Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Med Phys ; 51(6): 3985-3994, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38683935

RESUMO

BACKGROUND: Pencil beam scanning (PBS) proton therapy for moving targets is known to be impacted by interplay effects between the scanning beam and organ motion. While respiratory motion in the thoracic region is the major cause for organ motion, interplay effects depend on the delivery characteristics of proton accelerators. PURPOSE: To evaluate the impact of different types of PBS proton accelerators and spot sizes on interplay effects, mitigations, and plan quality for Stereotactic Body Radiation Therapy (SBRT) treatment of non-small cell lung cancer (NSCLC). METHODS: Twenty NSCLC patients treated with photon SBRT were selected to represent varying tumor volumes and respiratory motion amplitudes (median: 0.6 cm with abdominal compression) for this retrospective study. For each patient, plans were created using: (1) cyclotron-generated proton beams (CPB) with spot sizes of σ = 2.7-7.0 mm; (2) linear accelerator proton beams (LPB) (σ = 2.9-5.5 mm); and (3) linear accelerator proton minibeams (LPMB) (σ = 0.9-3.9 mm). The energy switching time is one second for CPB, and 0.005 s for LPMB and LPB. Plans were robustly optimized on the gross tumor volume (GTV) using each individual phase of four-dimensional computed tomography (4DCT) scans. Initially, single-field optimization (SFO) plans were evaluated; if the plan quality did not meet the dosimetric requirement, multi-field optimization (MFO) was used. MFO plans were created for all patients for comparisons. For each patient, all plans were normalized to have the same dose received by 99% of the GTV. Interplay effects were evaluated by computing the dose on 10 breathing phases, based on the spot distribution. Volumetric repainting (VR) was performed 2-6 times for each plan. We compared volume receiving 100% of the prescribed dose (V100%RX) of the GTV, and normal lung V20Gy. RESULTS: Twelve of 20 plans can be optimized sufficiently with SFO. SFO plans were less sensitive to the interplay effect compared to MFO plans in terms of target coverage for both LPB and LPMB. The following comparisons showed results utilizing the MFO technique. In the interplay evaluation without repainting, the mean V100%RX of the GTV were 99.42 ± 0.6%, 97.52 ± 3.9%, and 94.49 ± 7.3% for CPB, LPB, and LPMB plans, respectively. Following VR (2 × for CPB; 3 × for LPB; 5 × for LPMB), V100%RX of the GTV were improved (on average) by 0.13%, 1.84%, and 4.63%, respectively, achieving the acceptance criteria of V100%RX > 95%. Because of fast energy switch in linear accelerator proton machines, the delivery time for VR plans was the lowest for LPB plans, while delivery time for LPMB was on average 1 min longer than CPB plans. The advantage of small spot machines was better sparing in normal lung V20Gy, even when VR was applied. CONCLUSION: In the absence of repainting, proton machines with large spot sizes generated more robust plans against interplay effects. The number of VR increased with decreasing spot sizes to achieve the acceptance criteria. VR improved the plan robustness against interplay effects for modalities with small spot sizes and fast energy changes, preserving the low dose sparing aspect of the LPMB, even when motion is included.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Ciclotrons , Neoplasias Pulmonares , Aceleradores de Partículas , Terapia com Prótons , Radiocirurgia , Planejamento da Radioterapia Assistida por Computador , Neoplasias Pulmonares/radioterapia , Neoplasias Pulmonares/diagnóstico por imagem , Humanos , Radiocirurgia/métodos , Terapia com Prótons/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Carcinoma Pulmonar de Células não Pequenas/radioterapia , Carcinoma Pulmonar de Células não Pequenas/diagnóstico por imagem , Estudos Retrospectivos , Dosagem Radioterapêutica , Respiração
2.
J Appl Clin Med Phys ; 24(10): e14070, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37540084

RESUMO

To evaluate the dosimetric impact of titanium implants in spine SBRT using four dose calculation algorithms. Twenty patients with titanium implants in the spine treated with SBRT without density override (DO) were selected. The clinical plan for each patient was created in Pinnacle and subsequently imported into Eclipse (AAA and AcurosXB) and Raystation (CC) for dose evaluation with and without DO to the titanium implant. We renormalized all plans such that 90% of the tumor volume received the prescription dose and subsequently evaluated the following dose metrics: (1) the maximum dose to 0.03 cc (Dmax), dose to 99% (D99%) and 90% (D90%) of the tumor volume; (2) Dmax and volumetric metrics of the spinal cord. For the same algorithm, plans with and without DO had similar dose distributions. Differences in Dmax, D99% and D90% of the tumor were on average <2% with slightly larger variations up to 5.58% in Dmax using AcurosXB. Dmax of the spinal cord for plans calculated with DO increased but the differences were clinically insignificant for all algorithms (mean: 0.36% ± 0.7%). Comparing to the clinical plans, the relative differences for all algorithms had an average of 1.73% (-10.36%-13.21%) for the tumor metrics and -0.93% (-9.87%-10.95%) for Dmax of the spinal cord. A few cases with small tumor and spinal cord volumes, dose differences of >10% in both D99% and Dmax of the tumor, and Dmax of the spinal cord were observed. For all algorithms, the presence of titanium implants in the spine for most patients had minimal impact on dose distributions with and without DO. For the same plan calculated with different algorithms, larger differences in volumetric metrics of >10% could be observed, impacted by dose gradient at the plan normalization volume, tumor volumes, plan complexity, and partial voxel volume interpolation.


Assuntos
Neoplasias Pulmonares , Radiocirurgia , Radioterapia de Intensidade Modulada , Humanos , Titânio , Planejamento da Radioterapia Assistida por Computador , Dosagem Radioterapêutica , Neoplasias Pulmonares/cirurgia , Algoritmos
3.
J Appl Clin Med Phys ; 24(1): e13749, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35962566

RESUMO

The purpose of this work is to objectively assess variability of intercampus plan quality for head-and-neck (HN) cancer and to test utility of a priori feasibility dose-volume histograms (FDVHs) as planning dose goals. In this study, 109 plans treated from 2017 to 2019 were selected, with 52 from the main campus and 57 from various regional centers. For each patient, the planning computed tomography images and contours were imported into a commercial program to generate FDVHs with a feasibility value (f-value) ranging from 0.0 to 0.5. For 10 selected organs-at-risk (OARs), we used the Dice similarity coefficient (DSC) to quantify the overlaps between FDVH and clinically achieved DVH of each OAR and determined the f-value associated with the maximum DSC (labeled as f-max). Subsequently, 10 HN plans from the regional centers were replanned with planning dose goals guided by FDVHs. The clinical and feasibility-guided auto-planning (FgAP) plans were evaluated using our institutional criteria. Among plans from the main campus and regional centers, the median f-max values were statistically significantly different (p < 0.05) for all OARs except for the left parotid (p = 0.622), oral cavity (p = 0.057), and mandible (p = 0.237). For the 10 FgAP plans, the median values of f-max were 0.21, compared to 0.37 from the clinical plans. With comparable dose coverage to the tumor volumes, the significant differences (p < 0.05) in the median f-max and corresponding dose reduction (shown in parenthesis) for the spinal cord, larynx, supraglottis, trachea, and esophagus were 0.27 (8.5 Gy), 0.3 (7.6 Gy), 0.19 (5.9 Gy), 0.19 (8.9 Gy), and 0.12 (4.0 Gy), respectively. In conclusion, the FDVH prediction is an objective quality assurance tool to evaluate the intercampus plan variability. This tool can also provide guideline in planning dose goals to further improve plan quality.


Assuntos
Neoplasias de Cabeça e Pescoço , Radioterapia de Intensidade Modulada , Humanos , Dosagem Radioterapêutica , Estudos de Viabilidade , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos , Neoplasias de Cabeça e Pescoço/diagnóstico por imagem , Neoplasias de Cabeça e Pescoço/radioterapia , Órgãos em Risco
4.
Med Dosim ; 47(3): 207-215, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35379549

RESUMO

For patients undergoing stereotactic body radiation therapy for lung cancer, their tumor positions may vary due to anatomical changes. This study is to investigate whether adaptive re-planning is necessary for patients with large tumor position displacements observed from daily kV-cone-beam computed tomography (kV-CBCT). We selected 16 fractions from 16 patients with recorded treatment couch shifts greater than 1.5 cm under kV-CBCT guidance. The treatment positions for these patients were manually restored in kV-CBCTs via bone-to-bone alignments (B2B) and tumor-to-tumor alignments (T2T) with corresponding planning CTs. The tumor volumes, including PTVs, ITVs, and GTVs, were transferred from the planning CTs to these kV-CBCTs. With the planned beam configurations and treatment isocenters, kV-CBCTs were imported into the treatment planning system for dose recalculations. To minimize uncertainties of the Hounsfield Unit (HU) in kV-CBCTs, uniformed HU values were assigned to the externals, ITVs, and lungs. The percentage volumes of GTVs, ITVs, and PTVs receiving the prescription dose (VRx) and the dose to the normal structures were analyzed. Seven out of the 16 patients were identified with >5mm tumor position displacements after subtracting the recorded couch shifts from the shifts of B2B alignment. For T2T alignments, 9 out of 16 (56.3%) patients had VRx of PTV <95% (the planning goal) with 91.4% as the lowest, while VRx of the GTV and ITV remained 100% for all 16 patients. For B2B alignments, 14 out of 16 (87.5%) patients have VRx of PTV <95%; 5 patients (31.3%) had VRx of ITV <95%; and 4 patients (25.0%) had VRx of GTV <99%. T2T alignment with 5 mm PTV margin was found superior to B2B alignment, resulting in adequate dose coverage to the ITVs, even for tumors with large positional changes. Adaptive re-planning may not be necessary under these scenarios.


Assuntos
Neoplasias Pulmonares , Radiocirurgia , Tomografia Computadorizada de Feixe Cônico/métodos , Tomografia Computadorizada Quadridimensional/métodos , Humanos , Pulmão , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/radioterapia , Radiocirurgia/métodos , Planejamento da Radioterapia Assistida por Computador/métodos
5.
J Radiosurg SBRT ; 7(4): 309-319, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34631232

RESUMO

PURPOSE: To investigate whether there is a volume threshold in target volume of brain metastases below which a small cone size and sharp penumbra in Gamma Knife (GK) may provide improved plan quality when compared to Volumetric Modulated Arc Therapy (VMAT)-based stereotactic radiosurgery (SRS). METHODS: For patients treated on GK SRS for brain metastases in 2018-2019 in our institution, 121 patients with two and three targets were identified. Twenty-six patients with two or three brain metastases (total of 76 lesions) were selected for this study. Two VMAT plans, SmartArc (Pinnacle) and HyperArc (Eclipse), were generated retrospectively for each patient. Plan quality was evaluated based on RTOG conformity index (CI), Paddick gradient index (GI), normal tissue (NT) V12Gy and V4.5Gy. By using the receiver operating characteristic (ROC) curve for both VMAT plans (SmartArc and HyperArc) and metrics of RTOG CI and NT V12Gy, we compared GK plans to SmartArc and HyperArc plans separately to determine the threshold volume. RESULTS: For SmartArc plans, both ROC curve analyses showed a threshold volume of 0.4 cc for both CI and NT V12Gy. For HyperArc plans, the threshold volumes were 0.2 cc for the CI and 0.5 cc for NT V12Gy. GK plans produced improved dose distribution compared to VMAT for targets ≤0.4 cc, but HyperArc was found to have competing results with GK in terms of CI and NT V12Gy. For targets > 0.4 cc, both SmartArc and HyperArc showed better plan quality when compared to the GK plans. CONCLUSIONS: Target volumes ≤0.4 cc may require a small cone size and sharp penumbra in GK while for target volumes >0.4 cc, VMAT-based SRS can provide improved overall plan quality and faster treatment delivery.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA