Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 39(5): 423-428, 2023 May.
Artigo em Chinês | MEDLINE | ID: mdl-37248837

RESUMO

Objective To investigate the neuroprotective effect of methylene blue on diabetic retinopathy in rats. Methods Thirty SD rats were randomly divided into blank, control and experimental groups. The control and experimental groups were induced with diabetes by streptozotocin (STZ) intraperitoneal injection. After 6 weeks of successful modeling, the experimental group received intravitreal injection of methylene blue at a dose of [0.2 mg/(kg.d)], while the control group received an equal amount of dimethyl sulfoxide (DMSO) intravitreal injection, both continuously injected for 7 days. ELISA was used to detect the levels of retinal superoxide dismutase (SOD), 8-iso-prostaglandin F2alpha (iPF2α) and interleukin-1ß (IL-1ß) in rats. Western blot analysis was used to detect the expression of retinal extracellular signal-regulated kinase 1/2 phosphorylation (p-ERK1/2) and phosphorylated protein kinase B (p-AKT), and PAS staining was used to detect retinal morphological changes. Results Compared with the blank group rats, the retinal SOD activity in the control and experimental group rats was significantly reduced. iPF2α, IL-1ß and p-ERK1/2 level increased, while p-AKT level decreased. Compared with the control group, the SOD activity of the experimental group rats increased. iPF2α and IL-1ß level went down, while p-ERK1/2 and p-AKT level went up significantly. The overall thickness of the retinal layer and the number of retinal ganglion cells were significantly reduced. Conclusion Methylene blue improves diabetic retinopathy in rats by reducing retinal oxidative stress and enhancing ERK1/2 and AKT phosphorylation.


Assuntos
Diabetes Mellitus Experimental , Retinopatia Diabética , Ratos , Animais , Retinopatia Diabética/tratamento farmacológico , Retinopatia Diabética/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Interleucina-1beta/metabolismo , Azul de Metileno/farmacologia , Fosforilação , Ratos Sprague-Dawley , Sistema de Sinalização das MAP Quinases , Diabetes Mellitus Experimental/tratamento farmacológico , Superóxido Dismutase/metabolismo
2.
Nutr Cancer ; 75(2): 750-760, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36495148

RESUMO

Barley (Hordeum vulgare L.) grass has been recognized as a functional food with a wide spectrum of health-promoting properties. Supplementation with barley grass has the potential to prevent chronic diseases, such as cancer. Here, we investigated whether barley grass could protect against hepatocellular carcinoma (HCC). Our data showed that administration of barley grass juice attenuates tumor development in a hydrodynamic gene delivery-induced model of HCC. The expression levels of the immune cell markers Ptprc and Adgre1 were upregulated in the barley grass juice-treated and normal groups, compared to those in the vehicle group in the HCC model. Immune cells (CD45+, F4/80+, and CLEC4F + iNOS + cells) infiltration in the liver increased following barley grass juice administration. Our results indicate that barley grass could be beneficial for HCC alleviation, partly by regulating immune cell infiltration. The ingredients of barley grass affect immune cell infiltration in HCC, and the detailed mechanism requires further study.


Assuntos
Carcinoma Hepatocelular , Hordeum , Neoplasias Hepáticas , Camundongos , Animais , Carcinoma Hepatocelular/prevenção & controle , Hordeum/genética , Hidrodinâmica , Neoplasias Hepáticas/prevenção & controle , Transfecção
3.
Front Plant Sci ; 12: 626916, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33747007

RESUMO

Polyploids play an important role in the breeding of plant for superior characteristics, and many reports have focused on the effects upon photosynthesis from polyploidization in some plant species recently, yet surprisingly little of this is known for barley. In this study, homozygous diploid and tetraploid plants, derived from microspore culturing of the barley cultivar "H30," were used to assess differences between them in their cellular, photosynthetic, and transcriptomic characteristics. Our results showed that tetraploid barley has the distinct characteristics of polyploids, namely thicker and heavier leaves, enlarged stomata size or stomatal guard cell size, and more photosynthetic pigments and improved photosynthesis (especially under high light intensity). This enhanced photosynthesis of tetraploid barley was confirmed by several photosynthetic parameters, including net photosynthetic rate (Pn), stomatal conductance (Gs), intercellular CO2 concentration (Ci), transpiration rate (Tr), maximum net photosynthetic rate (Pmax), light saturation point (LSP), maximum RuBP saturated rate carboxylation (Vcmax), and maximum rate of electron transport (Jmax). Transcriptomic analyses revealed that just ~2.3% of all detected genes exhibited differential expression patterns [i.e., differentially expressed genes (DEGs)], and that most of these - 580 of 793 DEGs in total - were upregulated in the tetraploid barley. The follow-up KEGG analysis indicated that the most enriched pathway was related to photosynthesis-antenna proteins, while the downregulation of DEGs was related mainly to the light-harvesting cholorophyII a/b-binding protein (Lhcb1) component, both validated by quantitative PCR (qPCR). Taken together, our integrated analysis of morphology, photosynthetic physiology, and transcriptome provides evidences for understanding of how polyploidization enhances the photosynthetic capacity in tetraploids of barley.

4.
Front Plant Sci ; 11: 216, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32265947

RESUMO

Karrikins are reported to stimulate seed germination, regulate seedling growth, and increase the seedling vigor in abiotic stress conditions in plants. Nevertheless, how karrikins alleviate abiotic stress remains largely elusive. In this study, we found that karrikin (KAR1) could significantly alleviate both drought and salt stress in the important oil plant Sapium sebiferum. KAR1 supplementation in growth medium at a nanomolar (nM) concentration was enough to recover seed germination under salt and osmotic stress conditions. One nanomolar of KAR1 improved seedling biomass, increased the taproot length, and increased the number of lateral roots under abiotic stresses, suggesting that KAR1 is a potent alleviator of abiotic stresses in plants. Under abiotic stresses, KAR1-treated seedlings had a higher activity of the key antioxidative enzymes, such as superoxide dismutase, peroxidase, catalase, and ascorbate peroxidase, in comparison with the control, which leads to a lower level of hydrogen peroxide, malondialdehyde, and electrolyte leakage. Moreover, the metabolome analysis showed that KAR1 treatment significantly increased the level of organic acids and amino acids, which played important roles in redox homeostasis under stresses, suggesting that karrikins might alleviate abiotic stresses via the regulation of redox homeostasis. Under abiotic stresses, applications of karrikins did not increase the endogenous abscisic acid level but altered the expression of several ABA signaling genes, such as SNF1-RELATED PROTEIN KINASE2.3, SNF1-RELATED PROTEIN KINASE2.6, ABI3, and ABI5, suggesting potential interactions between karrikins and ABA signaling in the stress responses. Conclusively, we not only provided the physiological and molecular evidence to clarify the mechanism of karrikins in the regulation of stress adaptation in S. sebiferum but also showed the potential value of karrikins in agricultural practices, which will lay a foundation for further studies about the role of karrikins in abiotic stress alleviation in plants.

5.
Adv Mater ; 26(39): 6689-95, 2014 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-25042520

RESUMO

Gold nanoechinus can sensitize the formation of singlet oxygen in the first and the second near-infra red (NIR) biological windows and exert in vivo dual modal photodynamic and photothermal therapeutic effects (PDT and PTT) to destruct the tumors completely. This is the first literature example of the destruction of tumors in NIR window II induced by dual modal nanomaterial-mediated photodynamic and photothermal therapy (NmPDT & NmPTT).


Assuntos
Desenho de Fármacos , Ouro/química , Ouro/farmacologia , Raios Infravermelhos , Nanoestruturas , Fotoquimioterapia/métodos , Animais , Melanoma Experimental/tratamento farmacológico , Camundongos , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA