Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
Cell Death Dis ; 15(7): 504, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39009589

RESUMO

Abnormal epigenetic modifications are involved in the regulation of Warburg effect in tumor cells. Protein arginine methyltransferases (PRMTs) mediate arginine methylation and have critical functions in cellular responses. PRMTs are deregulated in a variety of cancers, but their precise roles in Warburg effect in cancer is largely unknown. Experiments from the current study showed that PRMT1 was highly expressed under conditions of glucose sufficiency. PRMT1 induced an increase in the PKM2/PKM1 ratio through upregulation of PTBP1, in turn, promoting aerobic glycolysis in non-small cell lung cancer (NSCLC). The PRMT1 level in p53-deficient and p53-mutated NSCLC remained relatively unchanged while the expression was reduced in p53 wild-type NSCLC under conditions of glucose insufficiency. Notably, p53 activation under glucose-deficient conditions could suppress USP7 and further accelerate the polyubiquitin-dependent degradation of PRMT1. Melatonin, a hormone that inhibits glucose intake, markedly suppressed cell proliferation of p53 wild-type NSCLC, while a combination of melatonin and the USP7 inhibitor P5091 enhanced the anticancer activity in p53-deficient NSCLC. Our collective findings support a role of PRMT1 in the regulation of Warburg effect in NSCLC. Moreover, combination treatment with melatonin and the USP7 inhibitor showed good efficacy, providing a rationale for the development of PRMT1-based therapy to improve p53-deficient NSCLC outcomes.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Proteínas de Membrana , Proteína-Arginina N-Metiltransferases , Proteínas de Ligação a Hormônio da Tireoide , Hormônios Tireóideos , Proteína Supressora de Tumor p53 , Efeito Warburg em Oncologia , Proteína-Arginina N-Metiltransferases/metabolismo , Proteína-Arginina N-Metiltransferases/genética , Humanos , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/tratamento farmacológico , Efeito Warburg em Oncologia/efeitos dos fármacos , Proteína Supressora de Tumor p53/metabolismo , Hormônios Tireóideos/metabolismo , Linhagem Celular Tumoral , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Proliferação de Células/efeitos dos fármacos , Proteínas de Transporte/metabolismo , Proteínas de Transporte/genética , Peptidase 7 Específica de Ubiquitina/metabolismo , Peptidase 7 Específica de Ubiquitina/genética , Proteínas Repressoras/metabolismo , Proteínas Repressoras/genética , Ribonucleoproteínas Nucleares Heterogêneas/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas/genética , Animais , Glicólise/efeitos dos fármacos , Camundongos Nus , Glucose/metabolismo , Camundongos , Regulação Neoplásica da Expressão Gênica , Células A549 , Proteína de Ligação a Regiões Ricas em Polipirimidinas
2.
Technol Health Care ; 2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-38073341

RESUMO

BACKGROUND: Oral squamous cell carcinoma (OSCC) is an infiltrative malignancy characterized by a significantly elevated recurrence rate. Dickkopf-related protein 1 (DKK1), which plays an oncogene role in many cancers, acts as an inhibitor of the Wingless protein (Wnt) signaling pathway. Currently, there is a lack of consensus regarding the role of DKK1 in OSCC or its clinical significance. OBJECTIVE: To examine the role and effect of DKK1 in OSCC. METHODS: The identification of differentially expressed genes (DEGs) in OSCC was conducted by utilizing databases such as The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO). A comprehensive analysis of gene expression profile interactions (GEPIA) and Kaplan-Meier curve were conducted to investigate the associations among DEGs, patient survival and prognosis in individuals with OSCC. The biological function of DKK1 in OSCC was investigated by using molecular biology approaches. RESULTS: The expression of DKK1 was found to be upregulated in OSCC tissues at various stages. High levels of DKK1 expression exhibited a positive correlation with the overall survival (OS) and progression-free survival (PFS) rates among OSCC patients. DKK1 knockdown suppressed the proliferation and induced apoptotic response in OSCC cells. Moreover, DKK1 exerted a positive regulatory effect on HMGA2 expression, thereby modulating cell growth and apoptosis in OSCC. The expression of DKK1 was found to be positively correlated with the infiltration of immune cells in patients with OSCC. Additionally, higher levels of CD4+ T cells were associated with improved 5-year survival rates. CONCLUSION: DKK1 is a prognostic biomarker for patients with OSCC.

3.
Cell Death Discov ; 9(1): 289, 2023 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-37543653

RESUMO

Chemotherapy has been widely used in small cell lung cancer (SCLC) treatment in the past decades. However, SCLC is easy to recur after chemotherapy. The senescence of cancer cells during chemotherapy is one of the effective therapeutic strategies to inhibit the progression of cancer. Nevertheless, the senescence-associated secretion phenotype (SASP) promotes chronic inflammation of the cancer microenvironment and further accelerates the progression of tumors. Therefore, inducing the senescence of cancer cells and inhibiting the production of SASP factors during anticancer treatment have become effective therapeutic strategies to improve the anticancer effect of drugs. Here we reported that SCLC cells treated with an FDA-approved HDAC inhibitor SAHA underwent senescence and displayed remarkable SASP. In particular, SAHA promoted the formation of cytoplasmic chromatin fragments (CCFs) in SCLC cells. The increased CCFs in SAHA-treated SCLC cells were related to nuclear porin Tpr, which activated the cGAS-STING pathway, and promoted the secretion of SASP in cancer cells. Inhibition of EZH2 suppressed the increase of CCFs in SAHA-treated SCLC cells, weakened the production of SASP, and increased the antiproliferative effect of SAHA. Overall, our work affords new insight into the secretion of SASP in SCLC and establishes a foundation for constructing a new therapeutic strategy for SCLC patients.

4.
Biology (Basel) ; 12(5)2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37237509

RESUMO

Breast cancer is now the most common cancer worldwide, and it is also the main cause of cancer-related death in women. Survival rates for female breast cancer have significantly improved due to early diagnosis and better treatment. Nevertheless, for patients with advanced or metastatic breast cancer, the survival rate is still low, reflecting a need for the development of new therapies. Mechanistic insights into metastatic breast cancer have provided excellent opportunities for developing novel therapeutic strategies. Although high-throughput approaches have identified several therapeutic targets in metastatic disease, some subtypes such as triple-negative breast cancer do not yet have an apparent tumor-specific receptor or pathway to target. Therefore, exploring new druggable targets in metastatic disease is a high clinical priority. In this review, we summarize the emerging intrinsic therapeutic targets for metastatic breast cancer, including cyclin D-dependent kinases CDK4 and CDK6, the PI3K/AKT/mTOR pathway, the insulin/IGF1R pathway, the EGFR/HER family, the JAK/STAT pathway, poly(ADP-ribose) polymerases (PARP), TROP-2, Src kinases, histone modification enzymes, activated growth factor receptors, androgen receptors, breast cancer stem cells, matrix metalloproteinases, and immune checkpoint proteins. We also review the latest development in breast cancer immunotherapy. Drugs that target these molecules/pathways are either already FDA-approved or currently being tested in clinical trials.

5.
Front Oncol ; 12: 847793, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35860570

RESUMO

Human tongue squamous cell carcinoma (TSCC), the most prevalent type of oral cancer, is associated with human papillomavirus (HPV) infection. Our previous work showed Karyopherin α2 (KPNA2), as an oncogene of TSCC, by relegating the p53/autophagy signaling pathway. Nevertheless, the significance of KPNA2 in TSCC pathogenesis has not been established. KPNA2 levels were evaluated via the TCGA database, and its effects on survival outcomes were assessed by LASSO, Kaplan-Meier, and COX regression analyses. CIBERSORT and ESTIMATE investigated the relationships between KPNA2 and immune infiltration. At the same time, KPNA2 and HPV infection was analyzed by immunohistochemistry. In addition, the association between downstream molecular regulation pathways and KPNA2 levels was determined by GO, GSEA, and WGCNA. In TSCC, KPNA2 levels were associated with clinical prognosis and tumor grade. Moreover, KPNA2 may be involved in cancer cell differentiation and facilitates tumor-related genes and signaling pathways, such as Cell Cycle, Mitotic G1 phase, G1/S transition, DNA Repair, and Transcriptional Regulation TP53 signaling pathways. Nevertheless, regulatory B cells, follicular helper B cells, and immune and stromal scores between low- and high-KPNA2 expression groups were insignificant. These results imply that KPNA2 is highly involved in tumor grade and prognosis of TSCC. KPNA2 levels correct with HPV 16 markedly regulated cell differentiation, several oncogenes, and cancer-related pathways.

6.
Breast Cancer Res Treat ; 194(2): 221-230, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35699854

RESUMO

BACKGROUND: Hormone receptor-positive and human epidermal growth factor receptor 2-positive (HR+/HER2+ breast cancer comprise approximately 5-10% of all invasive breast cancers. However, the lack of knowledge regarding the complexity of tumor heterogeneity in HR+/HER2+ disease remains a barrier to more accurate therapies. This study aimed to describe the tumor heterogeneity of HR+/HER2+ breast cancer and to establish a novel indicator to identify the HER2-enriched subtype in patients with HR+/HER2+ breast cancer. METHODS: First of all, a comprehensive analysis was performed on HR+/HER2+ breast cancer samples from the TCGA (n = 141) and METABRIC (n = 104) databases. We determined the distribution of PAM50 intrinsic subtypes within the two cohorts and compared the somatic mutational profile and RNA expression features between HER2-enriched and non-HER2-enriched subtypes. From this, we constructed a novel marker termed rH/E, which was calculated as ERBB2 expression quantity/(ESR1 expression quantity + 1). Secondly, we performed multiplex immunofluorescence (mIF) to evaluate HER2 and estrogen receptor (ER) expression simultaneously in the third cohort, enrolling 43 cases of early HR+/HER2+ breast cancer from Cancer Hospital, Chinese Academy of Medical Sciences (CAMS). When using mIF, rH/E was adjusted to prH/E, which was calculated as HER2-positive cells%/(ER-positive cells + 1)%. RESULTS: All four main intrinsic subtypes were identified in HR+/HER2+ breast cancer, of which the luminal B subtype was the most common, followed by the HER2-enriched and luminal A subtypes. Significantly increased TP53 and ERBB3 and decreased PIK3CA somatic mutation frequency were observed in the HER2-enriched subtype compared with the non-HER2-enriched subtype. In addition, the HER2-enriched subtype was characterized by significantly higher ERBB2 and lower ESR1 expression. We then constructed a marker termed rH/E to reflect the relative expression of ERBB2 to ESR1 in each patient. rH/E discriminates the HER2-enriched subtype from the better than the expression of ERBB2 or ESR1 alone. In the CAMS cohort, we observed four subtypes of tumor cells: ER+/HER2-, ER+/HER2+, ER-/HER2+, and ER-/HER2-. Tumor cell diversity was common, with 86% of patients having all four subtypes of tumor cells. Moreover, prH/E showed a significant prognostic association in the CAMS cohort. CONCLUSIONS: This study furthers our understanding of the complexity of tumor heterogeneity in HR+/HER2+ breast cancer, and suggests that the combined analysis of ERBB2 and ESR1 expression may contribute to identifying patients with specific subtypes in this population.


Assuntos
Neoplasias da Mama , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/patologia , Feminino , Humanos , Prognóstico , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo , Receptores de Estrogênio/genética , Receptores de Estrogênio/metabolismo , Receptores de Progesterona/genética , Receptores de Progesterona/metabolismo
8.
Int J Mol Sci ; 22(6)2021 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-33801148

RESUMO

Chemotherapeutics are the mainstay treatment for metastatic breast cancers. However, the chemotherapeutic failure caused by multidrug resistance (MDR) remains a pivotal obstacle to effective chemotherapies of breast cancer. Although in vitro evidence suggests that the overexpression of ATP-Binding Cassette (ABC) transporters confers resistance to cytotoxic and molecularly targeted chemotherapies by reducing the intracellular accumulation of active moieties, the clinical trials that target ABCB1 to reverse drug resistance have been disappointing. Nevertheless, studies indicate that ABC transporters may contribute to breast cancer development and metastasis independent of their efflux function. A broader and more clarified understanding of the functions and roles of ABC transporters in breast cancer biology will potentially contribute to stratifying patients for precision regimens and promote the development of novel therapies. Herein, we summarise the current knowledge relating to the mechanisms, functions and regulations of ABC transporters, with a focus on the roles of ABC transporters in breast cancer chemoresistance, progression and metastasis.


Assuntos
Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Neoplasias da Mama/etiologia , Neoplasias da Mama/metabolismo , Transportadores de Cassetes de Ligação de ATP/química , Transportadores de Cassetes de Ligação de ATP/classificação , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Progressão da Doença , Suscetibilidade a Doenças , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Família Multigênica , Metástase Neoplásica , Estadiamento de Neoplasias , Relação Estrutura-Atividade
9.
Plant J ; 104(5): 1410-1422, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33048384

RESUMO

Brassica napus is an important oilseed crop in the world, and the mechanism of seed oil biosynthesis in B. napus remains unclear. In order to study the mechanism of oil biosynthesis and generate germplasms for breeding, an ethyl methanesulfonate (EMS) mutant population with ~100 000 M2 lines was generated using Zhongshuang 11 as the parent line. The EMS-induced genome-wide mutations in M2-M4 plants were assessed. The average number of mutations including single nucleotide polymorphisms and insertion/deletion in M2-M4 was 21 177, 28 675 and 17 915, respectively. The effects of the mutations on gene function were predicted in M2-M4 mutants, respectively. We screened the seeds from 98 113 M2 lines, and 9415 seed oil content and fatty acid mutants were identified. We further confirmed 686 mutants with altered seed oil content and fatty acid in advanced generation (M4 seeds). Five representative M4 mutants with increased oleic acid were re-sequenced, and the potential causal variations in FAD2 and ROD1 genes were identified. This study generated and screened a large scale of B. napus EMS mutant population, and the identified mutants could provide useful genetic resources for the study of oil biosynthesis and genetic improvement of seed oil content and fatty acid composition of B. napus in the future.


Assuntos
Brassica napus/genética , Metanossulfonato de Etila/farmacologia , Mutação , Óleos de Plantas/química , Sementes/química , Brassica napus/efeitos dos fármacos , Brassica napus/fisiologia , Ácidos Graxos/análise , Ácidos Graxos/química , Ácidos Graxos/genética , Flores/efeitos dos fármacos , Flores/genética , Proteínas de Plantas/genética , Plântula/efeitos dos fármacos , Plântula/genética , Sementes/genética , Sequenciamento Completo do Genoma
10.
Cancers (Basel) ; 12(10)2020 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-32992445

RESUMO

Breast cancer is the most common cancer in women worldwide. Accurate early diagnosis of breast cancer is critical in the management of the disease. Although mammogram screening has been widely used for breast cancer screening, high false-positive and false-negative rates and radiation from mammography have always been a concern. Over the last 20 years, the emergence of "omics" strategies has resulted in significant advances in the search for non-invasive biomarkers for breast cancer diagnosis at an early stage. Circulating carcinoma antigens, circulating tumor cells, circulating cell-free tumor nucleic acids (DNA or RNA), circulating microRNAs, and circulating extracellular vesicles in the peripheral blood, nipple aspirate fluid, sweat, urine, and tears, as well as volatile organic compounds in the breath, have emerged as potential non-invasive diagnostic biomarkers to supplement current clinical approaches to earlier detection of breast cancer. In this review, we summarize the current progress of research in these areas.

11.
Elife ; 92020 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-32844749

RESUMO

Arginine methyltransferase PRMT7 is associated with human breast cancer metastasis. Endosomal FAK signalling is critical for cancer cell migration. Here we identified the pivotal roles of PRMT7 in promoting endosomal FAK signalling activation during breast cancer metastasis. PRMT7 exerted its functions through binding to scaffold protein SHANK2 and catalyzing di-methylation of SHANK2 at R240. SHANK2 R240 methylation exposed ANK domain by disrupting its SPN-ANK domain blockade, promoting in co-accumulation of dynamin2, talin, FAK, cortactin with SHANK2 on endosomes. In addition, SHANK2 R240 methylation activated endosomal FAK/cortactin signals in vitro and in vivo. Consistently, all the levels of PRMT7, methylated SHANK2, FAK Y397 phosphorylation and cortactin Y421 phosphorylation were correlated with aggressive clinical breast cancer tissues. These findings characterize the PRMT7-dependent SHANK2 methylation as a key player in mediating endosomal FAK signals activation, also point to the value of SHANK2 R240 methylation as a target for breast cancer metastasis.


Assuntos
Arginina/metabolismo , Neoplasias da Mama , Quinase 1 de Adesão Focal/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteína-Arginina N-Metiltransferases/metabolismo , Animais , Arginina/química , Mama/química , Mama/patologia , Neoplasias da Mama/química , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Endossomos/metabolismo , Feminino , Humanos , Metilação , Camundongos , Camundongos Endogâmicos BALB C , Proteínas do Tecido Nervoso/química
13.
Cancers (Basel) ; 11(9)2019 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-31500349

RESUMO

Our recent publications showed that multidrug resistance protein 2 (MRP2, encoded by the ABCC2 gene) conferred oxaliplatin resistance in human liver cancer HepG2 cells. However, the contribution of MRP2 to oxaliplatin resistance remains unclear in colorectal and pancreatic cancer lines. We investigated the effects of silencing MRP2 by siRNA on oxaliplatin accumulation and sensitivity in human colorectal cancer Caco-2 cells and pancreatic cancer PANC-1 cells. We characterized the effects of oxaliplatin on MRP2 ATPase activities using membrane vesicles. Over-expression of MRP2 (endogenously in Caco-2 and PANC-1 cells) was associated with decreased oxaliplatin accumulation and cytotoxicity, but those deficits were reversed by inhibition of MRP2 with myricetin or siRNA knockdown. Silencing MRP2 by siRNA increased oxaliplatin-induced apoptotic rate in Caco-2 and PANC-1 cells. Oxaliplatin stimulated MRP2 ATPase activity with a concentration needed to reach 50% of the maximal stimulation (EC50) value of 8.3 ± 0.7 µM and Hill slope 2.7. In conclusion, oxaliplatin is a substrate of MRP2 with possibly two binding sites, and silencing MRP2 increased oxaliplatin accumulation and cytotoxicity in two widely available gastrointestinal tumour lines (PANC-1 and Caco-2).

14.
Br J Cancer ; 120(7): 728-745, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30816325

RESUMO

BACKGROUND: SHON nuclear expression (SHON-Nuc+) was previously reported to predict clinical outcomes to tamoxifen therapy in ERα+ breast cancer (BC). Herein we determined if SHON expression detected by specific monoclonal antibodies could provide a more accurate prediction and serve as a biomarker for anthracycline-based combination chemotherapy (ACT). METHODS: SHON expression was determined by immunohistochemistry in the Nottingham early-stage-BC cohort (n = 1,650) who, if eligible, received adjuvant tamoxifen; the Nottingham ERα- early-stage-BC (n = 697) patients who received adjuvant ACT; and the Nottingham locally advanced-BC cohort who received pre-operative ACT with/without taxanes (Neo-ACT, n = 120) and if eligible, 5-year adjuvant tamoxifen treatment. Prognostic significance of SHON and its relationship with the clinical outcome of treatments were analysed. RESULTS: As previously reported, SHON-Nuc+ in high risk/ERα+ patients was significantly associated with a 48% death risk reduction after exclusive adjuvant tamoxifen treatment compared with SHON-Nuc- [HR (95% CI) = 0.52 (0.34-0.78), p = 0.002]. Meanwhile, in ERα- patients treated with adjuvant ACT, SHON cytoplasmic expression (SHON-Cyto+) was significantly associated with a 50% death risk reduction compared with SHON-Cyto- [HR (95% CI) = 0.50 (0.34-0.73), p = 0.0003]. Moreover, in patients received Neo-ACT, SHON-Nuc- or SHON-Cyto+ was associated with an increased pathological complete response (pCR) compared with SHON-Nuc+ [21 vs 4%; OR (95% CI) = 5.88 (1.28-27.03), p = 0.012], or SHON-Cyto- [20.5 vs. 4.5%; OR (95% CI) = 5.43 (1.18-25.03), p = 0.017], respectively. After receiving Neo-ACT, patients with SHON-Nuc+ had a significantly lower distant relapse risk compared to those with SHON-Nuc- [HR (95% CI) = 0.41 (0.19-0.87), p = 0.038], whereas SHON-Cyto+ patients had a significantly higher distant relapse risk compared to SHON-Cyto- patients [HR (95% CI) = 4.63 (1.05-20.39), p = 0.043]. Furthermore, multivariate Cox regression analyses revealed that SHON-Cyto+ was independently associated with a higher risk of distant relapse after Neo-ACT and 5-year tamoxifen treatment [HR (95% CI) = 5.08 (1.13-44.52), p = 0.037]. The interaction term between ERα status and SHON-Nuc+ (p = 0.005), and between SHON-Nuc+ and tamoxifen therapy (p = 0.007), were both statistically significant. CONCLUSION: SHON-Nuce+ in tumours predicts response to tamoxifen in ERα+ BC while SHON-Cyto+ predicts response to ACT.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Neoplasias da Mama/metabolismo , Carcinoma Ductal de Mama/metabolismo , Proteínas Oncogênicas/metabolismo , Tamoxifeno/uso terapêutico , Adolescente , Adulto , Idoso , Antraciclinas/administração & dosagem , Neoplasias da Mama/tratamento farmacológico , Carcinoma Ductal de Mama/tratamento farmacológico , Núcleo Celular/metabolismo , Quimioterapia Adjuvante , Intervalo Livre de Doença , Receptor alfa de Estrogênio/metabolismo , Feminino , Humanos , Pessoa de Meia-Idade , Terapia Neoadjuvante , Recidiva Local de Neoplasia/epidemiologia , Prognóstico , Adulto Jovem
15.
J Biomed Nanotechnol ; 15(1): 204-211, 2019 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-30480527

RESUMO

Alternative antibody (aptamer)-based biosensors are attracting increasing attention owing to advantages such as simplicity and low cost, which are beneficial for point-of-care diagnosis, particularly where resources are limited. In this study based on in silico modeling predictions made with Autodock Vina, the binding affinity of an optimized novel peptide (Pf_P1: KITTTDEEVEGIFD) was altered compared to that of the original epitope peptide (P1: KITDEEVEGIFDC). The binding energy of Pf_P1 implies that it has stronger interactions with Plasmodium falciparum lactate dehydrogenase (LDH) than with human LDH. Fluorescence-linked immunosorbent assay (FLISA) demonstrated significant interactions (P < 0.05) between the Pf_P1 peptide and P. falciparum LDH at 35.7 nmol. A peptide- and antibody-linked sandwich FLISA was able to detect at least 100 infected red blood cells (RBC)/µL significantly (P < 0.001). The clinical diagnostic performance of peptide- and antibody-linked sandwich FLISA was evaluated using blood samples from patients infected by P. falciparum with parasitemia values of 151 to 128,636. All positive samples exhibited higher fluorescence than normal samples did. In conclusion, in silico modeling was used to efficiently design a Plasmodium LDH epitope-derived peptide aptamer to function as an alternative to antibodies in immunoassays.


Assuntos
Plasmodium falciparum , Aptâmeros de Peptídeos , Humanos , L-Lactato Desidrogenase , Malária Falciparum , Peptídeos
16.
Pharmaceutics ; 10(3)2018 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-30096910

RESUMO

Multidrug resistance (MDR) is a major hurdle which must be overcome to effectively treat cancer. ATP-binding cassette transporters (ABC transporters) play pivotal roles in drug absorption and disposition, and overexpression of ABC transporters has been shown to attenuate cellular/tissue drug accumulation and thus increase MDR across a variety of cancers. Overcoming MDR is one desired approach to improving the survival rate of patients. To date, a number of modulators have been identified which block the function and/or decrease the expression of ABC transporters, thereby restoring the efficacy of a range of anticancer drugs. However, clinical MDR reversal agents have thus far proven ineffective and/or toxic. The need for new, effective, well-tolerated and nontoxic compounds has led to the development of natural compounds and their derivatives to ameliorate MDR. This review evaluates whether synthetically modifying natural compounds is a viable strategy to generate potent, nontoxic, ABC transporter inhibitors which may potentially reverse MDR.

17.
Histopathology ; 73(4): 545-558, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29603357

RESUMO

Endocrine therapy for oestrogen receptor-positive (ER+) breast cancer (BC) is arguably the most successful targeted cancer therapy to date. Nevertheless, resistance to endocrine therapy still occurs in a significant proportion of patients, limiting its clinical utility. ER+ or luminal BC, which represents approximately three-quarters of all breast malignancies, are biologically heterogeneous, with no distinct, clinically defined subclasses able to predict the benefit of endocrine therapy in early settings. To improve patient outcomes there is a clear need for improved understanding of the biology of the luminal BC, with subsequent translation into more effective methods of diagnosis to identify potential predictive biomarkers for endocrine therapy. This review summarises current knowledge of factors predictive of benefit of endocrine therapy and discusses why molecular classification systems of BC have yet to be translated into the clinic.


Assuntos
Antineoplásicos Hormonais/uso terapêutico , Neoplasias da Mama/classificação , Neoplasias da Mama/tratamento farmacológico , Biomarcadores Tumorais/análise , Neoplasias da Mama/patologia , Resistencia a Medicamentos Antineoplásicos/fisiologia , Feminino , Humanos , Receptores de Estrogênio/biossíntese
18.
Theranostics ; 8(21): 5801-5813, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30613263

RESUMO

Increasing evidence demonstrates the existence of two inter-convertible states of breast cancer stem cells (BCSCs) with distinct behaviors in proliferation and mobility, and the BCSC heterogeneity is accurately regulated by sophisticated mechanisms including microRNAs. The microRNA-200 family including miR-200c/141 cluster was reported to affect cancer cell invasion and metastasis by regulating epithelial to mesenchymal transition (EMT). However, the effect of miR-200 family on BCSC heterogeneity is uncertain. Thus, we investigated whether the miR-200c/141 cluster had different effects on breast tumor growth and metastasis by switching the two states of BCSC. Methods: The spontaneous mammary tumor mouse model with miR-200c/141 conditional knockout was utilized for analyzing the role of miR-200c/141 cluster in vivo. The effect of miR-200c/141 cluster on BCSCs was performed by CD24/CD29 staining and ALDEFLUOR assay. miR-200c/141 target expression and EMT-related marker expression were verified in tumor sections, primary cells and breast cancer cell lines by qRT-PCR or western blotting. Statistical analysis was determined using two-way ANOVA and Student's t-test. All values were presented as the mean ± s.e.m. Results: The deletion of miR-200c/141 cluster regulated BCSC heterogeneity and promoted the EMT-like BCSC generation, which resulted in increased tumor metastasis and inhibited tumor growth by directly upregulating the target gene homeodomain-interacting protein kinase 1 (HIPK1) and sequential ß-catenin activation. Conclusions: Our results indicated that miR-200c/141 played biphasic roles in breast tumor progression via affecting the BCSC heterogeneity, suggesting targeting BCSC heterogeneity to simultaneously restrict breast cancer initiation and metastasis could be a promising therapeutic strategy for breast cancer.


Assuntos
Proteínas de Transporte/metabolismo , Neoplasias Mamárias Animais/patologia , MicroRNAs/metabolismo , Células-Tronco Neoplásicas/fisiologia , Mapas de Interação de Proteínas , Proteínas Quinases/metabolismo , beta Catenina/metabolismo , Animais , Western Blotting , Antígeno CD24/análise , Movimento Celular , Proliferação de Células , Transição Epitelial-Mesenquimal , Perfilação da Expressão Gênica , Técnicas de Inativação de Genes , Integrina beta1/análise , Camundongos , MicroRNAs/genética , Células-Tronco Neoplásicas/química , Proteínas Serina-Treonina Quinases , Reação em Cadeia da Polimerase em Tempo Real
19.
Neoplasia ; 20(1): 99-117, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29245123

RESUMO

The glial cell line-derived neurotrophic factor (GDNF) family of ligands (GFLs) comprising of GDNF, neurturin, artemin, and persephin plays an important role in the development and maintenance of the central and peripheral nervous system, renal morphogenesis, and spermatogenesis. Here we review our current understanding of GFL biology, and supported by recent progress in the area, we examine their emerging role in endocrine-related and other non-hormone-dependent solid neoplasms. The ability of GFLs to elicit actions that resemble those perturbed in an oncogenic phenotype, alongside mounting evidence of GFL involvement in tumor progression, presents novel opportunities for therapeutic intervention.


Assuntos
Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Família Multigênica , Neoplasias/etiologia , Neoplasias/metabolismo , Animais , Biomarcadores , Regulação Neoplásica da Expressão Gênica , Humanos , Ligantes , Mutação , Neoplasias/patologia , Neoplasias/terapia , Transdução de Sinais
20.
Oncotarget ; 8(61): 103900-103918, 2017 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-29262609

RESUMO

Tumor derived human growth hormone (hGH) has been implicated in cancer development and progression. However, the specific functional role of autocrine/paracrine hGH in colorectal cancer (CRC) remains largely to be determined. Herein, we demonstrated a crucial oncogenic role of autocrine hGH in CRC progression. Elevated hGH expression was detected in CRC compared to normal colorectal tissue, and hGH expression in CRC was positively associated with tumor size and lymph node metastasis. Forced expression of hGH stimulated cell proliferation, survival, oncogenicity and epithelial to mesenchymal transition (EMT) of CRC cells, and promoted xenograft growth and local invasion in vivo. Autocrine hGH expression in CRC cells stimulated the activation of the ERK1/2 pathway, which in turn resulted in increased transcription of the mesenchymal marker FIBRONECTIN 1 and transcriptional repression of the epithelial marker E-CADHERIN. The autocrine hGH-stimulated increase in CRC cell proliferation, cell survival and EMT was abrogated upon ERK1/2 inhibition. Furthermore, autocrine hGH-stimulated CRC cell migration and invasion was dependent on the ERK1/2-mediated increase in FIBRONECTIN 1 expression and decrease in E-CADHERIN expression. Forced expression of hGH also enhanced CSC-like behavior of CRC cells, as characterized by increased colonosphere formation, ALDH-positive population and CSC marker expression. Autocrine hGH-enhanced cancer stem cell (CSC)-like behavior in CRC cells was also observed to be E-CADHERIN-dependent. Thus, autocrine hGH plays a critical role in CRC progression, and inhibition of hGH could be a promising targeted therapeutic approach to limit disease progression in metastatic CRC patients.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA