Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Stress ; 26(1): 2228925, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37395260

RESUMO

The lysine 63 deubiquitinase cylindromatosis (CYLD) is expressed at high levels in the brain and is considered to be involved in anxious and depressive behavior, cognitive inflexibility, and autism disorders. Previous research was limited in some brain regions, including the hippocampus, striatum, and amygdala. To better understand whether CYLD plays a role in adaptation to stress and which brain regions are involved, we analyzed the behavior of CYLD-knockout mice in the elevated plus maze (EPM) and light-dark box test (LDT) after acute restraint stress (ARS) and mapped their c-Fos immunoreactivity in brain sections. Here we report that CYLD deficiency leads to an unexpected reaction to ARS in mice, and is accompanied by significant neuronal activation of brain regions including the medial prefrontal cortex (mPFC), dorsal striatum (DS), nucleus accumbens (NAc), and basal lateral amygdala (BLA), but not ventral hippocampus (vHPC). Our findings show that CYLD participates in ARS-induced anxious behavior and that this involves multiple brain regions.


Assuntos
Encéfalo , Estresse Psicológico , Camundongos , Animais , Camundongos Knockout , Estresse Psicológico/genética , Encéfalo/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ansiedade/genética , Córtex Pré-Frontal/metabolismo , Enzima Desubiquitinante CYLD/genética
2.
Acta Pharmacol Sin ; 43(7): 1658-1669, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34737419

RESUMO

We previously show that L-Cysteine administration significantly suppresses hypoxia-ischemia (HI)-induced neuroinflammation in neonatal mice through releasing H2S. In this study we conducted proteomics analysis to explore the potential biomarkers or molecular therapeutic targets associated with anti-inflammatory effect of L-Cysteine in neonatal mice following HI insult. HI brain injury was induced in postnatal day 7 (P7) neonatal mice. The pups were administered L-Cysteine (5 mg/kg) at 24, 48, and 72 h post-HI. By conducting TMT-based proteomics analysis, we confirmed that osteopontin (OPN) was the most upregulated protein in ipsilateral cortex 72 h following HI insult. Moreover, OPN was expressed in CD11b+/CD45low cells and infiltrating CD11b+/CD45high cells after HI exposure. Intracerebroventricular injection of OPN antibody blocked OPN expression, significantly attenuated brain damage, reduced pro-inflammatory cytokine levels and suppressed cerebral recruitment of CD11b+/CD45high immune cells following HI insult. L-Cysteine administration reduced OPN expression in CD11b+/CD45high immune cells, concomitant with improving the behavior in Y-maze test and suppressing cerebral recruitment of CD11b+/CD45high immune cells post-HI insult. Moreover, L-Cysteine administration suppressed the Stat3 activation by inducing S-sulfhydration of Stat3. Intracerebroventricular injection of Stat3 siRNA not only decreased OPN expression, but also reversed HI brain damage. Our data demonstrate that L-Cysteine administration effectively attenuates the OPN-mediated neuroinflammation by inducing S-sulfhydration of Stat3, which contributes to its anti-inflammatory effect following HI insult in neonatal mice. Blocking OPN expression may serve as a new target for therapeutic intervention for perinatal HI brain injury.


Assuntos
Lesões Encefálicas , Hipóxia-Isquemia Encefálica , Animais , Animais Recém-Nascidos , Anti-Inflamatórios/uso terapêutico , Lesões Encefálicas/tratamento farmacológico , Cisteína/farmacologia , Cisteína/uso terapêutico , Feminino , Hipóxia/tratamento farmacológico , Hipóxia-Isquemia Encefálica/tratamento farmacológico , Isquemia/tratamento farmacológico , Camundongos , Doenças Neuroinflamatórias , Osteopontina , Gravidez , Fator de Transcrição STAT3/metabolismo
3.
Neural Regen Res ; 15(10): 1920-1930, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32246641

RESUMO

Hydrogen sulfide, which can be generated in the central nervous system from the sulfhydryl-containing amino acid, L-cysteine, by cystathionine-ß-synthase, may exert protective effects in experimental subarachnoid hemorrhage; however, the mechanism underlying this effect is unknown. This study explored the mechanism using a subarachnoid hemorrhage rat model induced by an endovascular perforation technique. Rats were treated with an intraperitoneal injection of 100 mM L-cysteine (30 µL) 30 minutes after subarachnoid hemorrhage. At 48 hours after subarachnoid hemorrhage, hematoxylin-eosin staining was used to detect changes in prefrontal cortex cells. L-cysteine significantly reduced cell edema. Neurological function was assessed using a modified Garcia score. Brain water content was measured by the wet-dry method. L-cysteine significantly reduced neurological deficits and cerebral edema after subarachnoid hemorrhage. Immunofluorescence was used to detect the number of activated microglia. Reverse transcription-polymerase chain reaction (RT-PCR) was used to detect the levels of interleukin 1ß and CD86 mRNA in the prefrontal cortex. L-cysteine inhibited microglial activation in the prefrontal cortex and reduced the mRNA levels of interleukin 1ß and CD86. RT-PCR and western blot analysis of the complement system showed that L-cysteine reduced expression of the complement factors, C1q, C3α and its receptor C3aR1, and the deposition of C1q in the prefrontal cortex. Dihydroethidium staining was applied to detect changes in reactive oxygen species, and immunohistochemistry was used to detect the number of NRF2- and HO-1-positive cells. L-cysteine reduced the level of reactive oxygen species in the prefrontal cortex and the number of NRF2- and HO-1-positive cells. Western blot assays and immunohistochemistry were used to detect the protein levels of CHOP and GRP78 in the prefrontal cortex and the number of CHOP- and GRP78-positive cells. L-cysteine reduced CHOP and GRP78 levels and the number of CHOP- and GRP78-positive cells. The cystathionine-ß-synthase inhibitor, aminooxyacetic acid, significantly reversed the above neuroprotective effects of L-cysteine. Taken together, L-cysteine can play a neuroprotective role by regulating neuroinflammation, complement deposition, oxidative stress and endoplasmic reticulum stress. The study was approved by the Animals Ethics Committee of Shandong University, China on February 22, 2016 (approval No. LL-201602022).

4.
Pharmacol Biochem Behav ; 184: 172742, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31348944

RESUMO

Ketamine has become increasingly popular in adolescent drug abusers worldwide. Meanwhile, alcohol is usually used by ketamine users. However, little work has been conducted to examine the chronic combined effects of ketamine and ethanol on adolescent brain. Here we probed into the effects of chronic administration of ketamine at recreational doses alone or combined with ethanol on behaviors and neuron damage in an adolescent rat model. 28-day old rats were treated with either 20 or 30 mg/kg ketamine plus or not plus 10% ethanol daily for 21 days. Depressive like behaviors, anxiety like behavior and memory impairment were tested using open field test, forced swimming test, elevated plus maze and Morris water maze. Apoptosis in prefrontal cortex (PFC) and hippocampus (HIP) were determined by the TdT-mediated dUTP Nick-End Labeling (TUNEL) and protein and mRNA levels of caspase-3, Bax and Bcl-2. Results show that co-application of ketamine and ethanol significantly increased immobility time in the forced swimming test, up-regulated TUNEL positive cells and both protein and mRNA expressions of caspase-3 and Bax, compared with the control group and ketamine and ethanol use alone groups in the PFC, but not in the HIP. Our study suggests that chronic co-administration of ketamine and ethanol results in depressive-like behavior and the caspase-dependent apoptosis in the PFC of adolescent rats' brains.


Assuntos
Anestésicos Dissociativos/farmacologia , Apoptose/efeitos dos fármacos , Comportamento Animal/efeitos dos fármacos , Depressores do Sistema Nervoso Central/farmacologia , Etanol/farmacologia , Hipocampo/efeitos dos fármacos , Ketamina/farmacologia , Córtex Pré-Frontal/efeitos dos fármacos , Anestésicos Dissociativos/administração & dosagem , Animais , Ansiedade/induzido quimicamente , Caspase 3/genética , Caspase 3/metabolismo , Depressores do Sistema Nervoso Central/administração & dosagem , Depressão/induzido quimicamente , Etanol/administração & dosagem , Hipocampo/metabolismo , Ketamina/administração & dosagem , Masculino , Memória/efeitos dos fármacos , Córtex Pré-Frontal/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Ratos , Ratos Sprague-Dawley , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA