Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biomed Pharmacother ; 178: 117261, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39106708

RESUMO

BACKGROUND: Long-term anti-angiogenesis leads to pruned vasculature, densely deposited extracellular matrix (ECM), and consequently reduced chemotherapy delivery in esophagogastric cancer (EGC). To address this issue, we evaluated the efficacy of adding a hyaluronidase or a NO-donor to the regimen of chemotherapy and anti-angiogenic drugs. METHODS: A patient-derived EGC xenograft model was developed. Grafted mice were randomly assigned to four experimental groups and one control group. The experimental groups received DC101, a murine angiogenesis inhibitor, and nab-paclitaxel (NPTX), with the addition of hyaluronidase (PEGPH20), or NO-donor (nitroglycerine, NTG), or their combination, respectively. We compared tumor growth during 17 days of treatment. We performed immunohistochemistry for ECM components hyaluronan (HA) and collagen, CD31 for endothelial cells, and γH2AX for DNA damage. The positively stained areas were quantified, and vessel diameters were measured using QuPath software. RESULTS: Prolonged DC101 treatment induced deposition of HA (p<0.01) and collagen (p<0.01). HA was effectively degraded by PEGPH20 (p<0.001), but not by NTG as expected. Both PEGPH20 (p<0.05) and NTG (p<0.01) dilated vessels collapsed in response to long-term DC101 treatment. However, only PEGPH20 (rather than NTG) was found to significantly inhibit tumor growth (p<0.05) in combination with NPTX and DC101. CONCLUSIONS: These findings suggest that the mechanical barrier of HA is the major reason responsible for the resistance developed during prolonged anti-angiogenesis in EGC. Incorporating PEGPH20 into the existing treatment regimen is promising to improve outcomes for patients with EGC.

2.
Pharmacol Res ; : 107315, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39059615

RESUMO

Epithelial-mesenchymal transition (EMT) has been identified as a driver of therapy resistance, particularly in esophageal adenocarcinoma (EAC), where transforming growth factor beta (TGF-ß) can induce this process. Inhibitors of TGF-ß may counteract the occurrence of mesenchymal, resistant tumor cell populations following chemo(radio)therapy and improve treatment outcomes in EAC. Here, we aimed to identify predictive biomarkers for the response to TGF-ß targeting. In vitro approximations of neoadjuvant treatment were applied to publicly available primary EAC cell lines. TGF-ß inhibitors fresolimumab and A83-01 were employed to inhibit EMT, and mesenchymal markers were quantified via flow cytometry to assess efficacy. Our results demonstrated a robust induction of mesenchymal cell states following chemoradiation, with TGF-ß inhibition leading to variable reductions in mesenchymal markers. The cell lines were clustered into responders and non-responders. Genomic expression profiles were obtained through RNA-seq analysis. Differentially expressed gene (DEG) analysis identified 10 positively- and 23 negatively-associated hub genes, which were bioinformatically identified. Furthermore, the correlation of DEGs with response to TGF-ß inhibition was examined using public pharmacogenomic databases, revealing 9 positively associated and 11 negatively associated DEGs. Among these, ERBB2, EFNB1, and TNS4 were the most promising candidates. Our findings reveal a distinct gene expression pattern associated with the response to TGF-ß inhibition in chemo(radiated) EAC. The identified DEGs and predictive markers may assist patient selection in clinical studies investigating TGF-ß targeting.

3.
Br J Surg ; 111(2)2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38387083

RESUMO

BACKGROUND: This study evaluated the association of pathological tumour response (tumour regression grade, TRG) and a novel scoring system, combining both TRG and nodal status (TRG-ypN score; TRG1-ypN0, TRG>1-ypN0, TRG1-ypN+ and TRG>1-ypN+), with recurrence patterns and survival after multimodal treatment of oesophageal adenocarcinoma. METHODS: This Dutch nationwide cohort study included patients treated with neoadjuvant chemoradiotherapy followed by oesophagectomy for distal oesophageal or gastro-oesophageal junctional adenocarcinoma between 2007 and 2016. The primary endpoint was the association of Mandard score and TRG-ypN score with recurrence patterns (rate, location, and time to recurrence). The secondary endpoint was overall survival. RESULTS: Among 2746 inclusions, recurrence rates increased with higher Mandard scores (TRG1 30.6%, TRG2 44.9%, TRG3 52.9%, TRG4 61.4%, TRG5 58.2%; P < 0.001). Among patients with recurrent disease, the distribution (locoregional versus distant) was the same for the different TRG groups. Patients with TRG1 developed more brain recurrences (17.7 versus 9.8%; P = 0.001) and had a longer mean overall survival (44 versus 35 months; P < 0.001) than those with TRG>1. The TRG>1-ypN+ group had the highest recurrence rate (64.9%) and worst overall survival (mean 27 months). Compared with the TRG>1-ypN0 group, patients with TRG1-ypN+ had a higher risk of recurrence (51.9 versus 39.6%; P < 0.001) and worse mean overall survival (33 versus 41 months; P < 0.001). CONCLUSION: Improved tumour response to neoadjuvant therapy was associated with lower recurrence rates and higher overall survival rates. Among patients with recurrent disease, TRG1 was associated with a higher incidence of brain recurrence than TRG>1. Residual nodal disease influenced prognosis more negatively than residual disease at the primary tumour site.


Assuntos
Adenocarcinoma , Neoplasias Esofágicas , Humanos , Prognóstico , Estudos de Coortes , Intervalo Livre de Doença , Terapia Combinada
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA