Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Opt Lett ; 49(12): 3312-3315, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38875608

RESUMO

Systems that can image in three dimensions at cellular resolution and across different locations within an organism may enable insights into complex biological processes, such as immune responses, for which a single location measurement may be insufficient. In this Letter, we describe an in vivo two-site imaging probe (TIP) that can simultaneously image two anatomic sites with a maximum separation of a few centimeters. The TIP consists of two identical bendable graded index (GRIN) lenses and is demonstrated by a two-photon two-color fluorescence imaging system. Each GRIN lens has a field of view of 162 × 162 × 170 µm3, a nominal numerical aperture of 0.5, a magnification of 0.7, and working distances of 0.2 mm in air for both ends. A blind linear unmixing algorithm is applied to suppress bleedthrough between channels. We use this system to successfully demonstrate two-site two-photon two-color imaging of two biomedically relevant samples, i.e., (1) a mixture of two autofluorescent anti-cancer drugs and (2) a live hybrid tumor consisting of two spectrally distinct fluorescent cell lines.


Assuntos
Imageamento Tridimensional , Imageamento Tridimensional/métodos , Endoscopia/métodos , Endoscopia/instrumentação , Animais , Humanos , Linhagem Celular Tumoral , Camundongos
2.
Med Phys ; 51(5): 3195-3206, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38513254

RESUMO

BACKGROUND: Percutaneous microwave ablation (pMWA) is a minimally invasive procedure that uses a microwave antenna placed at the tip of a needle to induce lethal tissue heating. It can treat cancer and other diseases with lower morbidity than conventional surgery, but one major limitation is the lack of control over the heating region around the ablation needle. Superparamagnetic iron oxide nanoparticles have the potential to enhance and control pMWA heating due to their ability to absorb microwave energy and their ease of local delivery. PURPOSE: The purpose of this study is to experimentally quantify the capabilities of FDA-approved superparamagnetic iron oxide Feraheme nanoparticles (FHNPs) to enhance and control pMWA heating. This study aims to determine the effectiveness of locally injected FHNPs in increasing the maximum temperature during pMWA and to investigate the ability of FHNPs to create a controlled ablation zone around the pMWA needle. METHODS: PMWA was performed using a clinical ablation system at 915 MHz in ex-vivo porcine liver tissues. Prior to ablation, 50 uL 5 mg/mL FHNP injections were made on one side of the pMWA needle via a 23-gauge needle. Local temperatures at the FHNP injection site were directly compared to equidistant control sites without FHNP. First, temperatures were compared using directly inserted thermocouples. Next, temperatures were measured non-invasively using magnetic resonance thermometry (MRT), which enabled comprehensive four-dimensional (volumetric and temporal) assessment of heating effects relative to nanoparticle distribution, which was quantified using dual-echo ultrashort echo time (UTE) subtraction MR imaging. Maximum heating within FHNP-exposed tissues versus control tissues were compared at multiple pMWA energy delivery settings. The ability to generate a controlled asymmetric ablation zone using multiple FHNP injections was also tested. Finally, intra-procedural MRT-derived heat maps were correlated with gold standard gross pathology using Dice similarity analysis. RESULTS: Maximum temperatures at the FHNP injection site were significantly higher than control (without FHNP) sites when measured using direct thermocouples (93.1 ± 6.0°C vs. 57.2 ± 8.1°C, p = 0.002) and using non-invasive MRT (115.6 ± 13.4°C vs. 49.0 ± 10.6°C, p = 0.02). Temperature difference between FHNP-exposed and control sites correlated with total energy deposition: 66.6 ± 17.6°C, 58.1 ± 8.5°C, and 20.8 ± 9.2°C at high (17.5 ± 2.2 kJ), medium (13.6 ± 1.8 kJ), and low (8.8 ± 1.1 kJ) energies, respectively (all pairwise p < 0.05). Each FHNP injection resulted in a nanoparticle distribution within 0.9 ± 0.2 cm radially of the injection site and a local lethal heating zone confined to within 1.1 ± 0.4 cm radially of the injection epicenter. Multiple injections enabled a controllable, asymmetric ablation zone to be generated around the ablation needle, with maximal ablation radius on the FHNP injection side of 1.6 ± 0.2 cm compared to 0.7 ± 0.2 cm on the non-FHNP side (p = 0.02). MRT intra-procedural predicted ablation zone correlated strongly with post procedure gold-standard gross pathology assessment (Dice similarity 0.9). CONCLUSIONS: Locally injected FHNPs significantly enhanced pMWA heating in liver tissues, and were able to control the ablation zone shape around a pMWA needle. MRI and MRT allowed volumetric real-time visualization of both FHNP distribution and FHNP-enhanced pMWA heating that was useful for intra-procedural monitoring. This work strongly supports further development of a FHNP-enhanced pMWA paradigm; as all individual components of this approach are approved for patient use, there is low barrier for clinical translation.


Assuntos
Técnicas de Ablação , Nanopartículas Magnéticas de Óxido de Ferro , Micro-Ondas , Termometria , Animais , Termometria/métodos , Técnicas de Ablação/métodos , Suínos , Imageamento por Ressonância Magnética , Temperatura , Fígado/cirurgia , Fígado/diagnóstico por imagem
3.
Opt Express ; 30(20): 36651-36664, 2022 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-36258589

RESUMO

Graded index (GRIN) lens endoscopy has broadly benefited biomedical microscopic imaging by enabling accessibility to sites not reachable by traditional benchtop microscopes. It is a long-held notion that GRIN lenses can only be used as rigid probes, which may limit their potential for certain applications. Here, we describe bendable and long-range GRIN microimaging probes for a variety of potential micro-endoscopic biomedical applications. Using a two-photon fluorescence imaging system, we have experimentally demonstrated the feasibility of three-dimensional imaging through a 500-µm-diameter and ∼11 cm long GRIN lens subject to a cantilever beam-like deflection with a minimum bend radius of ∼25 cm. Bend-induced perturbation to the field of view and resolution has also been investigated quantitatively. Our development alters the conventional notion of GRIN lenses and enables a range of innovative applications. For example, the demonstrated flexibility is highly desirable for implementation into current and emerging minimally invasive clinical procedures, including a pioneering microdevice for high-throughput cancer drug selection.


Assuntos
Cristalino , Lentes , Cristalino/diagnóstico por imagem , Fótons , Endoscopia/métodos , Imageamento Tridimensional
4.
Int J Mol Sci ; 22(21)2021 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-34769180

RESUMO

Advances in the intratumor measurement of drug responses have included a pioneering biomedical microdevice for high throughput drug screening in vivo, which was further advanced by integrating a graded-index lens based two-dimensional fluorescence micro-endoscope to monitor tissue responses in situ across time. While the previous system provided a bulk measurement of both drug delivery and tissue response from a given region of the tumor, it was incapable of visualizing drug distribution and tissue responses in a three-dimensional (3D) way, thus missing the critical relationship between drug concentration and effect. Here we demonstrate a next-generation system that couples multiplexed intratumor drug release with continuous 3D spatial imaging of the tumor microenvironment via the integration of a miniaturized two-photon micro-endoscope. This enables optical sectioning within the live tissue microenvironment to effectively profile the entire tumor region adjacent to the microdevice across time. Using this novel microimaging-microdevice (MI-MD) system, we successfully demonstrated the four-dimensional imaging (3 spatial dimensions plus time) of local drug delivery in tissue phantom and tumors. Future studies include the use of the MI-MD system for monitoring of localized intra-tissue drug release and concurrent measurement of tissue responses in live organisms, with applications to study drug resistance due to nonuniform drug distribution in tumors, or immune cell responses to anti-cancer agents.


Assuntos
Sistemas de Liberação de Medicamentos/instrumentação , Neoplasias Experimentais/diagnóstico por imagem , Imagem Óptica/instrumentação , Animais , Linhagem Celular Tumoral , Galinhas , Camundongos , Imagens de Fantasmas
5.
Cancers (Basel) ; 13(4)2021 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-33562152

RESUMO

By observing the activity of anti-cancer agents directly in tumors, there is potential to greatly expand our understanding of drug response and develop more personalized cancer treatments. Implantable microdevices (IMD) have been recently developed to deliver microdoses of chemotherapeutic agents locally into confined regions of live tumors; the tissue can be subsequently removed and analyzed to evaluate drug response. This method has the potential to rapidly screen multiple drugs, but requires surgical tissue removal and only evaluates drug response at a single timepoint when the tissue is excised. Here, we describe a "lab-in-a-tumor" implantable microdevice (LIT-IMD) platform to image cell-death drug response within a live tumor, without requiring surgical resection or tissue processing. The LIT-IMD is inserted into a live tumor and delivers multiple drug microdoses into spatially discrete locations. In parallel, it locally delivers microdose levels of a fluorescent cell-death assay, which diffuses into drug-exposed tissues and accumulates at sites of cell death. An integrated miniaturized fluorescence imaging probe images each region to evaluate drug-induced cell death. We demonstrate ability to evaluate multi-drug response over 8 h using murine tumor models and show correlation with gold-standard conventional fluorescence microscopy and histopathology. This is the first demonstration of a fully integrated platform for evaluating multiple chemotherapy responses in situ. This approach could enable a more complete understanding of drug activity in live tumors, and could expand the utility of drug-response measurements to a wide range of settings where surgery is not feasible.

6.
Opt Lett ; 43(4): 679-682, 2018 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-29444051

RESUMO

We report an ultrasensitive gas refractive index (RI) sensor based on optical nanofiber couplers (ONCs). Theoretical analysis reveals that a dispersion turning point (DTP) exists when the diameter of the coupler is below 1000 nm. Leveraging this DTP, the gas RI sensitivity can be significantly improved to infinity. Then we experimentally demonstrate a DTP and achieve ultrahigh sensitivities of 46,470 nm/refractive index unit (RIU) and -45,550 nm/RIU around the DTP using an ONC with a diameter of 700 nm. More importantly, the unique twin dips/peaks interference characteristics around the DTP offers further enhancement on the sensitivity to 92,020 nm/RIU. The demonstrated sensor not only shows vast potential in ultrasensitive pressure sensing, acoustic sensing, gas sensing, and gas phase biomarker detection, but also provides a new tool for nonlinear optics, ultrafast optics, quantum optics, and ultracold atom optics.

7.
Opt Lett ; 40(11): 2461-4, 2015 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-26030532

RESUMO

We report a novel fiber-optic sensor for measurement of static gas pressure based on the natural convection of a heated silicon pillar attached to a fiber tip functioning as a Fabry-Perot interferometer (FPI). A visible laser beam is guided by the fiber to efficiently heat the silicon pillar, while an infrared whitelight source, also guided by the fiber, is used to measure the temperature of the FPI, which is influenced both by the laser power and the pressure through natural convection. We theoretically and experimentally show that, by monitoring the fringe shift caused by the laser heating, air pressure sensing with little temperature cross-sensitivity can be achieved. The pressure sensitivity can be easily tuned by adjusting the heating laser power. In our experiment, the sensor performance within the temperature range from 20°C to 50°C and the pressure range from 0 to 1400 psi has been characterized, showing an average sensitivity of -0.52 pm/psi. Compared to the passive version of the sensor, the pressure sensitivity was ∼15 times larger, and the temperature cross-sensitivity was ∼100 times smaller.


Assuntos
Gases , Temperatura Alta , Interferometria/instrumentação , Lasers , Fibras Ópticas , Pressão , Silício
8.
Talanta ; 120: 419-24, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24468391

RESUMO

Sensitive and selective detection for cancer biomarkers is critical in cancer clinical diagnostics. In this work, we report a new optical microfiber (OMF) biosensor using gold nanoparticles (GNPs) as amplification labels for the detection of alpha-fetoprotein (AFP) in serum samples. By combining the unique optical property of OMFs and the strong optical absorption of GNPs, very high sensitivity and selectivity can be achieved. Critical parameters namely fiber diameter and GNP size were optimized for better performance. The limit of detection (LOD) of this sensor for AFP is 0.2 ng/mL in PBS and 2 ng/mL in bovine serum, which is comparable to conventional assays. The advantages of this biosensor are simple detection scheme, fast response time, and ease of miniaturization, which might make this biosensor a promising platform for clinical cancer diagnosis and prognosis.


Assuntos
Técnicas Biossensoriais/instrumentação , Tecnologia de Fibra Óptica/instrumentação , Ouro/química , Nanopartículas/química , alfa-Fetoproteínas/análise , Animais , Bovinos , Desenho de Equipamento , Humanos , Limite de Detecção , Neoplasias/sangue , Neoplasias/diagnóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA