Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
Neurosci Res ; 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38154662

RESUMO

Numerous evidences showed that human umbilical cord blood (UCB) mononuclear cells were a promising approach for the therapy of ischemic stroke(IS). The effect of stage-specific embryonic antigen 3 (SSEA3)positive subpopulation in UCB was not investigated in IS. In this study, we isolated SSEA3 positive cells from healthy UCB mononuclear cells, which comprised about 7.01% of the total UCB-mononuclear cells. Flow cytometry analysis revealed that SSEA3(+)UCB cells were almost positive for CD44 and CD45, and negative for CD73, CD90 and CD105. The expression of Oct3/4 in SSEA3(+)UCB cells were higher than that in UCB. SSEA3(+)UCB cells sorted by magnetic cell sorting were intravenously injected into the middle cerebral arterial occlusion(MCAO) rat model. Neurological score showed that SSEA3(+)UCB transplantation group exhibited significant improvements in the functional outcome of MCAO rats than UCB transplantation group. Nissl staining and microtubule association protein-2(MAP2) immunofluorescence staining showed that the SSEA3(+)UCB transplantation group decreased neuronal loss. SSEA3(+)UCB transplantation group reduced neuronal apoptosis, inhibited caspase3 expression, and decreased tumor necrosis factor α(TNF-α). These results indicate that SSEA3 positive cells are a novel subpopulation of UCB cells, which exhibit great potential for the treatment of ischemic stroke.

2.
Front Genet ; 14: 1147761, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37811148

RESUMO

As one of the main types of structural variation in the human genome, copy number variation (CNV) plays an important role in the occurrence and development of human cancers. Next-generation sequencing (NGS) technology can provide base-level resolution, which provides favorable conditions for the accurate detection of CNVs. However, it is still a very challenging task to accurately detect CNVs from cancer samples with different purity and low sequencing coverage. Local distance-based CNV detection (LDCNV), an innovative computational approach to predict CNVs using NGS data, is proposed in this work. LDCNV calculates the average distance between each read depth (RD) and its k nearest neighbors (KNNs) to define the distance of KNNs of each RD, and the average distance between the KNNs for each RD to define their internal distance. Based on the above definitions, a local distance score is constructed using the ratio between the distance of KNNs and the internal distance of KNNs for each RD. The local distance scores are used to fit a normal distribution to evaluate the significance level of each RDS, and then use the hypothesis test method to predict the CNVs. The performance of the proposed method is verified with simulated and real data and compared with several popular methods. The experimental results show that the proposed method is superior to various other techniques. Therefore, the proposed method can be helpful for cancer diagnosis and targeted drug development.

3.
Artigo em Inglês | MEDLINE | ID: mdl-37600671

RESUMO

Objective: To investigate the diagnostic value of the combined detection of α-hydroxybutyrate dehydrogenase (α-HBDH), carcinoembryonic antigen (CEA) and cancer antigen 125 (CA125) in early-stage breast cancer (ESBC). Methods: This was a retrospective analysis of 169 patients with ESBC, 138 patients with benign breast disease (BBD) and 200 normal healthy controls (NHCs). The levels of serum α-HBDH, CEA and CA125 in the two groups were detected. The receiver operating characteristic (ROC) curve and area under the curve (AUC) were used to analyse the diagnostic value of the above indicators alone and in combination for ESBC. Results: The levels of α-HBDH, CEA and CA125 in the ESBC group were significantly higher than those in the BBD and NHC groups ([118.18 ± 11.19 vs 91.24 ± 9.17 vs 89.38 ± 9.01, F = 6.189, p = 0.004], [2.39 ± 1.12 vs 1.48 ± 0.76 vs 1.58 ± 0.58, F = 5.362, p = 0.017] and [14.44 ± 6.78 vs 11.19 ± 3.17 vs 7.18 ± 4.71, F = 8.912, p = 0.001], respectively). In the ESBC group, the positive rate of combined detection was higher than that of single detection (96.12% vs 72.64% vs 53.67% vs 42.41%, X2 = 27.174, p < 0.05). ROC curve analysis showed that serum α-HBDH, CEA, CA125 alone and combined detection in the diagnosis of ESBC. The sensitivity was 48.1%, 63.6%, 44.2% and 54.5%, the specificity was 75.4%, 75.4%, 86.0% and 91.2% and the AUC was 0.654, 0.715, 0.636 and 0.772, respectively. The diagnostic value of combined detection was the highest. Conclusion: The levels of serum α-HBDH, CEA and CA125 in ESBC are high, and the combined detection of the three has a high diagnostic value for ESBC.

4.
Sci Rep ; 13(1): 13810, 2023 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-37612422

RESUMO

Metabolic reprogramming is a hallmark of cancers, but pan-cancer level roles of lipid metabolism in cancer development are remains poorly understood. We investigated the possible roles of lipid metabolic genes (LMGs) in 14 cancer types. The results indicate that: (1) there is strong evidence for increased lipid metabolism in THCA and KICH. (2) Although the overall levels of lipid metabolic processes are down-regulated in some cancer types, fatty acid synthase activity and fatty acid elongation are moderately up-regulated in more than half of the cancer types. Cholesterol synthesis is up-regulated in five cancers including KICH, BLCA, COAD, BRCA, UCEC, and THCA. (3) The catabolism of cholesterols, triglycerides and fatty acids is repressed in most cancers, but a specific form of lipid degradation, lipophagy, is activated in THCA and KICH. (4) Lipid storage is enhanced in in kidney cancers and thyroid cancer. (5) Similarly to primary tumors, metastatic tumors tend to up-regulate biosynthetic processes of diverse lipids, but down-regulate lipid catabolic processes, except lipophagy. (6) The frequently mutated lipid metabolic genes are not key LMGs. (7) We established a LMG-based model for predicting cancer prognosis. Our results are helpful in expanding our understanding of the role of lipid metabolism in cancer.


Assuntos
Neoplasias Renais , Segunda Neoplasia Primária , Neoplasias da Glândula Tireoide , Humanos , Metabolismo dos Lipídeos , Ácidos Graxos
5.
Updates Surg ; 75(7): 2033-2038, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37395931

RESUMO

OBJECTIVES: To evaluate whether venous tumor thrombus (VTT) consistency is a risk factor for the patient's prognosis with renal cell carcinoma (RCC). MATERIALS AND METHODS: A total of 190 RCC patients with VTT, who were treated at Department of Urology, Chinese PLA General Hospital, were retrospectively analyzed in this study. The baseline clinical characteristics, postoperative outcomes, and pathological findings were analyzed. Tumor thrombus was classified as solid and friable based on their respective characteristics. Survival curves were estimated using the Kaplan-Meier survival curve analysis, and univariable and multivariable cox proportional hazard regression models were used. RESULTS: Among the total 190 patients included in this study, 145 (76.3%) patients had solid VTT, and 45 (23.7%) patients had friable VTT in their renal veins and inferior vena cava (IVC). There were no significant differences in the age, gender, BMI, symptoms, complex diseases, tumor side, tumor size, TNM stage, Mayo stage, tumor grade, sarcomatous differentiation, pelvic invasion, and sinus fat invasion of patients. Solid VTT consistency was more likely to have a capsule as compared to those with friable VTT (P = 0.007). Kaplan-Meier survival curve analysis demonstrated no statistically significant differences in the overall survival (OS) (P = 0.973) and progression-free survival (PFS) (P = 0.667) of patients. Moreover, VTT consistency was not associated with OS (P = 0.706) of PFS (P = 0.504) in multivariate cox regression analysis. CONCLUSIONS: RCC VTT consistency was not a prognostic risk factor for predicting the OS and PFS of patients.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Trombose , Humanos , Carcinoma de Células Renais/cirurgia , Neoplasias Renais/cirurgia , Prognóstico , Estudos Retrospectivos , Veia Cava Inferior , Nefrectomia
6.
IEEE J Biomed Health Inform ; 27(9): 4433-4443, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37310831

RESUMO

Automated classification of lymph node metastasis (LNM) plays an important role in the diagnosis and prognosis. However, it is very challenging to achieve satisfactory performance in LNM classification, because both the morphology and spatial distribution of tumor regions should be taken into account. To address this problem, this article proposes a two-stage dMIL-Transformer framework, which integrates both the morphological and spatial information of the tumor regions based on the theory of multiple instance learning (MIL). In the first stage, a double Max-Min MIL (dMIL) strategy is devised to select the suspected top-K positive instances from each input histopathology image, which contains tens of thousands of patches (primarily negative). The dMIL strategy enables a better decision boundary for selecting the critical instances compared with other methods. In the second stage, a Transformer-based MIL aggregator is designed to integrate all the morphological and spatial information of the selected instances from the first stage. The self-attention mechanism is further employed to characterize the correlation between different instances and learn the bag-level representation for predicting the LNM category. The proposed dMIL-Transformer can effectively deal with the thorny classification in LNM with great visualization and interpretability. We conduct various experiments over three LNM datasets, and achieve 1.79%-7.50% performance improvement compared with other state-of-the-art methods.


Assuntos
Metástase Linfática , Aprendizado de Máquina , Humanos
7.
Exp Brain Res ; 241(6): 1585-1598, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37142782

RESUMO

Cerebral infarction is one of the most prevalent cerebrovascular disorders. Microglia and infiltrating macrophages play a key role in regulating the inflammatory response after ischemic stroke. Regulation of microglia/macrophages polarization contributes to the recovery of neurological function in cerebral infarction. In recent decades, human umbilical cord blood mononuclear cells (hUCBMNCs) have been considered a potential therapeutic alternative. However, the mechanism of action is yet unclear. Our study aimed to explore whether hUCBMNCs treatment for cerebral infarction is via regulation of microglia/macrophages polarization. Adult male Sprague-Dawley rats were subjected to middle cerebral artery occlusion (MCAO) and were treated by intravenous routine with or without hUCBMNCs at 24 h following MCAO. We evaluated the therapeutic effects of hUCBMNCs on cerebral infarction by measuring animal behavior and infarct volume, and further explored the possible mechanisms of hUCBMNCs for cerebral infarction by measuring inflammatory factors and microglia/macrophages markers using Elisa and immunofluorescence staining, respectively. We found that administration with hUCBMNCs improved behavioral functions and reduced infarct volume. Rats treated with hUCBMNCs showed a significant reduction in the level of IL-6, and TNF-α and increased the level of IL-4 and IL-10 compared to those treated without hUCBMNCs. Furthermore, hUCBMNCs inhibited M1 polarization and promoted M2 polarization of microglia/macrophages after MCAO. We conclude that hUCBMNCs could ameliorate cerebral brain injury by promoting microglia/macrophages M2 polarization in MCAO Rats. This experiment provides evidence that hUCBMNCs represent a promising therapeutic option for ischemic stroke.


Assuntos
Lesões Encefálicas , Isquemia Encefálica , AVC Isquêmico , Acidente Vascular Cerebral , Ratos , Humanos , Masculino , Animais , Infarto da Artéria Cerebral Média/tratamento farmacológico , Microglia , Sangue Fetal , Ratos Sprague-Dawley , Isquemia Encefálica/tratamento farmacológico , Macrófagos
8.
Cancer Immunol Res ; 11(6): 830-846, 2023 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-36996321

RESUMO

Nasopharyngeal carcinoma (NPC) is an Epstein-Barr virus (EBV)-associated epithelial malignancy characterized by the presence of prominent infiltration of lymphocytes, including natural killer (NK) cells. Although NK cells can directly target EBV-infected tumor cells without restriction by the MHC, EBV-positive (EBV+) NPC cells often develop resistance mechanisms that allow them to evade immune surveillance by NK cells. Elucidating the mechanisms involved in EBV-induced NK-cell dysfunction will contribute to the design of novel NK cell-based immunotherapies to treat NPC. Herein, we confirmed that the cytotoxic function of NK cells was impaired in EBV+ NPC tissues and found that EBV infection-induced expression of B7-H3 in NPC negatively correlated with NK-cell function. The inhibitory effect of EBV+ tumor expression of B7-H3 on NK-cell function was clarified in vitro and in vivo. Mechanistically, activation of the PI3K/AKT/mTOR signaling pathway via EBV latent membrane protein 1 (LMP1) was responsible for EBV infection-induced upregulation of B7-H3 expression. In an NPC xenograft mouse model with adoptive transfer of primary NK cells, deletion of B7-H3 on tumor cells in combination with anti-PD-L1 treatment restored NK cell-mediated antitumor activity and significantly improved the antitumor efficacy of NK cells. On the basis of our findings, we conclude that EBV infection can inhibit NK cell-mediated antitumor function by inducing upregulation of B7-H3 expression and provide a rationale for NK cell-based immunotherapies in combination of PD-L1 blockade and overcoming the immunosuppression of B7-H3 to treat EBV-associated NPC.


Assuntos
Infecções por Vírus Epstein-Barr , Neoplasias Nasofaríngeas , Humanos , Animais , Camundongos , Carcinoma Nasofaríngeo/terapia , Carcinoma Nasofaríngeo/metabolismo , Carcinoma Nasofaríngeo/patologia , Herpesvirus Humano 4/metabolismo , Infecções por Vírus Epstein-Barr/complicações , Infecções por Vírus Epstein-Barr/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Neoplasias Nasofaríngeas/terapia , Neoplasias Nasofaríngeas/metabolismo , Neoplasias Nasofaríngeas/patologia , Fatores de Transcrição/metabolismo , Células Matadoras Naturais/metabolismo
9.
Sci Rep ; 12(1): 17028, 2022 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-36220850

RESUMO

After vaccination with enterovirus 71 (EV-A71), the prevalence of hand-foot-and-mouth disease (HFMD) remained high, and the spatial-temporal distribution of enteroviruses changed. Therefore, it is essential to define the temporal features, spatial distributions, and epidemiological and etiological characteristics of HFMD in Kunming. Between 2017 and 2020, a total of 36,540 children were diagnosed with HFMD in Kunming, including 32,754 children with enterovirus-positive clinical samples. Demographic, geographical, epidemiological and etiological data of the cases were acquired and analyzed. Other enteroviruses replaced EV-A71, and the incidence of EV-A71 decreased dramatically, whereas coxsackievirus A6 (CV-A6) and coxsackievirus A16 (CV-A16) had substantial outbreaks in 2018 and 2019, respectively. The major and minor peaks all extended for 2-4 months compared to before vaccination with the EV-A71 vaccine. From 2019 to 2020, CV-A6, as the predominant serotype, showed only a single peak. Although a high incidence of HFMD was observed in Guandu, Chenggong and Xishan, the annual incidence of different enterovirus serotypes was different in different regions. In 2017, other enteroviruses were most prevalent in Shilin. In 2018, CV-A16 and CV-A6 were most prevalent in Luquan and Shilin, respectively. In 2019, CV-A16 was most prevalent in Jinning. In 2020, CV-A6 and coxsackievirus A10 (CV-A10) were most prevalent in Luquan and Shilin, respectively. Meanwhile, the epidemic cycle of CV-A6 and CV-A16 was only 1 year, and CV-A10 and other enteroviruses were potential risk pathogens. The spatial and temporal distribution of HFMD varies at different scales, and the incidence of HFMD associated with different pathogens has obvious regional differences and seasonal trends. Therefore, research on multivalent combined vaccines is urgently needed, and proper preventive and protective measures could effectively control the incidence of HFMD-like diseases.


Assuntos
Enterovirus Humano A , Infecções por Enterovirus , Enterovirus , Febre Aftosa , Doença de Mão, Pé e Boca , Animais , Anticorpos Antivirais , Antígenos Virais , Benzenoacetamidas , Criança , China/epidemiologia , Doença de Mão, Pé e Boca/epidemiologia , Doença de Mão, Pé e Boca/prevenção & controle , Humanos , Lactente , Piperidonas , Sorogrupo , Vacinação , Vacinas Combinadas
10.
Front Pharmacol ; 13: 933655, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36091753

RESUMO

Gliomas are the most common malignant brain tumors. High-grade gliomas, represented by glioblastoma multiforme (GBM), have a poor prognosis and are prone to recurrence. The standard treatment strategy is tumor removal combined with radiotherapy and chemotherapy, such as temozolomide (TMZ). However, even after conventional treatment, they still have a high recurrence rate, resulting in an increasing demand for effective anti-glioma drugs. Drug repurposing is a method of reusing drugs that have already been widely approved for new indication. It has the advantages of reduced research cost, safety, and increased efficiency. Disulfiram (DSF), originally approved for alcohol dependence, has been repurposed for adjuvant chemotherapy in glioma. This article reviews the drug repurposing method and the progress of research on disulfiram reuse for glioma treatment.

11.
Front Pharmacol ; 13: 898679, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35571123

RESUMO

Glioblastoma multiforme (GBM) is the most common type of malignant brain tumor, among which IDH1-wild type GBM has a poor prognosis. Recent studies have shown that ferroptosis-related genes (FRGs) are correlated with the development and progression of cancer. In GBM, the role of FRGs associated with IDH1 status as biological indicators and therapeutic targets remains to be clarified. Ten of FRGs (STEAP3, HSPB1, MAP1LC3A, SOCS1, LOX, CAPG, CP, GDF15, CDKN1A, and CD44) associated with IDH1 status in GBM were identified as key genes through screening by survival analysis and Random Forest using The Cancer Genome Atlas (TCGA) datasets, and the protein expressions of key genes were verified. Transwell and qPCR results showed that ferroptosis promoted the migration of glioblastoma cells and affected the expression of key genes. Our study established the ferroptosis-related prognostic model for GBM patients based on ten key genes by a different modeling method from previous study, the GSVA algorithm. Further, we took the methods of functional enrichment analysis, clinical characteristics, immune cell infiltration, immunomodulator, ESTIMATE and single nucleotide variant (SNV) analysis to study the molecular mechanisms of prognostic model and key genes. The results showed that ten key genes were strongly associated with immune-related factors and were significantly involved in the p53 signaling pathway, senescence and autophagy in cancer, and in the negative regulation of protein kinase activity. Moreover, potential therapeutic drugs were identified by Virtual Screening and Molecular Docking. Our study indicated that the novel ferrotosis-related prognostic model for GBM patients and key genes possessed the prognostic and therapeutic values.

12.
Acta Med Indones ; 54(1): 62-71, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35398827

RESUMO

BACKGROUND: Immunotherapies including PD-1/PD-L1 antibodies have been approved for the treatment of Muscle-invasive Bladder Cancer (MIBC) patients. However, immunotherapies could only be beneficial for about 20% MIBC patients. Thus, identification of the immune subtype is becoming increasingly important. This study aimed to explore the immune subtype by analyzing the gene expression profiles. METHODS: A total of 6 datasets including (GSE13507, GSE31684, GSE32548, GSE32894, GSE69795, and TCGA-BLCA) were downloaded. The gene expression profiles from different datasets were combined since the batch effects were removed. We performed unsupervised clustering analysis to identify the immune subtype by the combined gene expression profiles. The tumor-infiltration levels of 22 immune cells, immune scores, and tumor purity were calculated, and the survival analysis was performed to investigate the prognosis difference between immune subtypes. The enriched pathways for each immune subtype were obtained. RESULTS: We identified four novel immune subtypes (referred to S1, S2, S3, and S4) among MIBC patients. We found that S1 was enriched in immune scores had the best prognosis. In contrast, S3 was poor in immune scores and had the worst prognosis. Subtype S1, S2, S3, and S4 were enriched in immune-related pathways, extracellular matrix-related pathways, metabolism-related pathways, and cancer-related pathways, respectively. CONCLUSION: The current study suggests that the immune subtypes based on gene expression profiles could contribute to select the appropriate MIBC patient for immunotherapies.


Assuntos
Neoplasias da Bexiga Urinária , Análise por Conglomerados , Humanos , Músculos/patologia , Prognóstico , Transcriptoma , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/patologia , Neoplasias da Bexiga Urinária/terapia
13.
Bioengineered ; 13(4): 8478-8489, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35322748

RESUMO

The cancer-testis antigen A-kinase anchor protein 3 (AKAP3) has been shown to have a strong association with breast cancer (BC). However, its role in BC progression received scant attention. We aimed to explore the prognostic implication of aberrant AKAP3 expression for a better knowledge of BC progression and improved treatment. AKAP3 expression was quantitated using tissue microarrays and immunohistochemistry (IHC). Cell viability, invasion, migration, apoptosis, and expressions of PTEN/PI3K/AKT/mTOR signaling components were assessed in AKAP3-overexpressed or si-AKAP3-transfected BC cells. Finally, elevated AKAP3 expression was observed in BC versus paracancerous tissues. BC patients with high AKAP3 expression showed a worse prognosis than low expression patients (P < 0.0001). AKAP3 overexpressions fueled cell growth, proliferation, migration, and invasion in HCC1937 and MDA-MB-468 BC cell lines, alongside increased expressions of PI3K/AKT/mTOR signaling components and PTEN suppression. These effects were pronouncedly reversed, together with elevated apoptosis, in cells transfected with si-AKAP3. Therefore, AKAP3 is upregulated in BC and promotes BC cell growth, invasion, and migration via PTEN/PI3K/AKT/mTOR signaling activation. It may serve as a prognosis indicator for BC survival.


Assuntos
Proteínas de Ancoragem à Quinase A , Neoplasias da Mama , Proteínas Proto-Oncogênicas c-akt , Proteínas de Ancoragem à Quinase A/genética , Proteínas de Ancoragem à Quinase A/metabolismo , Apoptose/genética , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Feminino , Humanos , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo
14.
Front Genet ; 13: 1084974, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36733945

RESUMO

Copy number variation (CNV) is one of the main structural variations in the human genome and accounts for a considerable proportion of variations. As CNVs can directly or indirectly cause cancer, mental illness, and genetic disease in humans, their effective detection in humans is of great interest in the fields of oncogene discovery, clinical decision-making, bioinformatics, and drug discovery. The advent of next-generation sequencing data makes CNV detection possible, and a large number of CNV detection tools are based on next-generation sequencing data. Due to the complexity (e.g., bias, noise, alignment errors) of next-generation sequencing data and CNV structures, the accuracy of existing methods in detecting CNVs remains low. In this work, we design a new CNV detection approach, called shortest path-based Copy number variation (SPCNV), to improve the detection accuracy of CNVs. SPCNV calculates the k nearest neighbors of each read depth and defines the shortest path, shortest path relation, and shortest path cost sets based on which further calculates the mean shortest path cost of each read depth and its k nearest neighbors. We utilize the ratio between the mean shortest path cost for each read depth and the mean of the mean shortest path cost of its k nearest neighbors to construct a relative shortest path score formula that is able to determine a score for each read depth. Based on the score profile, a boxplot is then applied to predict CNVs. The performance of the proposed method is verified by simulation data experiments and compared against several popular methods of the same type. Experimental results show that the proposed method achieves the best balance between recall and precision in each set of simulated samples. To further verify the performance of the proposed method in real application scenarios, we then select real sample data from the 1,000 Genomes Project to conduct experiments. The proposed method achieves the best F1-scores in almost all samples. Therefore, the proposed method can be used as a more reliable tool for the routine detection of CNVs.

15.
Front Cell Dev Biol ; 9: 679866, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34858969

RESUMO

Bronchopulmonary dysplasia (BPD) is a common pulmonary complication observed in preterm infants that is composed of multifactorial pathogenesis. Current strategies, albeit successful in moderately reducing morbidity and mortality of BPD, failed to draw overall satisfactory conclusion. Here, using a typical mouse model mimicking hallmarks of BPD, we revealed that both cord blood-derived mononuclear cells (CB-MNCs) and umbilical cord-derived mesenchymal stem cells (UC-MSCs) are efficient in alleviating BPD. Notably, infusion of CB-MNCs has more prominent effects in preventing alveolar simplification and pulmonary vessel loss, restoring pulmonary respiratory functions and balancing inflammatory responses. To further elucidate the underlying mechanisms within the divergent therapeutic effects of UC-MSC and CB-MNC, we systematically investigated the long noncoding RNA (lncRNA)-microRNA (miRNA)-messenger RNA (mRNA) and circular RNA (circRNA)-miRNA-mRNA networks by whole-transcriptome sequencing. Importantly, pathway analysis integrating Gene Ontology (GO)/Kyoto Encyclopedia of Genes and Genomes (KEGG)/gene set enrichment analysis (GSEA) method indicates that the competing endogenous RNA (ceRNA) network is mainly related to the regulation of GTPase activity (GO: 0043087), extracellular signal-regulated kinase 1 (ERK1) and ERK2 signal cascade (GO: 0070371), chromosome regulation (GO: 0007059), and cell cycle control (GO: 0044770). Through rigorous selection of the lncRNA/circRNA-based ceRNA network, we demonstrated that the hub genes reside in UC-MSC- and CB-MNC-infused networks directed to the function of cell adhesion, motor transportation (Cdk13, Lrrn2), immune homeostasis balance, and autophagy (Homer3, Prkcd) relatively. Our studies illustrate the first comprehensive mRNA-miRNA-lncRNA and mRNA-miRNA-circRNA networks in stem cell-infused BPD model, which will be valuable in identifying reliable biomarkers or therapeutic targets for BPD pathogenesis and shed new light in the priming and conditioning of UC-MSCs or CB-MNCs in the treatment of neonatal lung injury.

16.
Front Cell Dev Biol ; 9: 750775, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34778261

RESUMO

In recent years, there has been an increasing interest in space exploration, supported by the accelerated technological advancements in the field. This has led to a new potential environment that humans could be exposed to in the very near future, and therefore an increasing request to evaluate the impact this may have on our body, including health risks associated with this endeavor. A critical component in regulating the human pathophysiology is represented by the cardiovascular system, which may be heavily affected in these extreme environments of microgravity and radiation. This mini review aims to identify the impact of microgravity and radiation on the cardiovascular system. Being able to understand the effect that comes with deep space explorations, including that of microgravity and space radiation, may also allow us to get a deeper understanding of the heart and ultimately our own basic physiological processes. This information may unlock new factors to consider with space exploration whilst simultaneously increasing our knowledge of the cardiovascular system and potentially associated diseases.

17.
Cells ; 10(9)2021 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-34572030

RESUMO

Microglia, the innate immune cells of the central nervous system, play a pivotal role in the modulation of neuroinflammation. Neuroinflammation has been implicated in many diseases of the CNS, including Alzheimer's disease and Parkinson's disease. It is well documented that microglial activation, initiated by a variety of stressors, can trigger a potentially destructive neuroinflammatory response via the release of pro-inflammatory molecules, and reactive oxygen and nitrogen species. However, the potential anti-inflammatory and neuroprotective effects that microglia are also thought to exhibit have been under-investigated. The application of ionising radiation at different doses and dose schedules may reveal novel methods for the control of microglial response to stressors, potentially highlighting avenues for treatment of neuroinflammation associated CNS disorders, such as Alzheimer's disease and Parkinson's disease. There remains a need to characterise the response of microglia to radiation, particularly low dose ionising radiation.


Assuntos
Mediadores da Inflamação/metabolismo , Microglia/efeitos da radiação , Doenças Neurodegenerativas/radioterapia , Neuroimunomodulação/efeitos da radiação , Espécies Reativas de Nitrogênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Animais , Relação Dose-Resposta à Radiação , Humanos , Imunidade Inata/efeitos da radiação , Microglia/imunologia , Microglia/metabolismo , Microglia/patologia , Doenças Neurodegenerativas/imunologia , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Estresse Nitrosativo/efeitos da radiação , Estresse Oxidativo/efeitos da radiação , Fenótipo , Receptores de GABA/metabolismo
18.
Front Genet ; 12: 699510, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34262604

RESUMO

The next-generation sequencing technology offers a wealth of data resources for the detection of copy number variations (CNVs) at a high resolution. However, it is still challenging to correctly detect CNVs of different lengths. It is necessary to develop new CNV detection tools to meet this demand. In this work, we propose a new CNV detection method, called CBCNV, for the detection of CNVs of different lengths from whole genome sequencing data. CBCNV uses a clustering algorithm to divide the read depth segment profile, and assigns an abnormal score to each read depth segment. Based on the abnormal score profile, Tukey's fences method is adopted in CBCNV to forecast CNVs. The performance of the proposed method is evaluated on simulated data sets, and is compared with those of several existing methods. The experimental results prove that the performance of CBCNV is better than those of several existing methods. The proposed method is further tested and verified on real data sets, and the experimental results are found to be consistent with the simulation results. Therefore, the proposed method can be expected to become a routine tool in the analysis of CNVs from tumor-normal matched samples.

19.
Hereditas ; 158(1): 1, 2021 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-33388091

RESUMO

Immunotherapy, especially anti-PD-1, is becoming a pillar of modern muscle-invasive bladder cancer (MIBC) treatment. However, the objective response rates (ORR) are relatively low due to the lack of precise biomarkers to select patients. Herein, the molecular subtype, tumor mutation burden (TMB), and CD8+ T cells were calculated by the gene expression and mutation profiles of MIBC patients. MIBC immunotypes were constructed using clustering analysis based on tumor mutation burden, CD8+ T cells, and molecular subtypes. Mutated genes, enriched functional KEGG pathways and GO terms, and co-expressed network-specific hub genes have been identified. We demonstrated that ORR of immunotype A patients identified by molecular subtype, CD8+ T cells, and TMB is about 36% predictable. PIK3CA, RB1, FGFR3, KMT2C, MACF1, RYR2, and EP300 are differentially mutated among three immunotypes. Pathways such as ECM-receptor interaction, PI3K-Akt signaling pathway, and TGF-beta signaling pathway are top-ranked in enrichment analysis. Low expression of ACTA2 was associated with the MIBC survival benefit. The current study constructs a model that could identify suitable MIBC patients for immunotherapy, and it is an important step forward to the personalized treatment of bladder cancers.


Assuntos
Biomarcadores Tumorais/genética , Linfócitos T CD8-Positivos/citologia , Neoplasias da Bexiga Urinária/classificação , Humanos , Músculos/patologia , Mutação , Fenótipo , Transdução de Sinais , Neoplasias da Bexiga Urinária/genética
20.
J Nanosci Nanotechnol ; 21(2): 1236-1243, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33183467

RESUMO

Hemangiomas, also called infantile hemangiomas (IH), are the most common congenital benign vascular tumors in infants and young children. At present, there are many treatment methods for proliferative hemangiomas, which have different effects and lack predictability. Propranolol has gradually replaced glucocorticoids as the first-line treatment for infants and young children with hemangiomas. However, premature discontinuation is prone to relapse, and the efficacy and safety of medication need to be further studied and determined. The exact pathogenesis of hemangiomas is still unclear. Therefore, in this study, poly(lactic-co-glycolic acid) (PLGA) nanoparticles were used as drug delivery carriers, propranolol was encapsulated, and PLGA-propranolol (PLGA-PP) nanodelivery preparations were prepared and targeted. Anisotropy and pharmacokinetics were preliminary studied. At the same time, after the treatment of HemECs cells with PLGA-PP in gradient concentration in vitro, CCK-8 method was used to detect the cell proliferation, and Anyixin-V/PI double staining method was used to detect the apoptosis rate of cells. The effect of PLGA-PP nano-delivery vector on hemangioma was studied by western blot method to detect the expression level of Id-1 protein in HemECs. The results showed that after PLGA-PP treated HemECs for 24 h, PLGA-PP significantly inhibited HeECs proliferation and promoted their apoptosis, and the intracellular Id-1 protein expression was also reduced. Therefore, this study believes that the mechanism of PLGA-PP nano-targeted delivery preparations in the treatment of hemangiomas is achieved by down-regulating the Id-1 gene, thereby inhibiting the colonization of HemECs and promoting its apoptosis effect.


Assuntos
Hemangioma , Nanopartículas , Apoptose , Proliferação de Células , Criança , Pré-Escolar , Portadores de Fármacos/uso terapêutico , Hemangioma/tratamento farmacológico , Humanos , Lactente , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/uso terapêutico , Propranolol/farmacologia , Propranolol/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA