Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Dermatology ; 239(4): 533-541, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37088073

RESUMO

Androgenetic alopecia (AGA) is the most common type of hair loss and features progressive miniaturization of hair follicles. Generally, the occurrence of AGA has long been thought to be driven by genetic and androgen predisposition. However, increasingly, data proposed ageing and AGA are intimately linked. Elevated senescent cell burden and androgen and oxidative stress-induced senescence mechanisms in ageing may be initial targets to improve AGA. This review summarizes the biological links between ageing and AGA, with special focus on cellular senescence. In addition, we discuss the potential therapeutic strategies for improving cellular senescence in AGA, such as inhibiting dermal papilla cells and hair follicle stem cells senescence driven by androgen and reactive oxygen species, removing senescent cell, and reducing senescence-associated secretory phenotype (SASP).


Assuntos
Alopecia , Androgênios , Humanos , Androgênios/metabolismo , Androgênios/farmacologia , Alopecia/genética , Folículo Piloso , Senescência Celular/genética , Estresse Oxidativo
2.
BMC Complement Med Ther ; 23(1): 64, 2023 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-36829192

RESUMO

Myocardial ischemia-reperfusion injury(MIRI) is one of the common complications after myocardial infarction surgery, Oxidative stress is among the main mechanisms of myocardial ischemia-reperfusion injury. Plantamajoside (PMS), the main effective ingredient in the genus Plantain, has been reported to possess an antioxidation, anti-inflammatory and anti-apoptosis role. However, whether PMS can attenuate myocardial ischemia-reperfusion injury is not yet known. Herein, we explored the effects of PMS on hypoxia-reoxygenation (H/R) injury in H9c2 cardiomyocytes and the underling molecular mechanisms of the treatment. Network pharmacological analysis screened the top 31 key genes in the treatment of MIRI disease treated with PMS, and the result of molecular docking further illustrated the roles that the PMS play in the treatment of MIRI through its interference with integrin-linked kinase (ILK) target protein. PMS was not cytotoxic in the concentration range of 5-40 µM and increased cell survival after H/R injury in a concentration-dependent manner without affecting proliferation or growth. PMS significantly reduced the levels of lactate dehydrogenase, malonic dialdehyde, reactive oxygen species and cell apoptosis, and increased soperoxide dismutase activity compared with those of the H/R injury group. PMS promoted the protein and mRNA expression of ILK and Bcl-2, the protein expression of p-Akt, and reduced the protein and mRNA expression of Bax, Caspase-3, and Cytochrome c, the protein expression of p-c-Src. PMS has protective effects against H/R injury in H9c2 cells, and its protective mechanism may be related to reactive oxygen species clearance, activation of the ILK/c-Src/Akt pathway and inhibition of the mitochondrial apoptosis.


Assuntos
Traumatismo por Reperfusão Miocárdica , Proteínas Proto-Oncogênicas c-akt , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/metabolismo , Miócitos Cardíacos , Simulação de Acoplamento Molecular , Linhagem Celular , Transdução de Sinais , Hipóxia/metabolismo , RNA Mensageiro/metabolismo
3.
J Transl Med ; 20(1): 447, 2022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-36192726

RESUMO

BACKGROUND: Adipose tissue-derived adipokines are involved in various crosstalk between adipose tissue and other organs. Omentin1, a novel adipokine, exerts vital roles in the maintenance of body metabolism, insulin resistance and the like. However, the protective effect of omentin1 in myocardial ischemia (MI)-induced heart failure (HF) and its specific mechanism remains unclear and to be elucidated. METHODS: The model of MI-induced HF mice and oxygen glucose deprivation (OGD)-injured cardiomyocytes were performed. Mice with overexpression of omentin1 were constructed by a fat-specific adeno-associated virus (AAV) vector system. RESULTS: We demonstrated that circulating omentin1 level diminished in HF patients compared with healthy subjects. Furthermore, the fat-specific overexpression of omentin1 ameliorated cardiac function, cardiac hypertrophy, infarct size and cardiac pathological features, and also enhanced SIRT3/FOXO3a signaling in HF mice. Additionally, administration with AAV-omentin1 increased mitochondrial fusion and decreased mitochondrial fission in HF mice, as evidenced by up-regulated expression of Mfn2 and OPA1, and downregulation of p-Drp1(Ser616). Then, it also promoted PINK1/Parkin-dependent mitophagy. Simultaneously, treatment with recombinant omentin1 strengthened OGD-injured cardiomyocyte viability, restrained LDH release, and enhanced the mitochondrial accumulation of SIRT3 and nucleus transduction of FOXO3a. Besides, omentin1 also ameliorated unbalanced mitochondrial fusion-fission dynamics and activated mitophagy, thereby, improving the damaged mitochondria morphology and controlling mitochondrial quality in OGD-injured cardiomyocytes. Interestingly, SIRT3 played an important role in the improvement effects of omentin1 on mitochondrial function, unbalanced mitochondrial fusion-fission dynamics and mitophagy. CONCLUSION: Omentin1 improves MI-induced HF and myocardial injury by maintaining mitochondrial dynamical homeostasis and activating mitophagy via upregulation of SIRT3/FOXO3a signaling. This study provides evidence for further application of omentin1 in cardiovascular diseases from the perspective of crosstalk between heart and adipose tissue.


Assuntos
Insuficiência Cardíaca , Isquemia Miocárdica , Sirtuína 3 , Adipocinas , Animais , Citocinas , Proteínas Ligadas por GPI , Glucose/farmacologia , Insuficiência Cardíaca/complicações , Insuficiência Cardíaca/metabolismo , Homeostase , Lectinas , Camundongos , Dinâmica Mitocondrial/fisiologia , Mitofagia , Oxigênio/farmacologia , Proteínas Quinases/metabolismo , Sirtuína 3/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
4.
Brain Res ; 1653: 67-74, 2016 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-27769787

RESUMO

Cilostazol(CTL) is a phosphodiesterase inhibitor, which has been widely used as anti-platelet agent. It also has preventive effects on various central nervous system (CNS) diseases, including ischemic stroke, Parkinson's disease and Alzheimer disease. However, the molecular mechanism underlying the protective effects of CTL is still unclear, and whether CTL can prevent I/R induced cognitive deficit has not been reported. Transient global brain ischemia was induced by 4-vessel occlusion in adult male Sprague-Dawley rats. The open field tasks and Morris water maze were used to assess the effect of CTL on anxiety-like behavioral and cognitive impairment after I/R. Western blotting were performed to examine the expression of related proteins, and HE-staining was used to detect the percentage of neuronal death in the hippocampal CA1 region. Here we found that CTL significantly improved cognitive deficits and the behavior of rats in Morris water maze and open field tasks (P<0.05). HE staining results showed that CTL could significantly protect CA1 neurons against cerebral I/R (P<0.05). Additionally, Akt1 phosphorylation levels were evidently up-regulated (P<0.05), while the activation of JNK3, which is an important contributor to I/R-induced neuron apoptosis, was reduced by CTL after I/R (P<0.05), and caspase-3 levels were also decreased by CTL treatment. Furthermore, all of CTL's protective effects were reversed by LY294002, which is a PI3K/Akt1 inhibitor. Taken together, our results suggest that CTL could protect hippocampal neurons and ameliorate the impairment of learning/memory abilities and locomotor/ exploratory activities in ischemic stroke via a PI3K-Akt1/JNK3/caspase-3 dependent mechanism.


Assuntos
Isquemia Encefálica/tratamento farmacológico , Transtornos Cognitivos/tratamento farmacológico , Hipocampo/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Traumatismo por Reperfusão/tratamento farmacológico , Tetrazóis/farmacologia , Animais , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Isquemia Encefálica/complicações , Isquemia Encefálica/enzimologia , Isquemia Encefálica/patologia , Caspase 3/metabolismo , Cilostazol , Transtornos Cognitivos/enzimologia , Transtornos Cognitivos/etiologia , Transtornos Cognitivos/patologia , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Inibidores Enzimáticos/farmacologia , Hipocampo/enzimologia , Hipocampo/patologia , Masculino , Proteína Quinase 10 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 10 Ativada por Mitógeno/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/enzimologia , Neurônios/patologia , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos Sprague-Dawley , Traumatismo por Reperfusão/complicações , Traumatismo por Reperfusão/enzimologia , Traumatismo por Reperfusão/patologia
5.
Appl Microbiol Biotechnol ; 89(1): 157-67, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20830471

RESUMO

While Inonotus obliquus produces a diverse range of bioactive metabolites in its natural habitats, it accumulates less in its submerged cultures. We show here that coculture of I. obliquus with Phellinus punctatus resulted in less production of mycelial biomass but an increased accumulation of phenolic compounds, melanins, and lanostane-type triterpenoids. Metabolites increased in production by coculture include phelligridin C, phelligridin H, methyl inoscavin A, inoscavin C, inoscavin B, davallialactone, methyl davallialactone, foscoparianol D, 21,24-cyclopentalanosta-3ß,21,25-triol-8-en, lanosta-7,9(11),23-triene-3ß,22,25-triol, and inotodisaccharide and melanins. Metabolites from coculture also showed an increased potential for scavenging free radicals and inhibiting the proliferation of HeLa 229 cells. Davallialactone, methyl davallialactone, and minor phenolic components are the major contributors for scavenging DPPH and hydroxyl radical in monoculture, and phelligridin C, phelligridin H, methyl inoscavin A, inoscavin C, methyl davallialactone, foscoparianol D, and inotodisaccharide are those for scavenging the tested radicals in coculture. Lanostane-type triterpenoids indicated limited roles in scavenging free radicals. Nearly all the detected metabolites correlate positively with inhibiting proliferation of HeLa 229 cells. Thus, coculture of I. obliquus with other fungi seems to be a cost-effective strategy for upregulating biosynthesis of bioactive metabolites.


Assuntos
Antineoplásicos/metabolismo , Antioxidantes/metabolismo , Basidiomycota/metabolismo , Técnicas de Cultura/métodos , Antineoplásicos/farmacologia , Antioxidantes/análise , Proliferação de Células/efeitos dos fármacos , Técnicas de Cocultura , Células HeLa , Humanos , Fenóis/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA