Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
J Cancer Res Clin Oncol ; 150(6): 319, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38914858

RESUMO

BACKGROUND: Mex-3 RNA binding family members are well-established to be important in cancer development and progression. However, the functions of Mex-3 RNA binding family member A (MEX3A) in colorectal cancer (CRC) metastasis remain poorly understood. In this study, we aim to reveal the function and the mechanism of MEX3A in promoting CRC metastasis. METHODS: We used multiple databases including TCGA database, UALCAN, LinkedOmics, CancerSEA, GeneMANIA and STRING database to investigate the expression, the functions and underlying molecular mechanism of MEX3A in CRC. Multiple experimental methods were adapted to determine the study, including real-time PCR (qPCR), immunohistochemistry (IHC), western blot (WB), transfection, transwell migration and invasion assays, immunofluorescence (IF). RESULTS: We found that MEX3A was significantly upregulated and correlated to tumor stage and lymph nodal metastasis in CRC through bioinformatics analysis and tissue immunohistochemistry (IHC). The higher expression of MEX3A in CRC correlated with poor recurrence-free survival (RFS) and overall survival (OS). In vitro studies showed that knockdown of MEX3A suppressed EMT transition, invasion and metastasis of CRC cells. Mechanistically, we revealed that MEX3A promotes epithelial-mesenchymal transition (EMT), invasion and metastasis of CRC cells by upregulating the Wnt/ß-catenin signaling pathway. CONCLUSION: In conclusion, our study reveals that MEX3A promotes CRC migration, invasion and EMT via regulating the Wnt/ß-catenin signaling pathway and could be a novel therapeutic target for this patient population.


Assuntos
Movimento Celular , Neoplasias Colorretais , Transição Epitelial-Mesenquimal , Invasividade Neoplásica , Proteínas de Ligação a RNA , Via de Sinalização Wnt , Humanos , Neoplasias Colorretais/patologia , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Feminino , Masculino , Linhagem Celular Tumoral , beta Catenina/metabolismo , beta Catenina/genética , Regulação Neoplásica da Expressão Gênica , Prognóstico , Fosfoproteínas
2.
Quant Imaging Med Surg ; 14(3): 2225-2239, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38545061

RESUMO

Background: An accurate assessment of isocitrate dehydrogenase (IDH) status in patients with glioma is crucial for treatment planning and is a key factor in predicting patient outcomes. In this study, we investigated the potential value of whole-tumor histogram metrics derived from synthetic magnetic resonance imaging (MRI) in distinguishing IDH mutation status between astrocytoma and glioblastoma. Methods: In this prospective study, 80 glioma patients were enrolled from September 2019 to June 2022. All patients underwent pre- and post-contrast synthetic MRI scan protocol. Immunohistochemistry (IHC) staining or gene sequencing were used to assess IDH mutation status in tumor tissue samples. Whole-tumor histogram metrics, including T1, T2, proton density (PD), etc., were extracted from the quantitative maps, while radiological features were assessed by synthetic contrast-weighted maps. Basic clinical features of the patients were also evaluated. Differences in clinical, radiological, and histogram metrics between IDH-mutant astrocytoma and IDH-wildtype glioblastoma were analyzed using univariate analyses. Variables with statistical significance in univariate analysis were included in multivariate logistic regression analysis to develop the combined model. Receiver operating characteristic (ROC) and area under the curve (AUC) were used to assess the diagnostic performance of metrics and models. Results: The histopathologic analysis revealed that of the 80 cases, 41 were classified as IDH-mutant astrocytoma and 39 as IDH-wildtype glioblastoma. Compared to IDH-wildtype glioblastoma, IDH-mutant astrocytoma showed significantly lower T1 [10th percentile (10th), mean, and median] and post-contrast PD (10th, 90th percentile, mean, median, and maximum) values as well as higher post-contrast T1 (cT1) (10th, mean, median, and minimum) values (all P<0.05). The combined model (T1-10th + cT1-10th + age) was developed by integrating the independent influencing factors of IDH-mutant astrocytoma using the multivariate logistic regression. The diagnostic performance of this model [AUC =0.872 (0.778-0.936), sensitivity =75.61%, and specificity =89.74%] was superior to the clinicoradiological model, which was constructed using age and enhancement degree (AUC =0.822 (0.870-0.898), P=0.035). Conclusions: The combined model constructed using histogram metrics derived from synthetic MRI could be a valuable preoperative tool to distinguish IDH mutation status between astrocytoma and glioblastoma, and subsequently, could assist in the decision-making process of pretreatment.

3.
Quant Imaging Med Surg ; 14(2): 1526-1540, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38415119

RESUMO

Background: Neuroimaging plays a central role in the evaluation, treatment, and prognosis of neonates. In recent years, the exploration of the developing brain has been a major focus of research for researchers and clinicians. In this study, we conducted bibliometric and visualization analyses of the related studies in the field of neonatal magnetic resonance imaging (MRI) brain neuroimaging from the past 10 years, and summarized its research status, hotspots, and frontier development trends. Methods: The Web of Science core collection database was used as the literature source from which to retrieve the relevant papers and reviews in the field of neonatal MRI brain neuroimaging published in the Science Citation Index-Expanded from 2013 to 2022. VOSviewer and CiteSpace were used to conduct bibliometric and visualization analyses of the annual publication volume, countries, institutions, journals, authors, co-cited literature, and the overall distribution of keywords. Results: We retrieved 3,568 papers and reviews published from 2013 to 2022. The number of publications increased during this period. The United States (US) and the United Kingdom were the largest contributors, with the US receiving the highest H-index and number of citations. The institutions that published the most were the University of London and Harvard University. The research mainly focused on cerebral cortex, brain tissue, brain structure network, artificial intelligence algorithm, automatic image segmentation, and premature infants. Conclusions: This study reveals the research status and hotspots of magnetic resonance imaging in the field of neonatal brain neuroimaging in the past decade, which helps researchers to better understand the research status, hotspots, and frontier development trends.

5.
Adv Healthc Mater ; 13(5): e2302495, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38056018

RESUMO

Emerging research suggests that mitochondrial DNA is a potential target for cancer treatment. However, achieving precise delivery of deoxyribozymes (DNAzymes) and combining photodynamic therapy (PDT) and DNAzyme-based gene silencing together for enhancing mitochondrial gene-photodynamic synergistic therapy remains challenging. Accordingly, herein, intelligent supramolecular nanomicelles are constructed by encapsulating a DNAzyme into a photodynamic O2 economizer for mitochondrial NO gas-enhanced synergistic gene-photodynamic therapy. The designed nanomicelles demonstrate sensitive acid- and red-light sequence-activated behaviors. After entering the cancer cells and targeting the mitochondria, these micelles will disintegrate and release the DNAzyme and Mn (II) porphyrin in the tumor microenvironment. Mn (II) porphyrin acts as a DNAzyme cofactor to activate the DNAzyme for the cleavage reaction. Subsequently, the NO-carrying donor is decomposed under red light irradiation to generate NO that inhibits cellular respiration, facilitating the conversion of more O2 into singlet oxygen (1 O2 ) in the tumor cells, thereby significantly enhancing the efficacy of PDT. In vitro and in vivo experiments reveal that the proposed system can efficiently target mitochondria and exhibits considerable antitumor effects with negligible systemic toxicity. Thus, this study provides a useful conditional platform for the precise delivery of DNAzymes and a novel strategy for activatable NO gas-enhanced mitochondrial gene-photodynamic therapy.


Assuntos
DNA Catalítico , Nanopartículas , Fotoquimioterapia , Porfirinas , Genes Mitocondriais , Oxigênio Singlete , Fármacos Fotossensibilizantes/farmacologia , Linhagem Celular Tumoral
6.
J Agric Food Chem ; 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37917162

RESUMO

Osteoporosis (OP) is typically brought on by disruption of bone homeostasis. Excessive oxidative stress and mitochondrial dysfunction are believed to be the primary mechanisms underlying this disorder. Therefore, in order to restore bone homeostasis effectively, targeted treatment of oxidative stress and mitochondrial dysfunction is necessary. Cinnamaldehyde (CIN), a small molecule that acts as an agonist for the nuclear factor erythroid 2-related factor (Nrf2), has been found to possess antiapoptotic, anti-inflammatory, and antioxidant properties. We found that CIN, while rescuing apoptosis, can also reduce the accumulation of reactive oxygen species (ROS) to improve mitochondrial dysfunction and thus restore the osteogenic differentiation potential of BMSCs disrupted by hydrogen peroxide (H2O2) exposure. The role of CIN was preliminarily considered to be a consequence of Nrf2/HO-1 axis activation. The ovariectomized mice model further demonstrated that CIN treatment ameliorated oxidative stress in vivo, partially reversing OVX-induced bone loss. This improvement was seen in the trabecular microarchitecture and bone biochemical indices. However, when ML385 was concurrently injected with CIN, the positive effects of CIN were largely blocked. In conclusion, this study sheds light on the intrinsic mechanisms by which CIN regulates BMSCs and highlights the potential therapeutic applications of these findings in the treatment of osteoporosis.

7.
Adv Sci (Weinh) ; 10(32): e2302377, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37824205

RESUMO

More than half of non-muscle-invasive bladder cancer (NMIBC) patients eventually relapse even if treated with surgery and BCG without optional bladder-preserving therapy. This study aims to investigate the antitumor activity and safety of a HER2-targeted antibody-drug conjugate, RC48-ADC, intravesical instillation for NMIBC treatment. In this preclinical study, it is revealed that human epidermal growth factor receptor 2 (HER2) expression scores of 1+, 2+, and 3+ are recorded for 16.7%, 56.2%, and 14.6% of NMIBC cases. The antitumor effect of RC48-ADC is positively correlated with HER2 expression in bladder cancer (BCa) cell lines and organoid models. Furthermore, RC48-ADC is revealed to exert its antitumor effect by inducing G2/M arrest and caspase-dependent apoptosis. In an orthotopic BCa model, tumor growth is significantly inhibited by intravesical instillation of RC48-ADC versus disitamab, monomethyl auristatin E, epirubicin, or phosphate-buffered saline control. The potential toxicity of intravesical RC48-ADC is also assessed by dose escalation in normal nude mice and revealed that administration of RC48-ADC by intravesical instillation is safe within the range of effective therapeutic doses. Taken together, RC48-ADC demonstrates promising antitumor effects and safety with intravesical administration in multiple preclinical models. These findings provide a rational for clinical trials of intravesical RC48-ADC in NMIBC patients.


Assuntos
Imunoconjugados , Neoplasias da Bexiga Urinária , Animais , Camundongos , Humanos , Administração Intravesical , Imunoconjugados/uso terapêutico , Apoptose , Camundongos Nus , Linhagem Celular Tumoral , Recidiva Local de Neoplasia/tratamento farmacológico , Pontos de Checagem da Fase G2 do Ciclo Celular , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/patologia
8.
Cell Death Dis ; 14(7): 408, 2023 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-37422473

RESUMO

Lymphatic metastasis is the most common pattern of bladder cancer (BCa) metastasis and has an extremely poor prognosis. Emerging evidence shows that ubiquitination plays crucial roles in various processes of tumors, including tumorigenesis and progression. However, the molecular mechanisms underlying the roles of ubiquitination in the lymphatic metastasis of BCa are largely unknown. In the present study, through bioinformatics analysis and validation in tissue samples, we found that the ubiquitin-conjugating E2 enzyme UBE2S was positively correlated with the lymphatic metastasis status, high tumor stage, histological grade, and poor prognosis of BCa patients. Functional assays showed that UBE2S promoted BCa cell migration and invasion in vitro, as well as lymphatic metastasis in vivo. Mechanistically, UBE2S interacted with tripartite motif containing 21 (TRIM21) and jointly induced the ubiquitination of lipoma preferred partner (LPP) via K11-linked polyubiquitination but not K48- or K63-linked polyubiquitination. Moreover, LPP silencing rescued the anti-metastatic phenotypes and inhibited the epithelial-mesenchymal transition of BCa cells after UBE2S knockdown. Finally, targeting UBE2S with cephalomannine distinctly inhibited the progression of BCa in cell lines and human BCa-derived organoids in vitro, as well as in a lymphatic metastasis model in vivo, without significant toxicity. In conclusion, our study reveals that UBE2S, by interacting with TRIM21, degrades LPP through K11-linked ubiquitination to promote the lymphatic metastasis of BCa, suggesting that UBE2S represents a potent and promising therapeutic target for metastatic BCa.


Assuntos
Ribonucleoproteínas , Enzimas de Conjugação de Ubiquitina , Neoplasias da Bexiga Urinária , Humanos , Linhagem Celular , Linhagem Celular Tumoral , Metástase Linfática , Fatores de Transcrição/metabolismo , Enzimas de Conjugação de Ubiquitina/genética , Enzimas de Conjugação de Ubiquitina/metabolismo , Ubiquitinação , Neoplasias da Bexiga Urinária/genética , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo
9.
Orthop Surg ; 15(2): 517-524, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36573277

RESUMO

OBJECTIVE: Percutaneous suture is a classic technique used in Achilles tendon repair. However, the complication rates surrounding the sural nerve remain relatively high. Modified percutaneous repair technology can effectively avoid these complications; however, the surgical procedure is complicated. Hence, the present study was conducted to describe a redesigned repair technique for the Achilles tendon able to avoid sural nerve injury and reduce the complexity of the procedure. METHODS: Data of patients with acute primary Achilles tendon rupture at our hospital from January 2019 to May 2020 were included. Subjects with expectations for surgical scarring underwent a minimally invasive-combined percutaneous puncture technique. The surgical time, requirement for conversion to other technologies, and length of postoperative hospitalization were investigated to assess efficacy. The American Orthopedic Foot & Ankle Society (AOFAS) score and the Arner-Lindholm scale (A-L scale) were used to assess postoperative clinical outcomes (> 24 months). During the 2-year follow-up, MRI was performed to observe the healing of the Achilles tendon. In addition, subjective satisfaction with surgical scar healing was recorded. RESULTS: Twenty consecutive subjects with an average follow-up of 28.3 ± 4.5 months (range, 24-41) met the inclusion criteria. None of the 20 enrolled patients required a converted surgical approach. The mean surgical time was 26.9 ± 6.47 min (range, 20-44). None of the patients experienced dysesthesia or anesthesia around the sural nerve. No signs of postoperative infections were observed. MRI data showed that the wounds of the Achilles tendon healed completely in all the subjects. The AOFAS score increased from 55.6 ± 11.07 (range, 28-71) preoperatively to 97.8 ± 3.34 (range, 87-100) at the last follow-up. The A-L scale showed that 90% of the subjects (n = 18) presented as excellent and 10% of the subjects (n = 2) presented as good, with an excellent/good rate of 100%. Moreover, subjects' satisfaction for surgical scars was 9.1 ± 0.78 (upper limit, 10). CONCLUSIONS: The results indicate that this technique can achieve good postoperative function, a small surgical incision, and high scar satisfaction. In addition, this technique should be widely used in suturing Achilles tendon ruptures.


Assuntos
Tendão do Calcâneo , Traumatismos do Tornozelo , Traumatismos dos Tendões , Traumatismos do Sistema Nervoso , Humanos , Estudos Retrospectivos , Cicatriz/cirurgia , Tendão do Calcâneo/cirurgia , Tendão do Calcâneo/lesões , Nervo Sural/cirurgia , Ruptura/cirurgia , Técnicas de Sutura , Traumatismos dos Tendões/cirurgia , Doença Aguda , Traumatismos do Tornozelo/cirurgia , Resultado do Tratamento
10.
Brief Bioinform ; 24(1)2023 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-36572651

RESUMO

Immune checkpoint inhibitors (ICI) show high efficiency in a small fraction of advanced gastric cancer (GC). However, personalized immune subtypes have not been developed for the prediction of ICI efficiency in GC. Herein, we identified Pan-Immune Activation Module (PIAM), a curated gene expression profile (GEP) representing the co-infiltration of multiple immune cell types in tumor microenvironment of GC, which was associated with high expression of immunosuppressive molecules such as PD-1 and CTLA-4. We also identified Pan-Immune Dysfunction Genes (PIDG), a conservative PIAM-derivated GEP indicating the dysfunction of immune cell cooperation, which was associated with upregulation of metastatic programs (extracellular matrix receptor interaction, TGF-ß signaling, epithelial-mesenchymal transition and calcium signaling) but downregulation of proliferative signalings (MYC targets, E2F targets, mTORC1 signaling, and DNA replication and repair). Moreover, we developed 'GSClassifier', an ensemble toolkit based on top scoring pairs and extreme gradient boosting, for population-based modeling and personalized identification of GEP subtypes. With PIAM and PIDG, we developed four Pan-immune Activation and Dysfunction (PAD) subtypes and a GSClassifier model 'PAD for individual' with high accuracy in predicting response to pembrolizumab (anti-PD-1) in advance GC (AUC = 0.833). Intriguingly, PAD-II (PIAMhighPIDGlow) displayed the highest objective response rate (60.0%) compared with other subtypes (PAD-I, PIAMhighPIDGhigh, 0%; PAD-III, PIAMlowPIDGhigh, 0%; PAD-IV, PIAMlowPIDGlow, 17.6%; P = 0.003), which was further validated in the metastatic urothelial cancer cohort treated with atezolizumab (anti-PD-L1) (P = 0.018). In all, we provided 'GSClassifier' as a refined computational framework for GEP-based stratification and PAD subtypes as a promising strategy for exploring ICI responders in GC. Metastatic pathways could be potential targets for GC patients with high immune infiltration but resistance to ICI therapy.


Assuntos
Neoplasias Gástricas , Humanos , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/genética , Aprendizado de Máquina , Microambiente Tumoral
11.
Exp Cell Res ; 423(1): 113453, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36584745

RESUMO

BACKGROUND: CYRI-B plays key roles in regulating cell motility in nontumor cells. However, the role and function of CYRI-B have rarely been studied in cancer cells, including gastric cancer. The purpose of this study was to investigate the clinical significance, biological function and underlying molecular mechanism of CYRI-B in gastric cancer. METHOD: CYRI-B protein levels were detected by immunohistochemistry (IHC) and western blotting (WB). Gastric cancer cells and organoid models were evaluated to explore the correlation of CYRI-B with collagen type I. The function of CYRI-B in proliferation, migration, invasion in gastric cancer was evaluated by in vitro and in vivo experiments. RESULT: CYRI-B protein levels were downregulated in gastric cancer. Low expression of CYRI-B was related to later tumor stage and poorer prognosis. CYRI-B expression was reduced when cells were cultured in collagen type I, which was mediated by collagen receptor DDR1. Knockdown of CYRI-B promoted migration, invasion and EMT in vivo and in vitro. Mechanistically, knockdown of CYRI-B activated the Rac1-STAT3 pathway. CONCLUSION: Our findings showed that CYRI-B plays an important role in the tumor microenvironment, and is associated with malignant characteristics acquired by gastric cancer. This study may provide new targets for future therapeutic interventions for tumor metastasis.


Assuntos
Neoplasias Gástricas , Humanos , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Colágeno Tipo I/metabolismo , Regulação para Baixo/genética , Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica/genética , Invasividade Neoplásica/genética , Proteínas rac1 de Ligação ao GTP/genética , Proteínas rac1 de Ligação ao GTP/metabolismo , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Neoplasias Gástricas/patologia , Microambiente Tumoral , Proteínas Mitocondriais/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo
12.
Br J Radiol ; 95(1140): 20220368, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36169239

RESUMO

OBJECTIVES: Accurate preoperative diagnosis of small cell neuroendocrine cancer of the cervix (SCNECC) is crucial for establishing the best treatment plan. This study aimed to develop an improved, non-invasive method for the preoperative diagnosis of SCNECC by integrating clinical, MR morphological, and apparent diffusion coefficient (ADC) information. METHODS: A total of 105 pathologically confirmed cervical cancer patients (35 SCNECC, 70 non-SCNECC) from multiple centres with complete clinical and MR records were included. Whole lesion histogram analysis of the ADC was performed. Multivariate logistic regression analysis was used to develop diagnostic models based on clinical, morphological, and histogram data. The predictive performance in terms of discrimination, calibration, and clinical usefulness of the different models was assessed. A nomogram for preoperatively discriminating SCNECC was developed from the combined model. RESULTS: In preoperative SCNECC diagnosis, the combined model, which had a diagnostic AUC (area under the curve) of 0.937 (95% CI: 0.887-0.987), outperformed the clinical-morphological model, which had an AUC of 0.869 (CI: 0.788-0.949), and the histogram model, which had an AUC of 0.872 (CI: 0.792-0.951). The calibration curve and decision curve analyses suggest that the combined model achieved good fitting and clinical utility. CONCLUSIONS: Non-invasive preoperative diagnosis of SCNECC can be achieved with high accuracy by integrating clinical, MR morphological, and ADC histogram features. The nomogram derived from the combined model can provide an easy-to-use clinical preoperative diagnostic tool for SCNECC. ADVANCES IN KNOWLEDGE: It is clear that the therapeutic strategies for SCNECC are different from those for other pathological types of cervical cancer according to V 1.2021 of the NCCN clinical practice guidelines in oncology for cervical cancer. This research developed an improved, non-invasive method for the preoperative diagnosis of SCNECC by integrating clinical, MR morphological, and apparent diffusion coefficient (ADC) information.


Assuntos
Carcinoma Neuroendócrino , Carcinoma de Células Pequenas , Neoplasias do Colo do Útero , Feminino , Humanos , Nomogramas , Neoplasias do Colo do Útero/diagnóstico por imagem , Neoplasias do Colo do Útero/cirurgia , Neoplasias do Colo do Útero/patologia , Colo do Útero/patologia , Imagem de Difusão por Ressonância Magnética/métodos , Carcinoma Neuroendócrino/diagnóstico por imagem , Carcinoma Neuroendócrino/cirurgia , Estudos Retrospectivos
13.
Front Immunol ; 13: 922138, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36090985

RESUMO

The Schlafen (SLFN) gene family plays an important role in immune cell differentiation and immune regulation. Previous studies have found that the increased SLFN5 expression in patients with intestinal metaplasia correlates with gastric cancer (GC) progression. However, no investigation has been conducted on the SLFN family in GC. Therefore, we systematically explore the expression and prognostic value of SLFN family members in patients with GC, elucidating their possible biological function and its correlation with tumor immune cells infiltration. TCGA database results indicated that the SLFN5, SLFN11, SLFN12, SLFN12L, and SLFN13 expression was significantly higher in GC. The UALCAN and KM plotter databases indicated that enhanced the SLFN family expression was associated with lymph node metastasis, tumor stage, and tumor grade and predicted an adverse prognosis. cBioportal database revealed that the SLFN family had a high frequency of genetic alterations in GC (about 12%), including mutations and amplification. The GeneMANIA and STRING databases identified 20 interacting genes and 16 interacting proteins that act as potential targets of the SLFN family. SLFN5, SLFN11, SLFN12, SLFN12L, and SLFN14 may be implicated in the immunological response, according to Gene Set Enrichment Analysis (GSEA) and Kyoto Encyclopedia of Genes and Genomes (KEGG). Additionally, Timer and TISIDB databases indicate that SLFN5, SLFN11, SLFN12, SLFN12L, and SLFN14 are involved in the immune response. Furthermore, Timer, TCGA, and TISIDB databases suggested that the SLFN5, SLFN11, SLFN12, SLFN12L, and SLFN14 expression in GC is highly linked with immune cell infiltration levels, immune checkpoint, and the many immune cell marker sets expression. We isolated three samples of peripheral blood mononuclear cell (PBMC) and activated T cells; the results showed the expression of SLFN family members decreased significantly when T cell active. In conclusion, the SLFN family of proteins may act as a prognostic indicator of GC and is associated with immune cell infiltration and immune checkpoint expression in GC. Additionally, it may be involved in tumor immune evasion by regulating T cell activation.


Assuntos
Neoplasias Gástricas , Proteínas de Ciclo Celular/metabolismo , Humanos , Leucócitos Mononucleares/metabolismo , Metaplasia , Proteínas Nucleares , Prognóstico , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia
14.
Front Med (Lausanne) ; 9: 829033, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35721089

RESUMO

Background: Mucinous appendiceal adenocarcinoma (MAA) is a rare, heterogeneous disease. Patients with unrespectable mucinous appendiceal adenocarcinoma presenting with peritoneal spread are treated by intraperitoneal chemotherapy, hyperthermic intraperitoneal chemotherapy, systemic chemotherapy, or targeted therapy. However, there are no guidelines for efficacious drugs against mucinous appendiceal adenocarcinoma. Therefore, relevant high-fidelity models should be investigated to identify effective drugs for individual therapy. Methods: Surgical tumor specimens were obtained from a mucinous appendiceal adenocarcinoma patient. The tissue was digested and organoid culture was established. H&E and immunohistochemistry staining as well as DNA sequencing was performed on tissue and organoid. The pathological characteristics and gene mutations of the organoid were compared to those of the original tumor. Drug sensitivity tests were performed on organoid and the patient clinical responds to chemotherapy and targeted therapy was compared. Results: Organoids were successfully established and stably passaged. Pathological characteristics of organoids including H&E staining and expression of protein markers (CK20, CDX-2, STAB2, CD7, PAX8) were consistent to those of the original tumor. Moreover, the organoids carried the same gene mutations as the primary tumor. Sensitivity of the organoids to chemotherapeutic drugs and tyrosine kinase inhibitors included: 5-FU (IC50 43.95 µM), Oxaliplatin (IC50 23.49 µM), SN38 (IC50 1.02 µM), Apatinib (IC50 0.10 µM), Dasatinib (IC50 2.27 µM), Docetaxel (IC50 5.26 µM), Regorafenib (IC50 18.90 µM), and Everolimus (IC50 9.20 µM). The sensitivities of organoid to these drugs were comparable to those of the patient's clinical responses. Conclusion: The mucinous appendiceal adenocarcinoma organoid model which retained the characteristics of the primary tumor was successfully established. Combined organoid-based drug screening and high throughput sequencing provided a promising way for mucinous appendiceal adenocarcinoma treatment.

15.
J Cancer ; 13(7): 2126-2137, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35517410

RESUMO

Most colorectal cancer (CRC) patients are insensitive to immune checkpoint inhibitors (ICIs) due to the immunosuppressive tumor microenvironment (TME). Epigenetic factors such as the bromo-and extraterminal domain (BET) family proteins may be responsible for the immunosuppressive microenvironment. Previous studies have shown that inhibitors of BET family proteins have the potential to remodel the immunosuppressive TME. However, data on the role of BET inhibitors in immune microenvironment in CRC remains unclear. Here, we evaluated the immunoregulatory role of JQ1, a BET inhibitor, in CRC. Transcriptome sequencing data showed that JQ1 decreased CD274 expression and increased H2Kb expression in MC38 cells. Flow cytometry assays demonstrated that JQ1 decreased cell-surface PD-L1 expression in MC38 and HCT116 cells. Moreover, JQ1 significantly increased cell-surface expression of major histocompatibility complex class I (MHC-I) in MC38 cells and HCT116 cells. Antigen-specific cytotoxic T lymphocytes (CTLs) assay demonstrated that JQ1 enhanced the MHC-I-mediated cytotoxicity of CTLs. Mouse colon cancer cell line MC38 was used to establish the syngeneic mouse tumor model. Compared with the control, JQ1 significantly inhibited tumor growth and prolonged the overall survival of the mice. Besides, JQ1 did not only inhibit tumor growth by enhancing anti-tumor immunity, but also promoted the anti-tumor effect of PD-1 antibody. In addition, our data showed that JQ1 reduced infiltration of intratumoral regulatory T cells (Treg), thus remodeling the immunosuppressive TME. Taken together, these results highlight a new approach that enhances anti-PD-1 sensitivity in CRC.

16.
ACS Appl Mater Interfaces ; 14(17): 19594-19603, 2022 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-35466667

RESUMO

Low-cost Mn- and Li-rich layered oxides suffer from rapid voltage decay, which can be improved by increasing the nickel content to derive high nickel Li-rich layered oxides (HNLO) but is normally accompanied by reduced capacity and inferior cycling stability. Herein, Na or K ions are successfully doped into the lattice of high nickel Li-rich Li1.2-xMxNi0.32Mn0.48O2 (M = Na, K) layered oxides via a facile expanded graphite template-sacrificed approach. Both Na- and K-doped samples exhibit excellent rate capability and cycling stability compared with the un-doped one. The Na-doped sample shows a capacity retention of 93% after 200 cycles at 1C, which is quite outstanding for HNLO. The greatly improved electrochemical performances are attributed to the increased effective Li content in the lattice via Li antievaporation-loss engineering, the expanded Li slab, the pillaring effect, the increased C2/m component, and the improved electronic conductivity. Different performances by the introduction of sodium and potassium ions may be ascribed to their different ionic radii, which give rise to their different doping behaviors and threshold doping amounts. This work provides a new idea of enhancing electrochemical performance of HNLO by doping proper alien elements to increase the lattice lithium content effectively.

17.
ACS Appl Mater Interfaces ; 14(1): 1-19, 2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-34939784

RESUMO

Compared with traditional internal fixation devices, bone adhesives are expected to exhibit remarkable advantages, such as improved fixation of comminuted fractures and maintained spatial location of fractured scattered bone pieces in treating bone injuries. In this review, different bone adhesives are summarized from the aspects of bone tissue engineering, and the applications of bone adhesives are emphasized. The concepts of "liquid scaffold" and "liquid plate" are proposed to summarize two different research directions of bone adhesives. Furthermore, significant advances of bone adhesives in recent years in mechanical strength, osseointegration, osteoconductivity, and osteoinductivity are discussed. We conclude this topic by providing perspectives on the state-of-the-art research progress and future development trends of bone adhesives. We hope this review will provide a comprehensive summary of bone adhesives and inspire more extensive and in-depth research on this subject.


Assuntos
Consolidação da Fratura/efeitos dos fármacos , Fraturas Ósseas/tratamento farmacológico , Substâncias Macromoleculares/farmacologia , Adesivos Teciduais/farmacologia , Animais , Regeneração Óssea/efeitos dos fármacos , Osso e Ossos/efeitos dos fármacos , Linhagem Celular Tumoral , Humanos , Substâncias Macromoleculares/química , Osseointegração/efeitos dos fármacos , Adesivos Teciduais/química , Engenharia Tecidual , Alicerces Teciduais/química
18.
Curr Oncol ; 30(1): 171-183, 2022 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-36661663

RESUMO

BACKGROUND: It is widely acknowledged that the molecular biological characteristics of diffuse-type gastric cancer are different from intestinal-type gastric cancer. Notwithstanding that significant progress in high-throughput sequencing technology has been made, there is a paucity of effective prognostic biomarkers for diffuse gastric cancer for clinical practice. METHODS: We downloaded four GEO datasets (GSE22377, GSE38749, GSE47007 and GSE62254) to establish and validate a prognostic two-gene signature for diffuse gastric cancer. The TGCA-STAD dataset was used for external validation. The optimal gene signature was established by using Cox regression analysis. Receiver operating characteristic (ROC) methodology was used to find the best prognostic model. Gene set enrichment analysis was used to analyze the possible signaling pathways of the two genes (MEF2C and TRIM15). RESULTS: A total of four differently expressed genes (DEGs) (two upregulated and two downregulated) were identified. After a comprehensive analysis, two DEGs (MEF2C and TRIM15) were utilized to construct a prognostic model. A prognostic prediction model was constructed according to T stage, N stage, M stage and the expression of MEF2C and TRIM15. The area under the time-dependent receiver operator characteristic was used to evaluate the performance of the prognosis model in the GSE62254 dataset. CONCLUSIONS: We demonstrated that MEF2C and TRIM15 might be key genes. We also established a prognostic nomogram based on the two-gene signature that yielded a good performance for predicting overall survival in diffuse-type gastric cancer.


Assuntos
Nomogramas , Neoplasias Gástricas , Humanos , Prognóstico , Neoplasias Gástricas/genética , Sequenciamento de Nucleotídeos em Larga Escala
19.
BMC Genomics ; 22(1): 722, 2021 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-34615480

RESUMO

BACKGROUND: Glioma is the most common central nervous system tumor with a poor survival rate and prognosis. Previous studies have found that long non-coding RNA (lncRNA) and competitive endogenous RNA (ceRNA) play important roles in regulating various tumor mechanisms. We obtained RNA-Seq data of glioma and normal brain tissue samples from TCGA and GTEx databases and extracted the lncRNA and mRNA expression data. Further, we analyzed these data using weighted gene co-expression network analysis and differential expression analysis, respectively. Differential expression analysis was also carried out on the mRNA data from the GEO database. Further, we predicted the interactions between lncRNA, miRNA, and targeted mRNA. Using the CGGA data to perform univariate and multivariate Cox regression analysis on mRNA. RESULTS: We constructed a Cox proportional hazard regression model containing four mRNAs and performed immune infiltration analysis. Moreover, we also constructed a ceRNA network including 21 lncRNAs, two miRNAs, and four mRNAs, and identified seven lncRNAs related to survival that have not been previously studied in gliomas. Through the gene set enrichment analysis, we found four lncRNAs that may have a significant role in tumors and should be explored further in the context of gliomas. CONCLUSIONS: In short, we identified four lncRNAs with research value for gliomas, constructed a ceRNA network in gliomas, and developed a prognostic prediction model. Our research enhances our understanding of the molecular mechanisms underlying gliomas, providing new insights for developing targeted therapies and efficiently evaluating the prognosis of gliomas.


Assuntos
Glioma , Glioma/genética , Humanos
20.
Biochem Biophys Res Commun ; 554: 206-213, 2021 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-33813076

RESUMO

Osteosarcoma is the most common primary bone tumor in children, teenagers and adolescents. Cancer stem cells (CSCs) have the function to self-renew and keep the phenotype of tumor, causing clinical treatment failure. Therefore, developing effective therapies to inhibit osteosarcoma progression is urgently necessary. Glycogen synthase kinase 3ß (GSK-3ß)is highly expressed in osteosarcoma. In the present study, we made an exploration on the anti-tumor effect of tideglusib (TID), a small-molecule inhibitor of GSK-3ß, and revealed the underlying mechanisms. Here, we found that TID markedly reduced the cell viability of different osteosarcoma cell lines. Cell cycle arrest distributed in G2/M was markedly up-regulated in TID-incubated osteosarcoma cells through enhancing p21 expression levels. Apoptosis was evidently induced in osteosarcoma cells via blocking Caspase-3 activation. Consistently, tumor growth was effectively suppressed in an established murine xenograft model with few toxicity and side effects in vivo. Furthermore, TID markedly repressed stem-cell-like activity in osteosarcoma cells through down-regulating NOTCH1 expression. Notably, rescuing NOTCH1 significantly abolished the role of TID in reducing cell proliferation and sarcosphere-formation. Mechanistically, we found that TID-inhibited NOTCH1 expression was associated with the blockage of AKT/GSK-3ß signaling pathway. In summary, we for the first time provided evidence that TID could effectively inhibit osteosarcoma progression through repressing cell proliferation, inducing apoptosis, suppressing stem-cell-like properties via down-regulating AKT/GSK-3ß/NOTCH1 signaling pathway. Thus, TID may be a promising therapeutic strategy for osteosarcoma treatment without side effects.


Assuntos
Neoplasias Ósseas/tratamento farmacológico , Glicogênio Sintase Quinase 3 beta/antagonistas & inibidores , Osteossarcoma/tratamento farmacológico , Receptor Notch1/antagonistas & inibidores , Células-Tronco/efeitos dos fármacos , Tiadiazóis/farmacologia , Animais , Apoptose/efeitos dos fármacos , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Osteossarcoma/metabolismo , Osteossarcoma/patologia , Células-Tronco/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA