levels decreased, whereas those of IKKß and IκBα increased in colitic tissue following PQ-A treatment. PQ-A strongly inhibited nuclear translocation of NF-κB/p65. CONCLUSIONS: We provide an overview of PQ-A's possible mechanism of action in colitis treatment based on serum non-targeted metabolomics. PQ-A treatment can protect rats against DSS-induced colitis by suppressing the NF-κB/p65 signaling pathway.


Assuntos
Carbolinas/química , Carbolinas/uso terapêutico , Colite/tratamento farmacológico , Sulfato de Dextrana/efeitos adversos , NF-kappa B/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fator de Transcrição RelA/metabolismo , Animais , Biomarcadores/metabolismo , Colite/induzido quimicamente , Citocinas/metabolismo , Masculino , Metabolômica , Simulação de Acoplamento Molecular , Ratos , Espectrometria de Massas em Tandem
9.
Gut ; 70(11): 2183-2195, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33257471

RESUMO

OBJECTIVE: Impaired hepatic fatty acids oxidation results in lipid accumulation and redox imbalance, promoting the development of fatty liver diseases and insulin resistance. However, the underlying pathogenic mechanism is poorly understood. Krüppel-like factor 16 (KLF16) is a transcription factor that abounds in liver. We explored whether and by what mechanisms KLF16 affects hepatic lipid catabolism to improve hepatosteatosis and insulin resistance. DESIGN: KLF16 expression was determined in patients with non-alcoholic fatty liver disease (NAFLD) and mice models. The role of KLF16 in the regulation of lipid metabolism was investigated using hepatocyte-specific KLF16-deficient mice fed a high-fat diet (HFD) or using an adenovirus/adeno-associated virus to alter KLF16 expression in mouse primary hepatocytes (MPHs) and in vivo livers. RNA-seq, luciferase reporter gene assay and ChIP analysis served to explore the molecular mechanisms involved. RESULTS: KLF16 expression was decreased in patients with NAFLD, mice models and oleic acid and palmitic acid (OA and PA) cochallenged hepatocytes. Hepatic KLF16 knockout impaired fatty acid oxidation, aggravated mitochondrial stress, ROS burden, advancing hepatic steatosis and insulin resistance. Conversely, KLF16 overexpression reduced lipid deposition and improved insulin resistance via directly binding the promoter of peroxisome proliferator-activated receptor α (PPARα) to accelerate fatty acids oxidation and attenuate mitochondrial stress, oxidative stress in db/db and HFD mice. PPARα deficiency diminished the KLF16-evoked protective effects against lipid deposition in MPHs. Hepatic-specific PPARα overexpression effectively rescued KLF16 deficiency-induced hepatic steatosis, altered redox balance and insulin resistance. CONCLUSIONS: These findings prove that a direct KLF16-PPARα pathway closely links hepatic lipid homeostasis and redox balance, whose dysfunction promotes insulin resistance and hepatic steatosis.


Assuntos
Fatores de Transcrição Kruppel-Like/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , PPAR alfa/metabolismo , Animais , Biomarcadores/sangue , Hepatócitos/metabolismo , Humanos , Resistência à Insulina , Lipídeos/sangue , Masculino , Camundongos , Camundongos Endogâmicos C57BL
10.
Curr Eye Res ; 46(2): 232-238, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32757684

RESUMO

Purpose: This work aimed to investigate the influences of microRNA-340 (miR-340) on proliferation and apoptosis of retinoblastoma (RB) cells and explore its regulatory mechanism. MATERIALS AND METHODS: miR-340 mimic and inhibitor were applied for up-regulating or inhibiting the expression of miR-340 in RB cell lines. Then, CCK-8 and AnnexinV-FITC/PI staining were used to measure cell proliferation and apoptosis, respectively. After that, luciferase assay was performed to affirm the direct targets of miR-340. Furthermore, qRT-PCR and western blotting assay were carried out to detect the levels of miR-340 and KIF14. RESULTS: Our results indicated that the miR-340 was lowly expressed in RB cell lines, and up-regulation of miR-340 can decrease the proliferation and induce the apoptosis of RB cells. Moreover, we verified that miR-340 controls KIF14 expression, either directly or through a subsequent molecular cascade, and inversely related to its expression. The results obtained from the rescue assays presented that over-expression of KIF14 reversed the miR-340-mediated inhibition on malignant phenotype of RB cells. CONCLUSIONS: Overall, we proved that miR-340 can decrease the proliferation and increase the apoptosis of RB cells, and its function in RB cells was at least partially achieved via down-regulation of KIF14, prompting that miR-340 was expected to supply a new direction for clinical therapy of RB in the future.


Assuntos
Apoptose/genética , Regulação Neoplásica da Expressão Gênica , Cinesinas/genética , MicroRNAs/genética , Proteínas Oncogênicas/genética , Neoplasias da Retina/genética , Retinoblastoma/genética , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Humanos , Cinesinas/biossíntese , MicroRNAs/biossíntese , Proteínas Oncogênicas/biossíntese , RNA Neoplásico/genética , RNA Neoplásico/metabolismo , Neoplasias da Retina/metabolismo , Neoplasias da Retina/patologia , Retinoblastoma/metabolismo , Retinoblastoma/patologia
11.
Oxid Med Cell Longev ; 2020: 7374086, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33274005

RESUMO

Chrysophanol, a primary active ingredient of Cassia mimosoides Linn or Rhei radix et rhizoma, has various pharmacological properties, including anticancer, antidiabetic, and anti-inflammatory, as well as blood lipid regulation. However, whether chrysophanol can mitigate obesity, and its underlying mechanisms remains unclear. This study investigated whether chrysophanol effects energy metabolism in high-fat diet- (HFD-) induced obese mice and fat-specific Sirtuin 6- (SIRT6-) knockout (FKO) mice, targeting the SIRT6/AMPK signaling pathway in brown and white fat tissue. Our results showed that chrysophanol can effectively inhibit lipid accumulation in vitro and reduce mice's body weight, improve insulin sensitivity and reduced fat content of mice, and induce energy consumption in HFD-induced obese mice by activating the SIRT6/AMPK pathway. However, a treatment with OSS-128167, an SIRT6 inhibitor, or si-SIRT6, SIRT6 target specific small interfering RNA, in vitro blocked chrysophanol inhibition of lipid accumulation. Similar results were obtained when blocking the AMPK pathway. Moreover, in the HFD-induced obese model with SIRT6 FKO mice, histological analysis and genetic test results showed that chrysophanol treatment did not reduce lipid droplets and upregulated the uncoupling protein 1 (UCP1) expression. Rather, it upregulated the expression of thermogenic genes and activated white fat breakdown by inducing phosphorylation of adenosine 5'-monophosphate- (AMP-) activated protein kinase (AMPK), both in vitro and in vivo. OSS-128167 or si-SIRT6 blocked chrysophanol's upregulation of peroxisome proliferator-activated receptor-γ coactivator-1α (Pgc-1α) and Ucp1 expression. In conclusion, this study demonstrated that chrysophanol can activate brown fat through the SIRT6/AMPK pathway and increase energy consumption, insulin sensitivity, and heat production, thereby alleviating obesity and metabolic disorders.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Adipócitos Marrons/metabolismo , Antraquinonas/farmacologia , Síndrome Metabólica/metabolismo , Transdução de Sinais/efeitos dos fármacos , Sirtuínas/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Animais , Masculino , Síndrome Metabólica/tratamento farmacológico , Síndrome Metabólica/genética , Síndrome Metabólica/patologia , Camundongos , Camundongos Knockout , Transdução de Sinais/genética , Sirtuínas/genética
12.
J Ethnopharmacol ; 255: 112776, 2020 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-32205261

RESUMO

ETHNOPHARMACOLOGY RELEVANCE: The farnesoid X receptor (FXR) is a therapeutic target of for the treatment of non-alcoholic fatty liver disease (NAFLD) owing to its regulatory role in lipid homeostasis. Schaftoside (SS) is a bioactive compound of Herba Desmodii Styracifolii, which has traditionally been used to treat hepatitis and cholelithiasis. However, the potential hepatoprotective effect of SS against NAFLD and the underlying mechanisms remain unknown. AIM OF THE STUDY: We investigated whether SS could improve NAFLD-induced liver injury by decreasing lipid accumulation via the activation of FXR signalling. MATERIALS AND METHODS: In vivo, the effects of SS on high-fat diet (HFD)-induced lipid accumulation in the liver of mice were evaluated by serum biochemical parameters and histopathological analysis. In vitro, the intracellular triglyceride (TG) level and Oil Red O staining were used to evaluate the lipid removal ability of SS in Huh-7 cells or FXR knockout mouse primary hepatocytes (MPHs) induced by oleic acid (OA). Moreover, FXR/sterol regulatory element-binding protein 1 (SREBP1) mRNA and protein expression levels were detected. RESULTS: SS reduced HFD-induced lipid accumulation in the liver, as indicated by decreased aspartate aminotransferase (AST), cholesterol (Ch), and TG levels in serum and TG levels in liver tissue, and subsequently resulting in attenuation of liver histopathological injury. Gene expression profiles demonstrated that SS dose-dependently prevented HFD-induced decrease of FXR expression and inversely inhibited SREBP1 expression in the nucleus. Furthermore, SS significantly suppressed excessive TG accumulation and decreased intracellular TG level in Huh-7 cells or MPHs via the upregulation of FXR and inhibition of SREBP1 expression in the nucleus. CONCLUSION: Our results suggest that SS ameliorates HFD-induced NAFLD by the decrease of lipid accumulation via the control of FXR-SREBP1 signalling.


Assuntos
Glicosídeos/farmacologia , Hepatócitos/efeitos dos fármacos , Hipolipemiantes/farmacologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Receptores Citoplasmáticos e Nucleares/efeitos dos fármacos , Animais , Linhagem Celular Tumoral , Colesterol/metabolismo , Dieta Hiperlipídica , Modelos Animais de Doenças , Hepatócitos/metabolismo , Hepatócitos/patologia , Humanos , Fígado/metabolismo , Fígado/patologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo , Transdução de Sinais , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Triglicerídeos/metabolismo , Regulação para Cima
13.
Antioxid Redox Signal ; 33(2): 87-116, 2020 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-32037847

RESUMO

Aims: Acetaminophen (APAP) overdose leads to acute liver injury by inducing hepatic mitochondrial oxidative stress and inflammation. However, the molecular mechanisms involved are still unclear. Farnesoid X receptor (FXR) serves as a therapeutic target for the treatment of liver disorders, whose activation has been proved to protect APAP-induced hepatotoxicity. In this study, we examined whether FXR activation by schaftoside (SS), a naturally occurring flavonoid from Desmodium styracifolium, could protect mice against APAP-induced hepatotoxicity via regulation of oxidative stress and inflammation. Results: We first found that SS exhibited potent protective effects against APAP-induced hepatotoxicity in mice. The study reveals that SS is a potential agonist of FXR, which protects mice from hepatotoxicity mostly via regulation of oxidative stress and inflammation. Mechanistically, the hepatoprotective SS is associated with the induction of the genes of phase II detoxifying enzymes (e.g., UGT1A1, GSTα1), phase III drug efflux transporters (e.g., bile salt export pump, organic solvent transporter protein ß), and glutathione metabolism-related enzymes (e.g., glutamate-cysteine ligase modifier subunit [Gclm], glutamate-cysteine ligase catalytic subunit [Gclc]). More importantly, SS-mediated FXR activation could fine-tune the pro- and anti-inflammatory eicosanoids generation via altering eicosanoids metabolic pathway, thereby resulting in decrease of hepatic inflammation. In contrast, FXR deficiency can abrogate the above effects. Innovation and Conclusion: Our results provided the direct evidence that FXR activation by SS could attenuate APAP-induced hepatotoxicity via inhibition of nuclear factor kappa-B signaling and fine-tuning the generation of proinflammatory mediators' eicosanoids. Our findings indicate that strategies to activate FXR signaling in hepatocytes may provide a promising therapeutic approach to alleviate liver injury induced by APAP overdose.


Assuntos
Acetaminofen/efeitos adversos , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Glicosídeos/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Receptores Citoplasmáticos e Nucleares/agonistas , Animais , Antioxidantes/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Doença Hepática Induzida por Substâncias e Drogas/patologia , Inflamação , Redes e Vias Metabólicas/efeitos dos fármacos , Camundongos , Substâncias Protetoras/farmacologia , Receptores Citoplasmáticos e Nucleares/metabolismo , Metabolismo Secundário/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
14.
Biochem Biophys Res Commun ; 514(1): 280-286, 2019 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-31030942

RESUMO

NADPH oxidase (Nox) is the main source of reactive oxygen species in vascular diseases, which have been implicated in promoting VSMCs phenotypic switch. P22phox, the indispensable component of the complex Nox, is required for their activity and stability. Krüppel-like factor 4 (KLF4) is an important transcriptional regulator of VSMCs phenotypic switch. Both KLF4 and p22phox are involved in the proliferation, migration and differentiation of VSMC. This study aims to determine whether and how p22phox regulates KLF4 expression in phenotypic switching of VSMCs. In cultured primary rat VSMCs, we noticed that the expression of P22phox was significantly increased in combination with VSMCs phenotypic switch and up-regulated KLF4 expression in Ang-II-treated cells. Ang-II-induced VSMC dedifferentiation, proliferation, migration, KLF4 expression, H2O2 production and the phosphorylation of AKT, ERK1/2 were all inhibited by knockdown of P22phox. Furthermore, H2O2 treatment effectively enhanced the phosphorylation of AKT, ERK1/2 and the expression of KLF4, whereas LY294002 (a specific inhibitor of PI3K), U0126 (a specific inhibitor of ERK1/2) significantly attenuated the H2O2-induced up-regulation of KLF4. In conclusion, these results demonstrated that p22phox promotes Ang-II-induced VSMC phenotypic switch via the H2O2-ERK1/2/AKT-KLF4 signaling pathway.


Assuntos
Angiotensina II/metabolismo , Fatores de Transcrição Kruppel-Like/metabolismo , Músculo Liso Vascular/citologia , NADPH Oxidases/metabolismo , Angiotensina II/farmacologia , Animais , Diferenciação Celular , Movimento Celular , Proliferação de Células , Células Cultivadas , Peróxido de Hidrogênio/metabolismo , Peróxido de Hidrogênio/farmacologia , Fator 4 Semelhante a Kruppel , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/fisiologia , NADPH Oxidases/genética , Fenótipo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos Sprague-Dawley
15.
Br J Pharmacol ; 175(17): 3563-3580, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29945292

RESUMO

BACKGROUND AND PURPOSE: Activation of the human pregnane X receptor (PXR; NR1I2) has potential therapeutic uses for inflammatory bowel disease (IBD). Imperatorin (IMP), a naturally occurring coumarin, is the main bioactive ingredient of Angelica dahurica Radix, which is regularly used to treat the common cold and intestinal disorders. However, there are no data on the protective effects of IMP against IBD. EXPERIMENTAL APPROACH: The effects of IMP on PXR-modulated cytochrome P450 3A4 (CYP3A4) expression were assessed using a PXR transactivation assay, a mammalian two-hybrid assay, a competitive ligand-binding assay, analysis of CYP3A4 mRNA and protein expression levels and measurement of CYP3A4 activity using a cell-based reporter gene assay and in vitro model. The inhibitory effects of IMP on NF-κB activity were evaluated by a reporter assay and NF-κB p65 nuclear translocation. The anti-IBD effects of IMP were investigated in a dextran sulphate sodium (DSS)-induced colitis mouse model. Colon inflammatory cytokines were assessed by elisa. KEY RESULTS: IMP activated CYP3A4 promoter activity, recruited steroid receptor coactivator 1 to the ligand-binding domain of PXR and increased the expression and activity of CYP3A4. PXR knockdown substantially reduced IMP-induced increase in CYP3A4 expression. Furthermore, IMP-mediated PXR activation suppressed the nuclear translocation of NF-κB and down-regulated LPS-induced expression of pro-inflammatory genes. Nevertheless, PXR knockdown partially reduced the IMP-mediated inhibition of NF-κB. IMP ameliorated DSS-induced colitis by PXR/NF-κB signalling. CONCLUSIONS AND IMPLICATIONS: IMP acts as a PXR agonist to attenuate DSS-induced colitis by suppression of the NF-κB-mediated pro-inflammatory response in a PXR/NF-κB-dependent manner.


Assuntos
Colite/induzido quimicamente , Colite/prevenção & controle , Sulfato de Dextrana/antagonistas & inibidores , Sulfato de Dextrana/toxicidade , Furocumarinas/farmacologia , Receptor de Pregnano X/agonistas , Animais , Linhagem Celular Tumoral , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL
16.
Methods Appl Fluoresc ; 6(2): 024001, 2018 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-29350185

RESUMO

Cyanine has been widely utilized as a near infrared (NIR) fluorophore for detection of glutathione (GSH). However, the excitation of most of the reported cyanine-based probes was less than 800 nm, which inevitably induce biological background absorption and lower the sensitivity, limiting their use for detection of GSH in blood samples. To address this issue, here, a heptamethine cyanine probe (DNIR), with a NIR excitation wavelength at 804 nm and a NIR emission wavelength at 832 nm, is employed for the detection of GSH and its oxidized form (GSSG) in blood. The probe displays excellent selectivity for GSH over GSSG and other amino acids, and rapid response to GSH, in particular a good property for indirect detection of GSSG in the presence of enzyme glutathione reductase and the reducing agent nicotinamideadenine dinucleotide phosphate, without further separation prior to fluorescent measurement. To the best of our knowledge, this is the first attempt to explore NIR fluorescent approach for the simultaneous assay of GSH and GSSG in blood. As such, we expect that our fluorescence sensors with both NIR excitation and NIR emission make this strategy suitable for the application in complex physiological systems.


Assuntos
Carbocianinas/química , Glutationa/sangue , Espectroscopia de Luz Próxima ao Infravermelho , Corantes Fluorescentes/química , Glutationa/química , Humanos , NADP/química , Oxirredução
17.
Mol Med Rep ; 15(4): 2261-2266, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28260033

RESUMO

The aim of the present study was to investigate differential modules (DMs) between uveal melanoma (UM) and normal conditions by examining differential networks. Based on a gene expression profile collected from the ArrayExpress database, the inference of DMs involved three steps: The first step was construction of a differential co­expression network (DCN); second, the module algorithm was adapted to identify the DMs presented in DCN; finally, the statistical significance of DMs were assessed based on the null score distribution of DMs generated using randomized networks. A DCN with 309 nodes and 3,729 edges was obtained, and 30 seed genes from the DCN were examined. Subsequently, one DM, which had 179 nodes and 3,068 edges, was investigated. By utilizing randomized networks, the P­value for DM was 0.034, therefore, the DM was statically significant between UM and baseline conditions. In conclusion, the present study successfully identified one DM in UM based on DCN and module algorithm, and this DM may be beneficial in revealing the pathological mechanism of UM and provide insight for future investigation of UM.


Assuntos
Redes Reguladoras de Genes , Melanoma/genética , Transcriptoma , Neoplasias Uveais/genética , Bases de Dados Genéticas , Regulação Neoplásica da Expressão Gênica , Humanos , Melanoma/patologia , Úvea/metabolismo , Úvea/patologia , Neoplasias Uveais/patologia
18.
PLoS One ; 12(3): e0174138, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28319142

RESUMO

Cardiovascular calcification is one of the most severe outcomes associated with cardiovascular disease and often results in significant morbidity and mortality. Previous reports indicated that epigenomic regulation of microRNAs (miRNAs) might play important roles in vascular smooth muscle cell (VSMC) calcification. Here, we identified potential key miRNAs involved in vascular calcification in vivo and investigated the role of miR-32-5p (miR-32). According to microarray analysis, we observed increased expression of miR-125b, miR-30a, and miR-32 and decreased expression of miR-29a, miR-210, and miR-320 during the progression of vascularcalcification. Additionally, gain- and loss-of-function studies of miR-32 confirmed promotion of VSMC calcification in mice through the enhanced expression of bonemorphogenetic protein-2, runt-related transcription factor-2(RUNX2), osteopontin, and the bone-specific phosphoprotein matrix GLA protein in vitro. Moreover, miR-32 modulated vascularcalcification progression by activating phosphoinositide 3-kinase (PI3K)signaling and increasing RUNX2 expression and phosphorylation by targeting the 3'-untranslated region of phosphatase and tensin homolog Mrna (PTEN) in mouse VSMCs. Furthermore, we detected higher miR-32 levels in plasmafrom patients with coronary artery disease with coronary artery calcification (CAC) as compared with levels observed in non-CAC patients (P = 0.016), further confirming miR-32 as a critical modulator and potential diagnostic marker for CAC.


Assuntos
MicroRNAs/metabolismo , Calcificação Vascular/metabolismo , Animais , Biomarcadores/sangue , Linhagem Celular , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Doença da Artéria Coronariana/sangue , Doença da Artéria Coronariana/diagnóstico por imagem , Vasos Coronários/diagnóstico por imagem , Modelos Animais de Doenças , Humanos , Masculino , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Osteogênese/fisiologia , Osteoprotegerina/genética , Osteoprotegerina/metabolismo , PTEN Fosfo-Hidrolase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Calcificação Vascular/diagnóstico por imagem , Calcificação Vascular/patologia
19.
Anal Chem ; 88(7): 3998-4003, 2016 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-26948406

RESUMO

By virtue of its high sensitivity and rapidity, Fenton reaction has been demonstrated as a powerful tool for in vitro biochemical analysis; however, in vivo applications of Fenton reaction still remain to be exploited. Herein, we report, for the first time, the design, formation and testing of Fenton reaction for in vivo fluorescence imaging of hydrogen peroxide (H2O2). To realize in vivo fluorescence imaging of H2O2 via Fenton reaction, a functional nanosphere, Fc@MSN-FDNA/PTAD, is fabricated from mesoporous silica nanoparticle (MSN), a Fenton reagent of ferrocene (Fc), ROX-labeled DNA (FDNA), and a cationic perylene derivative (PTAD). The ferrocene molecules are locked in the pore entrances of MSN, and exterior of MSN is covalently immobilized with FDNA. As a key part, PTAD acts as not only the gatekeeper of MSN but also the efficient quencher of ROX. H2O2 can permeate into the nanosphere and react with ferrocene to product hydroxyl radical (·OH) via Fenton reaction, which cleaves FDNA to detach ROX from PTAD, thus in turn, lights the ROX fluorescence. Under physiological condition, H2O2 can be determined from 5.0 nM to 1.0 µM with a detection limit of 2.4 nM. Because of the rapid kinetics of Fenton reaction and high specificity for H2O2, the proposed method meets the requirement for real applications. The feasibility of Fc@MSN-FDNA/PTAD for in vivo applications is demonstrated for fluorescence imaging of exogenous and endogenous H2O2 in cells and mice. We expect that this work will not only contribute to the H2O2-releated studies but also open up a new way to exploit in vivo Fenton reaction for biochemical research.


Assuntos
Compostos Ferrosos/química , Fluorescência , Peróxido de Hidrogênio/análise , Ferro/química , Animais , Linhagem Celular Tumoral , Compostos Ferrosos/síntese química , Células HEK293 , Células HeLa , Humanos , Peróxido de Hidrogênio/síntese química , Peróxido de Hidrogênio/química , Metalocenos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Neoplasias Experimentais/química , Espectrofotometria
20.
Biosens Bioelectron ; 77: 673-80, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26496221

RESUMO

As an important biomarker and therapeutic target, telomerase has attracted extensive attention concerning its detection and monitoring. Recently, enzyme-assisted amplification approaches have provided useful platforms for the telomerase activity detection, however, further improvement in sensitivity is still hindered by the single-step signal amplification. Herein, we develop a quadratic signal amplification strategy for ultrasensitive surface-enhanced Raman scattering (SERS) detection of telomerase activity. The central idea of our design is using telomerase-induced silver nanoparticles (AgNPs) assembly and silver ions (Ag(+))-mediated cascade amplification. In our approach, each telomerase-aided DNA sequence extension could trigger the formation of a long double-stranded DNA (dsDNA), making numerous AgNPs assembling along with this long strand through specific Ag-S bond, to form a primary amplification element. For secondary amplification, each conjugated AgNP was dissolved into Ag(+), which can effectively induce the 4-aminobenzenethiol (4-ABT) modified gold nanoparticles (AuNPs@4-ABT) to undergo aggregation to form numerous "hot-spots". Through quadratic amplifications, a limit of detection down to single HeLa cell was achieved. More importantly, this method demonstrated good performance when applied to tissues from colon cancer patients, which exhibits great potential in the practical application of telomerase-based cancer diagnosis in early stages. To demonstrate the potential in screening the telomerase inhibitors and telomerase-targeted drugs, the proposed design is successfully employed to measure the inhibition of telomerase activity by 3'-azido-3'-deoxythymidine.


Assuntos
Neoplasias do Colo/enzimologia , Nanopartículas Metálicas , Prata/química , Análise Espectral Raman/instrumentação , Ressonância de Plasmônio de Superfície/instrumentação , Telomerase/metabolismo , Ativação Enzimática , Desenho de Equipamento , Análise de Falha de Equipamento , Células HeLa , Humanos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Telomerase/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA