Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Biology (Basel) ; 12(12)2023 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-38132311

RESUMO

Tumor hypoxia is the most common feature of radioresistance to the radiotherapy (RT) of lung cancer and results in poor clinical outcomes. High-linear energy transfer (LET) radiation is a novel RT technique to overcome this problem. However, a limited number of studies have been elucidated on the underlying mechanism(s) of RIBE and RISBE in cancer cells exposed to high-LET radiation under hypoxia. Here, we developed a new method to investigate the RIBE and RISBE under hypoxia using the SPICE-QST proton microbeams and a layered tissue co-culture system. Normal lung fibroblast (WI-38) and lung cancer (A549) cells were exposed in the range of 06 Gy of proton microbeams, wherein only ~0.04-0.15% of the cells were traversed by protons. Subsequently, primary bystander A549 cells were co-cultured with secondary bystander A549 cells in the presence or absence of a GJIC and NO inhibitor using co-culture systems. Studies show that there are differences in RIBE in A549 and WI-38 primary bystander cells under normoxia and hypoxia. Interestingly, treatment with a GJIC inhibitor showed an increase in the toxicity of primary bystander WI-38 cells but a decrease in A549 cells under hypoxia. Our results also show the induction of RISBE in secondary bystander A549 cells under hypoxia, where GJIC and NO inhibitors reduced the stressful effects on secondary bystander A549 cells. Together, these preliminary results, for the first time, represented the involvement of intercellular communications through GJIC in propagation of RIBE and RISBE in hypoxic cancer cells.

2.
Cancer Sci ; 114(12): 4548-4557, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37786999

RESUMO

Following carbon ion beam irradiation in mammalian cells, such as used in carbon ion radiotherapy (CIRT), it has been suggested that the balance between whether nonhomologous end joining (NHEJ) or homologous recombination (HR) is utilized depends on the DNA double-strand break (DSB) complexity. Here, we quantified DSB distribution and identified the importance of each DSB repair pathway at increasing depths within the carbon ion spread-out Bragg peak (SOBP) beam range. Chinese hamster ovary (CHO) cell lines were irradiated in a single biological system capable of incorporating the full carbon ion SOBP beam range. Cytotoxicity and DSB distribution/repair kinetics were examined at increasing beam depths using cell survival as an endpoint and γ-H2AX as a surrogate marker for DSBs. We observed that proximal SOBP had the highest number of total foci/cell and lowest survival, while distal SOBP had the most dense tracks. Both NHEJ- and HR-deficient CHO cells portrayed an increase in radiosensitivity throughout the full carbon beam range, although NHEJ-deficient cells were the most radiosensitive cell line from beam entrance up to proximal SOBP and demonstrated a dose-dependent decrease in ability to repair DSBs. In contrast, HR-deficient cells had the greatest ratio of survival fraction at entrance depth to the lowest survival fraction within the SOBP and demonstrated a linear energy transfer (LET)-dependent decrease in ability to repair DSBs. Collectively, our results provide insight into treatment planning and potential targets to inhibit, as HR was a more beneficial pathway to inhibit than NHEJ to enhance the cell killing effect of CIRT in targeted tumor cells within the SOBP while maintaining limited unwanted damage to surrounding healthy cells.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA , Cricetinae , Animais , Humanos , Cricetulus , Células CHO , DNA , Carbono , Reparo do DNA por Junção de Extremidades
3.
Arthritis Res Ther ; 25(1): 204, 2023 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-37853451

RESUMO

OBJECTIVES: Juvenile dermatomyositis (JDM) is a chronic autoimmune disease. Some patients remain in an active state even though they were administrated with a combination of corticosteroid and methotrexate. Existing research has suggested that interferon and Janus kinase played an important role in pathogenesis. Existing research has suggested the efficacy of JAK inhibitors (JAKi). Our retrospective study aimed to investigate the efficacy of tofacitinib in refractory JDM patients. METHODS: A total of eighty-eight patients in China who had been diagnosed with JDM and subjected to tofacitinib therapy for over 3 months were retrospectively analyzed. Skin and muscle manifestations were assessed using the Cutaneous Assessment Tool-binary method (CAT-BM), Childhood Myositis Assessment Scale (CMAS), and kinase. Pulmonary function was assessed using a high-resolution CT (computerized tomography) scan and pulmonary symptoms. All patients were subjected to regular follow-up, and core measures were assessed every 3 months after initiation. Furthermore, the data were analyzed using the Wilcoxon single test, Mann-Whitney U test, and chi-square test. RESULTS: Compared with the baseline data, skin and muscle manifestations were found significantly improved during the respective follow-up visit. At the most recent follow-up, nearly 50% of patients achieved a clinical complete response and six patients received tofacitinib monotherapy. Sixty percent of patients suffering from interstitial lung disease well recovered on high-resolution CT. Seventy-five percent of patients showed a reduction in the size or number of calcinosis, and 25% of patients showed completely resolved calcinosis. CONCLUSION: In this study, the result suggested that tofacitinib therapy exerted a certain effect on skin manifestations, muscle manifestations, interstitial lung disease (ILD), calcinosis, as well as downgrade of medication. In-depth research should be conducted to focus on the correlation between the pathogenesis of JDM and JAKi.


Assuntos
Calcinose , Dermatomiosite , Inibidores de Janus Quinases , Doenças Pulmonares Intersticiais , Humanos , Criança , Dermatomiosite/diagnóstico , Estudos Retrospectivos , Inibidores de Janus Quinases/uso terapêutico , Doenças Pulmonares Intersticiais/diagnóstico por imagem , Doenças Pulmonares Intersticiais/tratamento farmacológico
4.
BMC Pediatr ; 23(1): 407, 2023 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-37596520

RESUMO

BACKGROUND: WDR35 variants are known to cause a rare autosomal recessive disorder-Cranioectodermal dysplasia (CED). The CED patients are commonly present with facial dysmorphisms (frontal bossing and low-set ears), sagittal craniosynostosis, growth retardation, dolichocephaly, skeletal deformities (brachydactyly, terminal hypoplasia of the fingers and narrow thorax), ectodermal abnormalities (sparse hair, and finger/toe nail dysplasia), nephronophthisis, retinal dystrophy and hepatic fibrosis. Diagnosis of CED can be difficult because it presents with high genetic heterogeneity. However, our understanding of the phenotype of CED caused by WDR35 variants could be more explicit, and the correlation between genotype and phenotype needs further improvement. CASE PRESENTATION: We report a case of the first Chinses patient of CED caused by WDR35 variants, a 3-year-and-3-month-old patient, who was admitted to our hospital with frontal bossing, growth retardation, low set ears, dolichocephaly, sparse hair, and small limbs, abnormal renal function, and moderate anemia. The child showed a novel phenotype of the ectopic testis except for presenting typical CED characteristics, and he was identified with novel compound heterozygous WDR35 variants (c.2590 C > T, p.Gln864* and c.2408_2416del, p.Asn803_Ala805del; NM_001006657). He was given iron succinate and erythropoietin to improve anemia and to inhibit repeated metabolic acidosis and hyperkalemia through acid correction, diuretic, and potassium-lowering treatments. The parents refused to accept renal replacement therapy for their child and were discharged voluntarily. CONCLUSIONS: This is the first reported case of the WDR35 variants that can lead to CED and ectopic testis, which is also the first Chinese patient associated with WDR35 variants. This study expands our understanding of genotype-phenotype association in patients with WDR35 variants and provides genetic counseling for prevention and intervention in this genetic disorder. Neonatal carriers should be followed up for kidney and CED-related diseases to detect warning signs.


Assuntos
Craniossinostoses , Criptorquidismo , Humanos , Masculino , Proteínas do Citoesqueleto , População do Leste Asiático , Transtornos do Crescimento , Peptídeos e Proteínas de Sinalização Intracelular , Pré-Escolar
5.
Front Oncol ; 13: 1211759, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37576888

RESUMO

OX40 (CD134), a member of the TNF receptor superfamily, is a widely studied costimulatory immune checkpoint. Several OX40 agonistic antibodies are in the clinical stage for cancer treatment, among which PF-04518600 is the leader and currently in phase II trial. It has been recognized that one potential mode of action for anti-OX40 antibodies is the deletion of intratumoral Tregs. Thus, a novel human anti-OX40 antibody, BAT6026, was generated with enhanced antibody dependent cellular cytotoxicity (ADCC) via fucose deletion to strengthen its Treg depletion activity. This characteristic of BAT6026 differentiates it from other previously reported anti-OX40 antibodies in the field of tumor therapy. The affinity of BT6026 to OX40 was 0.28nM, approximately 8 times stronger than that of PF-04518600. BAT6026 effectively competed for the binding of ligand OX40L to OX40, whereas PF-04518600 only partially competed. Moreover, compared to PF-04518600, BAT6026 activated T cells more effectively when clustered by FcγRs engagement and stimulated SEB-pretreated PBMCs to secrete IL-2 cytokines in vitro. In addition, BAT6026 demonstrated stronger anti-tumor activity than PF-04518600 in an OX40-humanized mouse MC38 tumor model. BAT6026 also showed a significantly synergistic effect on tumor inhibition when combined treatment with PD-1 antibody. Analysis of tumor-infiltrating T cells revealed that BAT6026 treatment significantly reduced Treg cells and increased CD8+ T cells in tumor. Preclinical safety assessment in non-human primates demonstrated a good safety profile for BAT6026. Together these data warrant further development of BAT6026 into clinical trials for patients with cancer.

6.
Drugs R D ; 23(3): 267-288, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37479945

RESUMO

BACKGROUND: BAT1706 is a proposed biosimilar of bevacizumab, a vascular endothelial growth factor A (VEGF-A)-targeting biologic used to treat several different cancers, including metastatic colorectal cancer. A comprehensive physicochemical and functional similarity assessment is a key component of demonstrating biosimilarity between a reference biologic and a proposed biosimilar. Here we report the physicochemical and functional similarity of BAT1706 and reference bevacizumab sourced from both the United States (US-bevacizumab) and the European Union (EU-bevacizumab). METHOD: A large range of product attributes, including primary and higher order structure, post-translational modifications, purity, stability, and potency, were characterized for BAT1706 and EU/US-bevacizumab using sensitive state-of-the-art analytical techniques. Up to 18 lots of US- and 29 lots of EU-bevacizumab, and 10 unique drug substance lots of BAT1706, were assessed. RESULT: BAT1706 was shown to have an identical amino acid sequence and an indistinguishable higher-order structure compared with EU/US-bevacizumab. BAT1706 and EU/US-bevacizumab also exhibited similar post-translational modifications, glycan profiles, and charge variants. Potency, assessed using a wide range of bioassays, was also shown to be comparable between BAT1706 and EU/US-bevacizumab, with statistical equivalence demonstrated for VEGF-A binding and neutralizing activity. CONCLUSION: Overall, this extensive comparability exercise demonstrated BAT1706 to match EU/US-bevacizumab in terms of all physicochemical and functional attributes assessed.


Assuntos
Medicamentos Biossimilares , Fator A de Crescimento do Endotélio Vascular , Humanos , Bevacizumab/farmacologia , Medicamentos Biossimilares/farmacologia , Bioensaio , Fosforilação
7.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 38(12): 1084-1090, 2022 Dec.
Artigo em Chinês | MEDLINE | ID: mdl-36585230

RESUMO

Objective To investigate the impact of miR-181c on migration and angiogenesis of lung cancer cells. Methods The Oncomine platform, UALCAN was used to analyze the differential expression of miR-181c and reversion-inducing cysteine-rich protein with Kazal motifs (RECK) in lung cancer obtained from the Cancer Genome Atlas (TCGA) database. The targeting relationship between miR-181c on RECK gene was predicted using Targetscan software. miR-181c mimic, inhibitor and negative control were introduced into A549 cells respectively. After transfection, the real-time quantitative PCR was used to detect the relative expressions of miR-181c and RECK mRNA, and Western blot analysis was used to detect the expression levels of RECK, matrix metalloproteinase 2 (MMP2) and MMP9 proteins. TranswellTM assay was performed to analyze the cell migration ability. The secretion of vascular endothelial growth factor (VEGF)-A in the cell culture supernatant was analyzed by using ELISA. Human umbilical vein endothelial cells (HUVECs) were treated with the culture supernatant, then in vitro tubule formation assay was carried out to evaluate the angiogenesis ability. The targeting correlation between miR-181c and RECK was validated by double luciferase reporter gene assay. Results UALCAN analysis displayed that the expression of miR-181c was significantly higher and RECK expression was significantly lower in lung cancer tissues compared to that in normal tissues. Targetscan prediction showed that there was a miR-181c binding site in the 3'-untranslated region (3' UTR) of RECK gene. miR-181c could downregulate the expression of RECK, increase the expressions of MMP2 and MMP9, and promote the A549 cell migration. ELISA and tubule formation assay showed that miR-181c could induce the secretion of VEGF-A in A549 cells and enhance the ability of HUVECs differentiae into tubules. The double luciferase reporter gene assay confirmed that RECK was the direct regulation target of miR-181c. Conclusion miR-181c promotes the migration and angiogenesis of human A549 cells by directly targeting RECK.


Assuntos
Neoplasias Pulmonares , MicroRNAs , Humanos , Metaloproteinase 2 da Matriz/genética , Metaloproteinase 2 da Matriz/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Cisteína , Motivos Kazal , Células A549 , Células Endoteliais/metabolismo , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Movimento Celular/genética
8.
Wideochir Inne Tech Maloinwazyjne ; 17(3): 467-474, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36187057

RESUMO

Introduction: High-quality bowel preparation is an essential precondition for colonoscopy. Few studies have evaluated the smartphone WeChat application as a means of improving the quality of bowel preparation. Aim: To assess the effect of patient education by using smartphone WeChat application aids on the quality of bowel preparation. Material and methods: A multicenter prospective, endoscopist-blinded, randomized, controlled study was conducted. Patients were randomly assigned to three groups. A total of 478 patents in groups A were accepted for smartphone WeChat application, 477 in groups B were accepted for conventional education plus smartphone WeChat application while group C (473 patients) was a control group. The primary outcome was the quality of the bowel preparation according to the Boston Bowel Preparation Scale (BBPS). The secondary outcomes included polyp detection rate (PDR), cecal intubation rate, insertion and withdrawal time, anxiety score, self-rated sleep quality, and willingness to undergo another colonoscopy. Results: Total BBPS score was significantly higher in groups B and C than in the control group (7.5 ±1.2, 7.5 ±1.3 vs. 6.5 ±1.2, p < 0.001). PDR in group A (40.2%, 192/478) and group B (41.7%, 199/477) was higher than that in the control group (p = 0.003) and mean number of polyps per patient was higher too (p = 0.015). Moreover, a shorter cecal insertion time was recorded in group A and group B than in the control group (8.8 ±3.9, 8.9 ±3.8 vs. 10.5 ±4.2 min, p < 0.001). Intervention groups showed lower anxiety scores and better quality sleep and were more likely to be willing to repeat colonoscopy. Conclusions: Patient instruction via smartphone WeChat application efficiently improved bowel preparation for colonoscopy.

9.
Artigo em Inglês | MEDLINE | ID: mdl-36155141

RESUMO

High atomic number and energy (HZE) particles such as iron-56 (Fe) ions are a major contributor to health risks in long-term manned space exploration. The aim of this study is to understand radiation-induced differential genotoxic effects between HZE particles and low linear energy transfer (LET) photons. C57BL/6J Jms female mice of 8 weeks old were exposed to total body irradiation of accelerated Fe-particles with a dose ranging from 0.1 to 3.0 Gy or of X-rays with a dose ranging from 0.1 to 5.0 Gy. Chromosomal aberrations (CAs) in splenocytes were examined by fluorescence in situ hybridization at 1- and 2-months after exposure. Clonal expansions of cells with CAs were found to be induced only by X-rays but not by Fe-particles. Dose-dependent increase in the frequencies of stable-type CAs was observed at 1- as well as 2-months after exposure to both radiation types. The frequencies of stable-type CAs in average were much higher in mice exposed to X-rays than those to Fe-particles and did not change significantly between 1- and 2-months after exposure to both radiation types. On the other hand, the frequencies of unstable-type CAs induced by X-rays and Fe-particles were not much different, and they appeared to decrease with time from 1- to 2-months after exposure. These results suggested that larger fraction of stable-type CAs induced by Fe-particles might be non-transmissible than those by X-rays because of some associating lethal alterations on themselves or on other chromosomes in the same cells and that these cells might be removed by 1-month after Fe-TBI. We also demonstrated that exposure to Fe-particles induced insertions at relatively higher frequency to other stable-type CAs than X-rays. Our findings suggest that insertions can be used as indicators of past exposure to high-LET particle radiation.


Assuntos
Ferro , Baço , Animais , Aberrações Cromossômicas , Relação Dose-Resposta à Radiação , Feminino , Hibridização in Situ Fluorescente , Íons , Ferro/toxicidade , Camundongos , Camundongos Endogâmicos C57BL , Raios X
10.
J Appl Toxicol ; 42(10): 1688-1700, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35560222

RESUMO

The antiviral drug remdesivir has been used to treat the growing number of coronavirus disease 2019 (COVID-19) patients. However, the drug is mainly excreted through urine and feces and introduced into the environment to affect non-target organisms, including fish, which has raised concerns about potential ecotoxicological effects on aquatic organisms. Moreover, studies on the ecological impacts of remdesivir on aquatic environments have not been reported. Here, we aimed to explore the toxicological impacts of microinjection of remdesivir on zebrafish early embryonic development and larvae and the associated mechanism. We found that 100 µM remdesivir delayed epiboly and impaired convergent movement of embryos during gastrulation, and dose-dependent increases in mortality and malformation were observed in remdesivir-treated embryos. Moreover, 10-100 µM remdesivir decreased blood flow and swimming velocity and altered the behavior of larvae. In terms of molecular mechanisms, 80 differentially expressed genes (DEGs) were identified by transcriptome analysis in the remdesivir-treated group. Some of these DEGs, such as manf, kif3a, hnf1ba, rgn, prkcz, egr1, fosab, nr4a1, and ptgs2b, were mainly involved in early embryonic development, neuronal developmental disorders, vascular disease and the blood flow pathway. These data reveal that remdesivir can impair early embryonic development, blood flow and behavior of zebrafish embryos/larvae, probably due to alterations at the transcriptome level. This study suggests that it is important to avoid the discharge of remdesivir to aquatic ecosystems and provides a theoretical foundation to hinder remdesivir-induced ecotoxicity to aquatic environments.


Assuntos
Tratamento Farmacológico da COVID-19 , Poluentes Químicos da Água , Monofosfato de Adenosina/análogos & derivados , Alanina/análogos & derivados , Animais , Ecossistema , Embrião não Mamífero , Fator 1-beta Nuclear de Hepatócito/metabolismo , Fator 1-beta Nuclear de Hepatócito/farmacologia , Larva , Poluentes Químicos da Água/metabolismo , Poluentes Químicos da Água/toxicidade , Peixe-Zebra , Proteínas de Peixe-Zebra/metabolismo
11.
Life (Basel) ; 12(4)2022 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-35455056

RESUMO

Humans are exposed to both psychological stress (PS) and radiation in some scenarios such as manned deep-space missions. It is of great concern to verify possible enhanced deleterious effects from such concurrent exposure. Pioneer studies showed that chronic restraint-induced PS (CRIPS) could attenuate Trp53 functions and increase gamma-ray-induced carcinogenesis in Trp53-heterozygous mice while CRIPS did not significantly modify the effects on X-ray-induced hematopoietic toxicity in Trp53 wild-type mice. As high-linear energy transfer (LET) radiation is the most important component of space radiation in causing biological effects, we further investigated the effects of CRIPS on high-LET iron-particle radiation (Fe)-induced hematopoietic toxicity in Trp53-heterozygous mice. The results showed that CRIPS alone could hardly induce significant alteration in hematological parameters (peripheral hemogram and micronucleated erythrocytes in bone marrow) while concurrent exposure caused elevated genotoxicity measured as micronucleus incidence in erythrocytes. Particularly, exposure to either CRISP or Fe-particle radiation at a low dose (0.1 Gy) did not induce a marked increase in the micronucleus incidence; however, concurrent exposure caused a significantly higher increase in the micronucleus incidence. These findings indicated that CRIPS could enhance the deleterious effects of high-LET radiation, particularly at a low dose, on the hematopoietic toxicity in Trp53-heterozygous mice.

12.
Am J Cancer Res ; 12(2): 562-573, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35261787

RESUMO

In this study, we aimed to investigate how homologous recombinant (HR)-related genomic instability is involved in ionizing radiation (IR)-induced thymic lymphoma in mice. We divided five-week-old Rosa26 Direct Repeat-GFP (RaDR-GFP) transgenic mice into non-IR control and IR groups and exposed the mice in the IR group to a 7.2 Gy dose of γ-rays, delivered in 1.8 Gy fractions, once a week for four weeks. We then estimated mouse survival and recorded their body, thymus, and spleen weights. The frequency of HR events in the chromosomes of the thymus, bone marrow, and spleen cells and the phenotype of thymic lymphoma cells were analyzed using fluorescence-activated cell sorting (FACS). We found that most mice in the IR group developed thymic lymphoma, their survival rate decreasing to 20% after 180 days of IR exposure, whereas no mice died in the non-IR control group until day 400. The thymus and spleen weighed significantly more in the IR-4-month group than that in the non-IR group; however, we observed no significant differences between the body weights of the control and IR mice. FACS analysis indicated that the frequency of HR events significantly increased at two and four months after the last IR dose in the bone marrow and thymus cells, but not in the spleen cells of RaDR-GFP transgenic mice, suggesting that recombinant cells accumulated in the thymus upon IR exposure. This suggests that IR induces genome instability, revealed as increased HR, that drives the development of thymic lymphoma. Additionally, phenotypic analysis of lymphoma cells showed an increase in the CD4-/CD8+ (CD8SP) cell population and a decrease in the CD4+/CD8- (CD4SP) cell population in the IR-4-month group compared to that in the non-IR group, indicating that IR induces an aberrant cell phenotype characteristic of lymphoma. In conclusion, we observed a significant increase in HR events and abnormal phenotype in thymic lymphoma cells at two and four months after IR exposure in both the thymus and bone marrow tissues, suggesting that genomic instability is involved in the early stages of thymic lymphomagenesis. Our study indicates that HR-visualizing RaDR-GFP transgenic mice can help explore the links between the molecular mechanisms of genome instability and IR-induced tumorigenesis.

13.
Radiat Res ; 197(2): 122-130, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34634126

RESUMO

Radiation-induced bystander effect (RIBE) has been identified as an important contributing factor to tumor resistance and normal tissue damage. However, the RIBE in cancer and normal cells under hypoxia remain unclear. In this study, confluent A549 cancer and WI-38 normal cells were subjected to condition of hypoxia or normoxia, before exposure to high-LET protons microbeam. After 6 h incubation, cells were harvested and assayed for colony formation, micronucleus formation, chromosome aberration and western blotting. Our results show that there were differences of RIBE in bystander A549 and WI-38 cells under hypoxia and normoxia. The differences were also observed in the roles of HIF-1α expression in bystander A549 and WI-38 cells under both conditions. Furthermore, inhibition of gap junction intercellular communication (GJIC) showed a decrease in toxicity of hypoxia-treated bystander A549 cells, but increased in bystander WI-38 cells. These findings clearly support that GJIC protection of bystander normal cells from toxicity while enhancing in bystander cancer cells. Together, the data show a promising strategy for high-LET radiation in designing an entire new line of drugs, either increase or restore GJIC in bystander cancer cells which in turn leads to enhancement of radiation accuracy for treatment of hypoxic tumors.


Assuntos
Junções Comunicantes
14.
J Med Genet ; 59(2): 147-154, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-33323469

RESUMO

BACKGROUND: Nephronophthisis-related ciliopathies (NPHP-RC) account for the majority of cases of monogenetically caused end-stage renal disease (ESRD) in children. Exploring the correlation between the phenotype and genotype of NPHP-RC is helpful for early diagnosis and management. We investigated the phenotype and genotype spectra of NPHP-RC in a Chinese multicentre cohort. METHODS: Crosss-ectional and longitudinal data of 60 patients from 57 families with pathogenic NPHP-RC gene mutations distributed in 22 regions of China were collected into a unified, anonymous database. The mean observation time of this cohort was 3.5±3.1 years. RESULTS: Mutations in NPHP1 and NPHP3 were the most common genetic defects. Overall, 45% of patients presented with isolated nephronophthisis (NPH), and 55% exhibited the extrarenal phenotype, which frequently involved the liver (41.7%, n=25), central nervous system (26.7%, n=16), eyes (26.7%, n=16) and skeletal system (11.7%, n=7). Accidental detection of elevated serum creatinine and non-specific symptoms caused by chronic kidney disease occurred in 65% of patients. Patients carrying NPHP1 mutations mainly presented with isolated NPH (90%, 18/20) and progressed to ESRD at a mean age of 12.9±0.5 years. The mean age of ESRD onset in the non-NPHP1 group was lower than that in the NPHP1 group (6.2±1.4 years, p<0.001), especially for patients carrying NPHP3 mutations (3.1±1.2 years), showing a heterogeneous phenotype characterised by Bardet-Biedl syndrome (12.5%, n=5), Joubert syndrome (7.5%, n=3), COACH syndrome (2.5%, n=1), Mainzer-Saldino syndrome (2.5%, n=1), short-rib thoracic dysplasia (2.5%, n=1) and unclassified symptoms (32.5%, n=13). CONCLUSIONS: The Chinese Children Genetic Kidney Disease Database registry characterised the spectrum of the phenotype and genotype of NPHP-RC in the Chinese population. NPHP1 and NPHP3 were the most common pathogenic genes. Rapid progression to ESRD and liver involvement were noted in patients with NPHP3 mutations.


Assuntos
Ciliopatias/genética , Doenças Renais Císticas/congênito , Povo Asiático , Criança , Estudos de Coortes , Análise Mutacional de DNA , Feminino , Estudos de Associação Genética , Genótipo , Humanos , Doenças Renais Císticas/genética , Falência Renal Crônica/genética , Masculino , Mutação , Fenótipo , Estudos Prospectivos
15.
mBio ; 12(4): e0130921, 2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34399618

RESUMO

Aquaporins, integral membrane proteins widely distributed in organisms, facilitate the transport of water, glycerol, and other small uncharged solutes across cellular membranes and play important physiological roles in eukaryotes. However, characterizations and physiological functions of the prokaryotic aquaporins remain largely unknown. Here, we report that Streptococcus pneumoniae (pneumococcus) AqpC (Pn-AqpC), representing a new aquaporin subfamily possessing a distinct substrate-selective channel, functions as an oxygen porin by facilitating oxygen movement across the cell membrane and contributes significantly to pneumococcal virulence. The use of a phosphorescent oxygen probe showed that Pn-AqpC facilitates oxygen permeation into pneumococcal and Pn-AqpC-expressing yeast cells. Reconstituting Pn-AqpC into liposomes prepared with pneumococcal and Escherichia coli cellular membranes further verified that Pn-AqpC transports O2 but not water or glycerol. Alanine substitution showed that Pro232 in the substrate channel is key for Pn-AqpC in O2 transport. The deletion of Pn-aqpC significantly reduced H2O2 production and resistance to H2O2 and NO of pneumococci, whereas low-H2O2 treatment helped the ΔPn-aqpC mutant resist higher levels of H2O2 and even NO, indicating that Pn-AqpC-facilitated O2 permeation contributes to pneumococcal resistance to H2O2 and NO. Remarkably, the lack of Pn-aqpC alleviated cell autolysis, thus reducing pneumolysin (Ply) release and decreasing the hemolysis of pneumococci. Accordingly, the ΔPn-aqpC mutant markedly reduced survival in macrophages, decreased damage to macrophages, and significantly reduced lethality in mice. Therefore, the oxygen porin Pn-AqpC, through modulating H2O2 production and pneumolysin release, the two major pneumococcal virulence factors, controls the virulence of pneumococcus. Pn-AqpC orthologs are widely distributed in various pneumococcal serotypes, highlighting that the oxygen porin is important for pneumococcal pathogenicity. IMPORTANCE Pneumococcus is the leading cause of community-acquired pneumonia, bacteremia, and meningitis. This work reports that a novel aquaporin subfamily represented by pneumococcal Pn-AqpC functions as an oxygen porin facilitating O2 influx into cells. Importantly, by mediating O2 influx, Pn-AqpC controls the production and release of H2O2 and Ply, the two major pneumococcal virulence factors. Moreover, by enhancing endogenous H2O2 production, Pn-AqpC significantly increases pneumococcal resistance to H2O2 and even NO, the major bactericidal chemical produced by macrophages. Consequently, the deletion of Pn-aqpC markedly decreased pneumococcal survival in macrophages and reduced damage to macrophages. Accordingly, the ΔPn-aqpC mutant displays significantly attenuated virulence in a murine pneumonia model. Given that Pn-AqpC orthologs are widely distributed in all pneumococcal serotypes, this new subfamily of aquaporins is identified as novel virulence-related proteins.


Assuntos
Aquaporinas/genética , Aquaporinas/metabolismo , Proteínas de Bactérias/metabolismo , Oxigênio/metabolismo , Streptococcus pneumoniae/genética , Streptococcus pneumoniae/patogenicidade , Fatores de Virulência/metabolismo , Animais , Proteínas de Bactérias/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Feminino , Peróxido de Hidrogênio/metabolismo , Macrófagos/microbiologia , Macrófagos/patologia , Camundongos , Camundongos Endogâmicos BALB C , Células RAW 264.7 , Virulência , Fatores de Virulência/genética
16.
Int J Mol Sci ; 22(13)2021 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-34203224

RESUMO

Previous work pointed to a critical role of excessive production of reactive oxygen species (ROS) in increased radiation hematopoietic death in GFP mice. Meanwhile, enhanced antioxidant capability was not demonstrated in the mouse model of radio-induced adaptive response (RAR) using rescue of radiation hematopoietic death as the endpoint. ROS induction by ex vivo X-irradiation at a dose ranging from 0.1 to 7.5 Gy in the nucleated bone marrow cells was comparatively studied using GFP and wild type (WT) mice. ROS induction was also investigated in the cells collected from mice receiving a priming dose (0.5 Gy) efficient for RAR induction in WT mice. Significantly elevated background and increased induction of ROS in the cells from GFP mice were observed compared to those from WT mice. Markedly lower background and decreased induction of ROS were observed in the cells collected from WT mice but not GFP mice, both receiving the priming dose. GFP overexpression could alter background and induction of ROS by X-irradiation in hematopoietic cells. The results provide a reasonable explanation to the previous study on the fate of cells and mice after X-irradiation and confirm enhanced antioxidant capability in RAR. Investigations involving GFP overexpression should be carefully interpreted.


Assuntos
Células da Medula Óssea/metabolismo , Células da Medula Óssea/efeitos da radiação , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/efeitos da radiação , Espécies Reativas de Oxigênio/metabolismo , Raios X/efeitos adversos , Animais , Relação Dose-Resposta à Radiação , Feminino , Camundongos , Camundongos Endogâmicos C57BL
18.
Radiat Res ; 196(1): 100-112, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33901294

RESUMO

Astronauts can develop psychological stress (PS) during space flights due to the enclosed environment, microgravity, altered light-dark cycles, and risks of equipment failure or fatal mishaps. At the same time, they are exposed to cosmic rays including high atomic number and energy (HZE) particles such as iron-56 (Fe) ions. Psychological stress or radiation exposure can cause detrimental effects in humans. An earlier published pioneering study showed that chronic restraint-induced psychological stress (CRIPS) could attenuate Trp53 functions and increase carcinogenesis induced by low-linear energy transfer (LET) γ rays in Trp53-heterozygous (Trp53+/-) mice. To elucidate possible modification effects from CRIPS on high-LET HZE particle-induced health consequences, Trp53+/- mice were received both CRIPS and accelerated Fe ion irradiation. Six-week-old Trp53+/- C57BL/6N male mice were restrained 6 h per day for 28 consecutive days. On day 8, they received total-body Fe-particle irradiation (Fe-TBI, 0.1 or 2 Gy). Metaphase chromosome spreads prepared from splenocytes at the end of the 28-day restraint regimen were painted with the fluorescence in situ hybridization (FISH) probes for chromosomes 1 (green), 2 (red) and 3 (yellow). Induction of psychological stress in our experimental model was confirmed by increase in urinary corticosterone level on day 7 of restraint regimen. Regardless of Fe-TBI, CRIPS reduced splenocyte number per spleen at the end of the 28-day restraint regimen. At 2 Gy, Fe-TBI alone induced many aberrant chromosomes and no modifying effect was detected from CRIPS on induction of aberrant chromosomes. Notably, neither Fe-TBI at 0.1 Gy nor CRIPS alone induced any increase in the frequency of aberrant chromosomes, while simultaneous exposure resulted in a significant increase in the frequency of chromosomal exchanges. These findings clearly showed that CRIPS could enhance the frequency of chromosomal exchanges induced by Fe-TBI at a low dose of 0.1 Gy.


Assuntos
Aberrações Cromossômicas , Heterozigoto , Ferro/administração & dosagem , Restrição Física , Estresse Fisiológico , Proteína Supressora de Tumor p53/genética , Animais , Relação Dose-Resposta à Radiação , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Baço/metabolismo , Baço/patologia , Baço/efeitos da radiação
19.
Dose Response ; 19(1): 1559325820982166, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33628149

RESUMO

Radioadaptive response (RAR) describes a phenomenon in a variety of in vitro and in vivo systems that a low-dose of priming ionizing radiation (IR) reduces detrimental effects of a subsequent challenge IR at higher doses. Among in vivo investigations, studies using the mouse RAR model (Yonezawa Effect) showed that RAR could significantly extenuate high-dose IR-induced detrimental effects such as decrease of hematopoietic stem cells and progenitor cells, acute radiation hematopoietic syndrome, genotoxicity and genomic instability. Meanwhile, it has been demonstrated that diet intervention has a great impact on health, and dietary restriction shows beneficial effects on numerous diseases in animal models. In this work, by using the mouse RAR model and mild dietary restriction (MDR), we confirmed that combination of RAR and MDR could more efficiently reduce radiogenotoxic damage without significant change of the RAR phenotype. These findings suggested that MDR may share some common pathways with RAR to activate mechanisms consequently resulting in suppression of genotoxicity. As MDR could also increase resistance to chemotherapy and radiotherapy in normal cells, we propose that combination of MDR, RAR, and other cancer treatments (i.e., chemotherapy and radiotherapy) represent a potential strategy to increase the treatment efficacy and prevent IR risk in humans.

20.
Phenomics ; 1(3): 91-104, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36939782

RESUMO

Kidney disease is manifested in a wide variety of phenotypes, many of which have an important hereditary component. To delineate the genotypic and phenotypic spectrum of pediatric nephropathy, a multicenter registration system is being implemented based on the Chinese Children Genetic Kidney Disease Database (CCGKDD). In this study, all the patients with kidney and urological diseases were recruited from 2014 to 2020. Genetic analysis was conducted using exome sequencing for families with multiple affected individuals with nephropathy or clinical suspicion of a genetic kidney disease owing to early-onset or extrarenal features. The genetic diagnosis was confirmed in 883 of 2256 (39.1%) patients from 23 provinces in China. Phenotypic profiles showed that the primary diagnosis included steroid-resistant nephrotic syndrome (SRNS, 23.5%), glomerulonephritis (GN, 32.2%), congenital anomalies of the kidney and urinary tract (CAKUT, 21.2%), cystic renal disease (3.9%), renal calcinosis/stone (3.6%), tubulopathy (9.7%), and chronic kidney disease of unknown etiology (CKDu, 5.8%). The pathogenic variants of 105 monogenetic disorders were identified. Ten distinct genomic disorders were identified as pathogenic copy number variants (CNVs) in 11 patients. The diagnostic yield differed by subgroups, and was highest in those with cystic renal disease (66.3%), followed by tubulopathy (58.4%), GN (57.7%), CKDu (43.5%), SRNS (29.2%), renal calcinosis /stone (29.3%) and CAKUT (8.6%). Reverse phenotyping permitted correct identification in 40 cases with clinical reassessment and unexpected genetic conditions. We present the results of the largest cohort of children with kidney disease in China where diagnostic exome sequencing was performed. Our data demonstrate the utility of family-based exome sequencing, and indicate that the combined analysis of genotype and phenotype based on the national patient registry is pivotal to the genetic diagnosis of kidney disease. Supplementary Information: The online version contains supplementary material available at 10.1007/s43657-021-00014-1.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA