Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
Heliyon ; 9(12): e23214, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38144330

RESUMO

Tendon adhesion is a common complication after tendon surgery. The inflammatory phase of tendon healing is characterized by the release of a large number of inflammatory factors, whose mediated excessive inflammatory response is an important cause of tendon adhesion formation. Nonsteroidal anti-inflammatory drugs(NSAIDs) were used to prevent tendon adhesions by reducing the inflammatory response. However, recent studies have shown that the NSAIDs partially impairs tendon healing. Therefore, optimizing the anti-adhesive membrane loaded with NSAIDs to mitigate the effects on tendon healing requires further in-depth study. Amniotic membranes(AM) are natural polymeric semi-permeable membranes from living organisms that are rich in matrix, growth factors, and other active ingredients. In this study, we used electrostatic spinning technology to construct multifunctional nanofiber membranes of the PCL membrane loaded with celecoxib and AM. In vitro cellular assays revealed that celecoxib-loaded PCL membranes significantly inhibited the adhesion and proliferation of fibroblasts with increasing concentrations of celecoxib. In a rabbit tendon repair model, biomechanical tests further confirmed that the PCL membrane loaded with celecoxib had better anti-adhesion effects. Further experimental studies revealed that the PCL/AM membrane improved the inflammatory microenvironment by downregulating the expression of pro-inflammatory factors such as COX-2, IL-1ß, and TNF-α proteins; and inhibiting the synthesis of COL I and COL Ⅲ. The PCL/AM membrane can continuously release celecoxib to reduce the inflammatory response and deliver growth factors to the damaged area to build a suitable microenvironment for tendon repair, which provides a new direction to improve the repair efficiency of tendon.

3.
Int Immunopharmacol ; 121: 110507, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37356125

RESUMO

Appropriate levels of inflammation are an important part of functional repair of nerve damage. However, excessive inflammation can cause the continuous activation of immune inflammatory cells and degeneration of nerve cells. Regulating the temporal and spatial changes in M1/M2 macrophages can regulate the local inflammatory immune environment of the tissue to promote its transformation to a direction conducive to tissue repair.In the present study, a multi-layer multifunctional nanofiber composite membrane of polycaprolactone(PCL) and amniotic membrane (AM) was constructed using electrospinning. In vitro studies have shown that the PCL/AM composite promoted the axon growth of SH-SY5Y cells and induced their differentiation into neurons. The PCL/AM composite wrapped the nerve stump to form a microenvironment that was conducive to nerve regeneration, blocked the invasion of scar tissue, promoted the recruitment of macrophages and moderate polarization to M2, enhanced the expression of anti-inflammatory factors IL-10 and IL-13, inhibited the expression of pro-inflammatory factors IL-6 and TNF-α, and induced myelin sheath and axon regeneration. By releasing various bioactive substances to regulate the polarization of M2 macrophages and formation of anti-inflammatory factors, the PCL/AM composite can enhance axonal regeneration and improve nerve repair.


Assuntos
Nanofibras , Neuroblastoma , Humanos , Axônios , Âmnio , Regeneração Nervosa , Macrófagos/metabolismo , Inflamação/metabolismo , Microambiente Tumoral
4.
Biomater Res ; 27(1): 24, 2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-36978196

RESUMO

BACKGROUND: Although biomedical implants have been widely used in orthopedic treatments, two major clinical challenges remain to be solved, one is the bacterial infection resulting in biofilm formation, and the other is aseptic loosening during implantation due to over-activated osteoclastogenesis. These factors can cause many clinical issues and even lead to implant failure. Thus, it is necessary to endow implants with antibiofilm and aseptic loosening-prevention properties, to facilitate the integration between implants and bone tissues for successful implantation. To achieve this goal, this study aimed to develop a biocompatible titanium alloy with antibiofilm and anti-aseptic loosening dual function by utilizing gallium (Ga) as a component. METHODS: A series of Ti-Ga alloys were prepared. We examined the Ga content, Ga distribution, hardness, tensile strength, biocompatibility, and anti-biofilm performance in vitro and in vivo. We also explored how Ga3+ ions inhibited the biofilm formation of Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) and osteoclast differentiation. RESULTS: The alloy exhibited outstanding antibiofilm properties against both S. aureus and E. coli in vitro and decent antibiofilm performance against S. aureus in vivo. The proteomics results demonstrated that Ga3+ ions could disturb the bacterial Fe metabolism of both S. aureus and E. coli, inhibiting bacterial biofilm formation. In addition, Ti-Ga alloys could inhibit receptor activator of nuclear factor-κB ligand (RANKL)-dependent osteoclast differentiation and function by targeting iron metabolism, then suppressing the activation of the NF-κB signaling pathway, thus, showing their potential to prevent aseptic loosening. CONCLUSION: This study provides an advanced Ti-Ga alloy that can be used as a promising orthopedic implant raw material for various clinical scenarios. This work also revealed that iron metabolism is the common target of Ga3+ ions to inhibit biofilm formation and osteoclast differentiation.

5.
Protein Cell ; 14(6): 579-590, 2023 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-36905391

RESUMO

Platelets are reprogrammed by cancer via a process called education, which favors cancer development. The transcriptional profile of tumor-educated platelets (TEPs) is skewed and therefore practicable for cancer detection. This intercontinental, hospital-based, diagnostic study included 761 treatment-naïve inpatients with histologically confirmed adnexal masses and 167 healthy controls from nine medical centers (China, n = 3; Netherlands, n = 5; Poland, n = 1) between September 2016 and May 2019. The main outcomes were the performance of TEPs and their combination with CA125 in two Chinese (VC1 and VC2) and the European (VC3) validation cohorts collectively and independently. Exploratory outcome was the value of TEPs in public pan-cancer platelet transcriptome datasets. The AUCs for TEPs in the combined validation cohort, VC1, VC2, and VC3 were 0.918 (95% CI 0.889-0.948), 0.923 (0.855-0.990), 0.918 (0.872-0.963), and 0.887 (0.813-0.960), respectively. Combination of TEPs and CA125 demonstrated an AUC of 0.922 (0.889-0.955) in the combined validation cohort; 0.955 (0.912-0.997) in VC1; 0.939 (0.901-0.977) in VC2; 0.917 (0.824-1.000) in VC3. For subgroup analysis, TEPs exhibited an AUC of 0.858, 0.859, and 0.920 to detect early-stage, borderline, non-epithelial diseases and 0.899 to discriminate ovarian cancer from endometriosis. TEPs had robustness, compatibility, and universality for preoperative diagnosis of ovarian cancer since it withstood validations in populations of different ethnicities, heterogeneous histological subtypes, and early-stage ovarian cancer. However, these observations warrant prospective validations in a larger population before clinical utilities.


Assuntos
Plaquetas , Neoplasias Ovarianas , Humanos , Feminino , Plaquetas/patologia , Biomarcadores Tumorais/genética , Neoplasias Ovarianas/diagnóstico , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , China
6.
Brief Bioinform ; 24(1)2023 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-36549921

RESUMO

Cancer initiation and progression are likely caused by the dysregulation of biological pathways. Gene set analysis (GSA) could improve the signal-to-noise ratio and identify potential biological insights on the gene set level. However, platforms exploring cancer multi-omics data using GSA methods are lacking. In this study, we upgraded our GSCALite to GSCA (gene set cancer analysis, http://bioinfo.life.hust.edu.cn/GSCA) for cancer GSA at genomic, pharmacogenomic and immunogenomic levels. In this improved GSCA, we integrated expression, mutation, drug sensitivity and clinical data from four public data sources for 33 cancer types. We introduced useful features to GSCA, including associations between immune infiltration with gene expression and genomic variations, and associations between gene set expression/mutation and clinical outcomes. GSCA has four main functional modules for cancer GSA to explore, analyze and visualize expression, genomic variations, tumor immune infiltration, drug sensitivity and their associations with clinical outcomes. We used case studies of three gene sets: (i) seven cell cycle genes, (ii) tumor suppressor genes of PI3K pathway and (iii) oncogenes of PI3K pathway to prove the advantage of GSCA over single gene analysis. We found novel associations of gene set expression and mutation with clinical outcomes in different cancer types on gene set level, while on single gene analysis level, they are not significant associations. In conclusion, GSCA is a user-friendly web server and a useful resource for conducting hypothesis tests by using GSA methods at genomic, pharmacogenomic and immunogenomic levels.


Assuntos
Neoplasias , Farmacogenética , Humanos , Fosfatidilinositol 3-Quinases/genética , Genômica/métodos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Oncogenes
7.
Nat Commun ; 13(1): 6345, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36289218

RESUMO

Autophagy is a major contributor to anti-cancer therapy resistance. Many efforts have been made to understand and overcome autophagy-mediated therapy resistance, but these efforts have been unsuccessful in clinical applications. In this study, we establish an autophagy signature to estimate tumor autophagy status. We then classify approximately 10,000 tumor samples across 33 cancer types from The Cancer Genome Atlas into autophagy score-high and autophagy score-low groups. We characterize the associations between multi-dimensional molecular features and tumor autophagy, and further analyse the effects of autophagy status on drug response. In contrast to the conventional view that the induction of autophagy serves as a key resistance mechanism during cancer therapy, our analysis reveals that autophagy induction may also sensitize cancer cells to anti-cancer drugs. We further experimentally validate this phenomenon for several anti-cancer drugs in vitro and in vivo, and reveal that autophagy inducers potentially sensitizes tumor cells to etoposide through downregulating the expression level of DDIT4. Our study provides a comprehensive landscape of molecular alterations associated with tumor autophagy and highlights an opportunity to leverage multi-omics analysis to utilize multiple drug sensitivity induced by autophagy.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Etoposídeo/farmacologia , Autofagia/genética , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias/tratamento farmacológico , Neoplasias/genética
8.
Cells ; 11(18)2022 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-36139377

RESUMO

Although immune checkpoint blockade (ICB) therapies have achieved great progress, the patient response varies among cancers. In this study, we analyzed the potential genomic indicators contributing to ICB therapy response. The results showed that high tumor mutation burden (TMB) failed to predict response in anti-PD1 treated melanoma. SERPINB3 was the most significant response-related gene in melanoma and mutations in either SERPINB3 or PEG3 can serve as an independent risk factor in melanoma. Some recurrent mutations in CSMD3 were only in responders or non-responders, indicating their diverse impacts on patient response. Enrichment scores (ES) of gene mutations in 12 biological pathways were significantly higher in responders or non-responders. Next, the P-TMB calculated from genes in these pathways was significantly related to patient response with prediction AUC 0.74-0.82 in all collected datasets. In conclusion, our work provides new insights into the application of TMB in predicting patient response, which will benefit to immunotherapy research.


Assuntos
Inibidores de Checkpoint Imunológico , Melanoma , Biomarcadores Tumorais/genética , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Imunoterapia/métodos , Melanoma/tratamento farmacológico , Melanoma/genética , Melanoma/patologia , Mutação/genética
9.
Front Immunol ; 13: 894206, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35769459

RESUMO

Helicobacter pylori (H. pylori) is a gram-negative pathogen classified as a class I carcinogen. The H. pylori urease B subunit (UreB) and heat shock protein A (HspA) are two important vaccine candidate antigens. In this study, we evaluated the immunogenicity and immunoprotective effect of the attenuated Shigella vector vaccine SH02 expressing the UreB-HspA fusion protein of H. pylori in a mouse model. Oral SH02 with or without subcutaneous injection of rUreB-HspA induced antigen-specific serum IgG, mucosal sIgA, and T cells immune response. Subcutaneous injection of the candidate antigen rUreB-HspA enhanced the level of serum antigen-specific IgG antibodies (p < 0.0001) and the levels of IgG1/IgG2a/IgG2b subtypes. In addition, injection boost also increased the proportion of spleen antigen-specific CD4+CD154+ T cells (p < 0.001), and the proportion of CD4+CD154+ T cells that secrete IFN-γ and IL-17A. Following the H. pylori challenge, the levels of H. pylori colonization in the two experimental groups (Groups A and B) significantly reduced compared with the control group (p < 0.001), indicating that the candidate vaccine yielded a preventive effect of anti-H.pylori infection. Compared with the non-subcutaneous booster injection group (Group A), the subcutaneous booster injection group (Group B) exhibited less gastric inflammation, but there was no significant difference in the level of colonization (p > 0.05). These results lay a foundation for the development of a vaccine against H. pylori and the optimization of immunization methods and procedures to prevent H. pylori infection.


Assuntos
Infecções por Helicobacter , Helicobacter pylori , Vacinas contra Shigella , Shigella , Administração Oral , Animais , Antígenos de Bactérias/genética , Vacinas Bacterianas , Modelos Animais de Doenças , Infecções por Helicobacter/prevenção & controle , Imunoglobulina G , Camundongos , Camundongos Endogâmicos BALB C , Proteína Estafilocócica A , Vacinas Atenuadas
10.
Front Surg ; 9: 842540, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35372465

RESUMO

Functional recovery after peripheral nerve injury repair is typically unsatisfactory. An anastomotically poor microenvironment and scarring at the repair site are important factors impeding nerve regeneration. In this study, an electrospun poly-e-caprolactone (PCL)-amnion nanofibrous membrane comprising an amnion membrane and nonwoven electrospun PCL was used to wrap the sciatic nerve repair site in the rat model of a sciatic nerve transection. The effect of the PCL-amnion nanofibrous membrane on improving nerve regeneration and preventing scarring at the repair site was evaluated by expression of the inflammatory cytokine, sciatic functional index (SFI), electrophysiology, and histological analyses. Four weeks after repair, the degree of nerve adhesion, collagen deposition, and intraneural macrophage invasion of the PCL-amnion nanofibrous membrane group were significantly decreased compared with those of the Control group. Moreover, the PCL-amnion nanofibrous membrane decreased the expression of pro-inflammatory cytokines such as interleukin(IL)-6, Tumor Necrosis Factor(TNF)-a and the number of pro-inflammatory M1 macrophages, and increased the expression of anti-inflammatory cytokine such as IL-10, IL-13 and anti-inflammatory M2 macrophages. At 16 weeks, the PCL-amnion nanofibrous membrane improved functional recovery, including promoting nerve Schwann cell proliferation, axon regeneration, and reducing the time of muscle denervation. In summary, the PCL-amnion nanofibrous membrane effectively improved nerve regeneration and prevent fibrosis after nerve repair, which has good clinical application prospect for tissue repair.

11.
Mol Ther Nucleic Acids ; 27: 670-684, 2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35070495

RESUMO

The disruption of epigenetic regulation is common in tumors; the abnormal expression of epigenetic factors leads to cancer occurrence and development. In this study, to investigate the potential function of histone methylation regulators in lung adenocarcinoma (LUAD), we performed differential expression analysis using RNA-seq data downloaded from The Cancer Genome Atlas (TCGA) database, and identified CBX2 and EZH2 as obviously upregulated histone methylation regulators. CBX2 knockdown significantly inhibited LUAD cell growth and metastasis in vitro and in vivo. The combined high expression of CBX2 and EZH2 was an indicator of poor prognosis in LUAD. The inhibition of both CBX2 and EZH2 exerted cooperative suppressive effects on the growth and metastasis of LUAD cells. Mechanistically, we revealed that CBX2 and EZH2 downregulated several PPAR signaling pathway genes and tumor suppressor genes through binding to their promoter cooperatively or separately. Furthermore, knockdown of CBX2 improved the therapeutic efficiency of EZH2 inhibitor on A549 cells. Our study reveals the cooperative oncogenic role of CBX2 and EZH2 in promoting LUAD progression, thereby providing potential targets for LUAD diagnosis and therapy.

12.
PLoS One ; 16(12): e0259896, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34972101

RESUMO

Magnolol is a bioactive polyphenolic compound commonly found in Magnolia officinalis. The aim of this study is to clarify the contribution of the magnolol additive on the growth performance of Linwu ducklings aging from 7 to 28 d, comparing to the effects of antibiotic additive (colistin sulphate). A total of 325, 7-d-old ducklings were assigned to 5 groups. Each group had 5 cages with 13 ducklings in each cage. The ducklings in different groups were fed with diets supplemented with 0, 100, 200 and 300 mg/kg magnolol additive (MA) (Control, MA100, MA200 and MA300) and 30 mg/kg colistin sulphate (CS30) for 3 weeks, respectively. Parameters regarding to the growth performance, intestinal mucosal morphology, serum biochemical indices, antioxidant and peroxide biomarkers and the expression levels of antioxidant-related genes were evaluated by one way ANOVA analysis. The results showed that 30 mg/kg colistin sulphate, 200 and 300 mg/kg magnolol additive improved the average final weight (P = 0.045), average daily body weight gain (P = 0.038) and feed/gain ratios (P = 0.001) compared to the control group. 200 and 300 mg/kg magnolol additive significantly increased the villus height/crypt depth ratio of ileum, compared to the control and CS30 groups (P = 0.001). Increased serum level of glucose (P = 0.011) and total protein (P = 0.006) were found in MA200 or MA300 group. In addition, comparing to the control and CS30 groups, MA200 or MA300 significantly increased the levels of superoxide dismutase (P = 0.038), glutathione peroxidase (P = 0.048) and reduced glutathione (P = 0.039) in serum. Moreover, the serum and hepatic levels of 8-hydroxy-2'-deoxyguanosine (P = 0.043 and 0.007, respectively) were lower in all MA groups compared to those of the control and CS30 group. The hepatic mRNA expression levels of superoxide dismutase-1, catalase and nuclear factor erythroid-2-related factor 2/erythroid-derived CNC-homology factor were also increased significantly in MA200 and MA300 groups (P < 0.05). Taken together, these data demonstrated that MA was an effective feed additive enhancing the growth performance of Linwu ducklings at 7 to 28 d by improving the antioxidant and intestinal mucosal status. It suggested that MA could be a potential ingredient to replace the colistin sulphate in diets.


Assuntos
Antioxidantes/metabolismo , Compostos de Bifenilo/farmacologia , Patos/crescimento & desenvolvimento , Lignanas/farmacologia , Animais , Biomarcadores/sangue , Dieta , Patos/sangue , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Mucosa Intestinal/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Nutrientes , Peróxidos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
13.
Front Pharmacol ; 12: 723040, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34512350

RESUMO

Plant polyphenols have promoting health features, including anti-mutagenic, anti-inflammatory, anti-thrombotic, anti-atherogenic, and anti-allergic effects. These polyphenols improve the immune system by affecting the white blood cell proliferation, as well as by the synthesis of cytokines and other factors, which contribute to immunological resistance. Olive trees are one of the most famous trees in the world. Whereas, olive olive oil and derivatives represent a large group of feeding resource for farm animals. In recent years, remarkable studies have been carried out to show the possible use of olive oil and derivatives for improvement of both animal performance and product quality. In vivo application of olive oil and its derived products has shown to maintain oxidative balance owing to its polyphenolic content. Consumption of extra virgin olive oil reduces the inflammation, limits the risk of liver damage, and prevents the progression of steatohepatitis through its potent antioxidant activities. Also, the monounsaturated fatty acids content of olive oil (particularly oleic acid), might have positive impacts on lipid peroxidation and hepatic protection. Therefore, this review article aims to highlight the nutritional applications and beneficial health aspects of olive oil and its effect on poultry production.

14.
Mol Genet Genomic Med ; 9(9): e1771, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34363434

RESUMO

BACKGROUND: Cardiac valvulogenesis is a highly conserved process among vertebrates and cause unidirectional flow of blood in the heart. It was precisely regulated by signal pathways such as VEGF, NOTCH, and WNT and transcriptional factors such as TWIST1, TBX20, NFATC1, and SOX9. Tricuspid atresia refers to morphological deficiency of the valve and confined right atrioventricular traffic due to tricuspid maldevelopment, and is one of the most common types of congenital valve defects. METHODS: We recruited a healthy couple with two fetuses aborted due to tricuspid atresia and identified related gene mutations using whole-exome sequencing. We then discussed the pathogenic significance of this mutation by bioinformatic and functional analyses. RESULTS: PROVEAN, PolyPhen, MutationTaster, and HOPE indicated the mutation could change the protein function and cause disease; Western blotting showed the expression of NFATC1 c.964G>A mutation was lower than the wild type. What's more, dual-luciferase reporter assay showed the transcriptional activity of NFATC1 was impact by mutation and the expression of downstream DEGS1 was influenced. CONCLUSION: Taken together, the c.964G>A mutation might be pathological and related to the occurrence of disease. Our research tended to deepen the understanding of etiology of tricuspid atresia and gene function of NFATC1, and provide some references or suggestions for genetic diagnosis of tricuspid atresia.


Assuntos
Fatores de Transcrição NFATC/genética , Atresia Tricúspide/genética , Feto Abortado/anormalidades , Adulto , Animais , Linhagem Celular , Células Cultivadas , Ácidos Graxos Dessaturases/genética , Ácidos Graxos Dessaturases/metabolismo , Feminino , Humanos , Masculino , Camundongos , Mutação , Fatores de Transcrição NFATC/química , Fatores de Transcrição NFATC/metabolismo , Linhagem , Domínios Proteicos , Atresia Tricúspide/patologia
15.
J Orthop Surg Res ; 16(1): 182, 2021 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-33691732

RESUMO

BACKGROUND: The medical community has recognized overweight as an epidemic negatively affecting a large proportion of the pediatric population, but few studies have been performed to investigate the relationship between overweight and failure of conservative treatment for distal radius fractures (DRFs). This study was performed to investigate the effect of overweight on the outcome of conservative treatment for DRFs in children. METHODS: We performed a retrospective study of children with closed displaced distal metaphyseal radius fractures in our hospital from January 2015 to May 2020. Closed reduction was initially performed; if closed reduction failed, surgical treatment was performed. Patients were followed up regularly after treatment, and redisplacement was diagnosed on the basis of imaging findings. Potential risk factors for redisplacement were collected and analyzed. RESULTS: In total, 142 children were included in this study. The final reduction procedure failed in 21 patients, all of whom finally underwent surgical treatment. The incidences of failed final reduction and fair reduction were significantly higher in the overweight/obesity group than in the normal-weight group (P = 0.046 and P = 0.041, respectively). During follow-up, 32 (26.4%) patients developed redisplacement after closed reduction and cast immobilization. The three risk factors associated with the incidence of redisplacement were overweight/obesity [odds ratio (OR), 2.149; 95% confidence interval (CI), 1.320-3.498], an associated ulnar fracture (OR, 2.127; 95% CI, 1.169-3.870), and a three-point index of ≥ 0.40 (OR, 3.272; 95% CI, 1.975-5.421). CONCLUSIONS: Overweight increases the risk of reduction failure and decreases the reduction effect. Overweight children were two times more likely to develop redisplacement than normal-weight children in the present study. Thus, overweight children may benefit from stricter clinical follow-up and perhaps a lower threshold for surgical intervention.


Assuntos
Moldes Cirúrgicos , Obesidade Infantil/complicações , Fraturas do Rádio/terapia , Falha de Tratamento , Adolescente , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Estudos Retrospectivos
16.
Brief Bioinform ; 22(5)2021 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-33517372

RESUMO

Transcription factors (TFs) act as key regulators in biological processes through controlling gene expression. Here, we conducted a systematic study for all human TFs on the expression, regulation, interaction, mutation, phenotype and cancer survival. We revealed that the average expression levels of TFs in normal tissues were lower than 50% expression of non-TFs, whereas TF expression was increased in cancers. TFs that are specifically expressed in an individual tissue or cancer may be potential marker genes. For instance, TGIF2LX/Y were preferentially expressed in testis and NEUROG1, PRDM14, SRY, ZNF705A and ZNF716 were specifically highly expressed in germ cell tumors. We found different distributions of target genes and TF co-regulations in different TF families. Some small TF families have huge protein interaction pairs, suggesting their central roles in transcriptional regulation. The bZIP family is a small family involving many signaling pathways. Survival analysis indicated that most TFs significantly affect survival of one or more cancers. Some survival-related TFs were also specifically highly expressed in the corresponding cancer types, which may be potential targets for cancer therapy. Finally, we identified 43 TFs whose mutations were closely correlated to survival, suggesting their cancer-driven roles. The systematic analysis of TFs provides useful clues for further investigation of TF regulatory mechanisms and the role of TFs in diseases.


Assuntos
Regulação Neoplásica da Expressão Gênica , Neoplasias/genética , Neoplasias/mortalidade , Fenótipo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcriptoma , Redes Reguladoras de Genes , Humanos , Taxa de Mutação , Neoplasias/metabolismo , Mapas de Interação de Proteínas/genética , Taxa de Sobrevida
17.
J Invest Dermatol ; 141(3): 533-544, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32795530

RESUMO

Pilomatricoma, a benign skin appendage tumor, also known as calcifying epithelioma, consists of islands of epithelial cells histologically that contain anucleated cells in the center surrounded by basophilic cells and partial calcification. Sporadic pilomatricomas commonly have somatic mutations in the gene CTNNB1, but causative genes from germline and the underlying pathophysiology are unclear. In this study, we identified a germline missense variant of PLCD1 encoding PLCδ1, c.1186G>A (p.Glu396Lys), in a large Chinese family with autosomal dominant multiple pilomatricomas. Phospholipase C, a key enzyme playing critical roles in intracellular signal transduction, is essential for epidermal barrier integrity. The p.Glu396Lys variant increased the enzymatic activity of PLCδ1, leading to protein kinase C/protein kinase D/extracellular signal-regulated kinase1/2 pathway activation and TPRV6 channel closure, which not only resulted in excessive proliferation of keratinocytes in vitro and in vivo but also induced local accumulation of calcium in the pilomatricoma-like tumor that developed spontaneously in the skin of Plcd1E396K/E396K mice. Our results implicate this p.Glu396Lys variant of PLCD1 from germline leading to gain-of-function of PLCδ1 as a causative genetic defect in familial multiple pilomatricomas.


Assuntos
Canais de Cálcio/metabolismo , Doenças do Cabelo/genética , Fosfolipase C delta/genética , Pilomatrixoma/genética , Neoplasias Cutâneas/genética , Canais de Cátion TRPV/metabolismo , Animais , Análise Mutacional de DNA , Modelos Animais de Doenças , Feminino , Mutação em Linhagem Germinativa , Doenças do Cabelo/patologia , Humanos , Sistema de Sinalização das MAP Quinases/genética , Masculino , Camundongos Transgênicos , Pessoa de Meia-Idade , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Mutação de Sentido Incorreto , Linhagem , Pilomatrixoma/patologia , Proteína Quinase C/metabolismo , Pele/patologia , Neoplasias Cutâneas/patologia
18.
Brief Bioinform ; 22(3)2021 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-32814346

RESUMO

Immune checkpoint genes (ICGs) play critical roles in circumventing self-reactivity and represent a novel target to develop treatments for cancers. However, a comprehensive analysis for the expression profile of ICGs at a pan-cancer level and their correlation with patient response to immune checkpoint blockade (ICB) based therapy is still lacking. In this study, we defined three expression patterns of ICGs using a comprehensive survey of RNA-seq data of tumor and immune cells from the functional annotation of the mammalian genome (FANTOM5) project. The correlation between the expression patterns of ICGs and patients survival and response to ICB therapy was investigated. The expression patterns of ICGs were robust across cancers, and upregulation of ICGs was positively correlated with high lymphocyte infiltration and good prognosis. Furthermore, we built a model (ICGe) to predict the response of patients to ICB therapy using five features of ICG expression. A validation scenario of six independent datasets containing data of 261 patients with CTLA-4 and PD-1 blockade immunotherapies demonstrated that ICGe achieved area under the curves of 0.64-0.82 and showed a robust performance and outperformed other mRNA-based predictors. In conclusion, this work revealed expression patterns of ICGs and underlying correlations between ICGs and response to ICB, which helps to understand the mechanisms of ICGs in ICB signal pathways and other anticancer treatments.


Assuntos
Perfilação da Expressão Gênica , Proteínas de Checkpoint Imunológico , Imunoterapia/métodos , Animais , Biomarcadores Tumorais/genética , Humanos , Análise de Sequência de RNA/métodos
19.
Brief Bioinform ; 22(3)2021 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-32510568

RESUMO

Cancer cell lines (CCLs) as important model systems play critical roles in cancer research. The misidentification and contamination of CCLs are serious problems, leading to unreliable results and waste of resources. Current methods for CCL authentication are mainly based on the CCL-specific genetic polymorphism, whereas no method is available for CCL authentication using gene expression profiles. Here, we developed a novel method and homonymic web server (CCLA, Cancer Cell Line Authentication, http://bioinfo.life.hust.edu.cn/web/CCLA/) to authenticate 1291 human CCLs of 28 tissues using gene expression profiles. CCLA showed an excellent speed advantage and high accuracy for CCL authentication, a top 1 accuracy of 96.58 or 92.15% (top 3 accuracy of 100 or 95.11%) for microarray or RNA-Seq validation data (719 samples, 461 CCLs), respectively. To the best of our knowledge, CCLA is the first approach to authenticate CCLs using gene expression data. Users can freely and conveniently authenticate CCLs using gene expression profiles or NCBI GEO accession on CCLA website.


Assuntos
Perfilação da Expressão Gênica , Internet , Neoplasias/patologia , Linhagem Celular Tumoral , Humanos , Neoplasias/genética , Reprodutibilidade dos Testes , Análise de Sequência de RNA/métodos
20.
Nucleic Acids Res ; 49(D1): D1276-D1281, 2021 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-32990748

RESUMO

MicroRNAs (miRNAs) related single-nucleotide variations (SNVs), including single-nucleotide polymorphisms (SNPs) and disease-related variations (DRVs) in miRNAs and miRNA-target binding sites, can affect miRNA functions and/or biogenesis, thus to impact on phenotypes. miRNASNP is a widely used database for miRNA-related SNPs and their effects. Here, we updated it to miRNASNP-v3 (http://bioinfo.life.hust.edu.cn/miRNASNP/) with tremendous number of SNVs and new features, especially the DRVs data. We analyzed the effects of 7 161 741 SNPs and 505 417 DRVs on 1897 pre-miRNAs (2630 mature miRNAs) and 3'UTRs of 18 152 genes. miRNASNP-v3 provides a one-stop resource for miRNA-related SNVs research with the following functions: (i) explore associations between miRNA-related SNPs/DRVs and diseases; (ii) browse the effects of SNPs/DRVs on miRNA-target binding; (iii) functional enrichment analysis of miRNA target gain/loss caused by SNPs/DRVs; (iv) investigate correlations between drug sensitivity and miRNA expression; (v) inquire expression profiles of miRNAs and their targets in cancers; (vi) browse the effects of SNPs/DRVs on pre-miRNA secondary structure changes; and (vii) predict the effects of user-defined variations on miRNA-target binding or pre-miRNA secondary structure. miRNASNP-v3 is a valuable and long-term supported resource in functional variation screening and miRNA function studies.


Assuntos
Bases de Dados Genéticas , Doença/genética , MicroRNAs/genética , Polimorfismo de Nucleotídeo Único , Precursores de RNA/genética , Regiões 3' não Traduzidas , Sítios de Ligação , Doença/classificação , Resistência a Medicamentos/genética , Regulação da Expressão Gênica , Humanos , Internet , MicroRNAs/química , MicroRNAs/classificação , MicroRNAs/metabolismo , Conformação de Ácido Nucleico , Medicamentos sob Prescrição/uso terapêutico , Precursores de RNA/classificação , Precursores de RNA/metabolismo , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA