Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Ecotoxicol Environ Saf ; 278: 116406, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38728941

RESUMO

Cadmium contamination inevitably affects the microbially mediated transformation of nitrogen in soils with wheat straw return. The responses of nitrogen functional microorganisms to cadmium in acidic and alkaline soils under wheat straw returned are still unclear. In this study, quantitative polymerase chain reaction (qPCR) and sequencing of nitrifying and denitrifying bacteria were performed to investigate the effects of wheat straw application on nitrogen conversion in different Cd-contaminated soils during an incubation experiment. Results showed that the presence of Cd decreased the abundance of hao gene catalyzing nitrification and norB gene catalyzing denitrification process, resulting the accumulation of NH4+-N and reduction of NO3--N in the acidic soils. Additionally, Cd-contamination stimulates the nitrification catalyzed by bacterial amoA gene and thus reduced the NH4+-N content in the alkaline soils. Meanwhile, Cd dominated the decrease of NO3--N content by promoting denitrification process catalyzed by nirS gene. Among all nitrifying and denitrifying microorganisms, Nitrosospira are tolerant to Cd stress under alkaline condition but sensitive to acidic condition, which dominantly harbored hao gene in the acidic soils and bacterial amoA gene in the alkaline soils. This study aimed to provide reasonable information for the rational adoption of wheat straw returning strategies to realize nitrogen regulation in Cd-contaminated farmland soil.


Assuntos
Cádmio , Desnitrificação , Nitrificação , Microbiologia do Solo , Poluentes do Solo , Triticum , Cádmio/análise , Cádmio/metabolismo , Poluentes do Solo/análise , Poluentes do Solo/metabolismo , Nitrogênio/metabolismo , Solo/química , Bactérias/metabolismo , Bactérias/genética , Ciclo do Nitrogênio
2.
Ecotoxicol Environ Saf ; 242: 113860, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35810669

RESUMO

This study investigated the structure of fungal and bacterial communities in different types of Cd-contaminated soils. The results showed that obvious variations in microbial structure between contaminated alkaline soils and acidic soils. Proteobacteria, Gemmatimonadetes, Bacteroidetes and Basidiomycota dominated the studied communities in the alkaline soils, whereas Actinobacteria, Chloroflexi, Firmicutes, Acidobacteria, Saccharibacteria and Ascomycota were more abundant in the acidic soils. Additionally, Cd tolerant (Proteobacteria, Bacteroidetes, Ascomycota) and sensitive (Actinobacteria, Acidobacteria, Basidiomycota) in alkaline soils and JL-soils, Cd tolerant (Actinobacteria, Acidobacteria, Basidiomycota) and sensitive (Saccharibacteria, Proteobacteria, Bacteroidetes, Ascomycota, Mucoromycota) in the acidic soils were identified. Redundancy analysis and correlation analysis demonstrated that it was significantly affected by different environment parameters in alkaline soils and acidic soils. Varied bacterial community structures in all soils were dominantly influenced by pH and SOM. The similarities among different groups indicated the effect of soil type on microbial community structure was greater than that of Cd level. The above conclusions may provide a new perspective for the bio-remediation of Cd in different types of soils.


Assuntos
Actinobacteria , Ascomicetos , Poluentes do Solo , Acidobacteria , Bactérias , Bacteroidetes , Cádmio/análise , Proteobactérias , Solo/química , Microbiologia do Solo , Poluentes do Solo/análise
3.
Front Oncol ; 9: 545, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31293977

RESUMO

Hepatocellular carcinoma (HCC) is the fourth largest cause of cancer-related deaths worldwide with limited therapeutic interventions. Renewed interest in natural products as drug leads has resulted in a paradigm shift toward the rapid screening of medicinal plants for the discovery of new chemical entities. Rotundic acid (RA), a plant-derived triterpenoid, has been anecdotally reported to possess anti-inflammatory and cardio-protective abilities. The present study highlights the anti-cancer efficacy of RA on HCC in vitro and in vivo. The inhibitory effects of RA on HCC cell viability was determined by MTT. Soft agar colony formation and clonogenic assays also showed that RA inhibited HCC cell proliferation. Flow cytometry, confocal, and western blot results further indicated that RA induced cell cycle arrest, DNA damage, and apoptosis by modulating the AKT/mTOR and MAPK pathways. Besides the suppression of migration and invasion, tube formation and VEGF-ELISA revealed the anti-angiogenic abilities of RA on HCC. Moreover, RA also inhibited tumor growth in a HepG2 xenograft mouse model. To our best knowledge, this is the first extensive study of the anticancer activity of RA on HCC. The results demonstrate that RA could be a potential drug candidate for HCC treatment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA