Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.254
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Abdom Radiol (NY) ; 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38744700

RESUMO

PURPOSE: This study aimed to determine the diagnostic efficacy of various indicators and models for the prediction of gastric cancer with liver metastasis. METHODS: Clinical and spectral computed tomography (CT) data from 80 patients with gastric adenocarcinoma who underwent surgical resection were retrospectively analyzed. Patients were divided into metastatic and non-metastatic groups based on whether or not to occur liver metastasis, and the region of interest (ROI) was measured manually on each phase iodine map at the largest level of the tumor. Iodine concentration (IC), normalized iodine concentration (nIC), and clinical data of the primary gastric lesions were analyzed. Logistic regression analysis was used to construct the clinical indicator (CI) and clinical indicator-spectral CT iodine concentration (CI-Spectral CT-IC) Models, which contained all of the parameters with statistically significant differences between the groups. Receiver operating characteristic (ROC) curves were constructed to evaluate the accuracy of the models. RESULTS: The metastatic group showed significantly higher levels of Cancer antigen125 (CA125), carcinoembryonic antigen (CEA), IC, and nIC in the arterial phase, venous phase, and delayed phase than the non-metastatic group (all p < 0.05). Normalized iodine concentration Venous Phase (nICVP) exhibited a favorable performance among all IC and nIC parameters for forecasting gastric cancer with liver metastasis (area under the curve (AUC), 0.846). The combination model of clinical data with significant differences and nICVP showed the best diagnostic accuracy for predicting liver metastasis from gastric cancer, with an AUC of 0.897. CONCLUSION: nICVP showed the best diagnostic efficacy for predicting gastric cancer with liver metastasis. Clinical Indicators-normalized ICVP model can improve the prediction accuracy for this condition.

2.
bioRxiv ; 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38746280

RESUMO

Repetitive satellite DNAs, divergent in nucleic-acid sequence and size across eukaryotes, provide a physical site for centromere assembly to orchestrate chromosome segregation during the cell cycle. These non-coding DNAs are transcribed by RNA polymerase (RNAP) II and the transcription has been shown to play a role in chromosome segregation, but a little is known about the regulation of centromeric transcription, especially in higher organisms with tandemly-repeated-DNA-sequence centromeres. Using RNA interference knockdown, chemical inhibition and AID/IAA degradation, we show that Topoisomerase I (TopI), not TopII, promotes the transcription of α-satellite DNAs, the main type of satellite on centromeres in human cells. Mechanistically, TopI localizes to centromeres, binds RNAP II and facilitates RNAP II elongation on centromeres. Interestingly, in response to DNA double-stranded breaks (DSBs) induced by chemotherapy drugs or CRSPR/Cas9, α-satellite transcription is dramatically stimulated in a DNA damage checkpoint-independent but TopI-dependent manner. These DSB-induced α-satellite RNAs were predominantly derived from the α-satellite high-order repeats of human centromeres and forms into strong speckles in the nucleus. Remarkably, TopI-dependent satellite transcription also exists in mouse 3T3 and Drosophila S2 cells and in Drosophila larval imaginal wing discs and tumor tissues. Altogether, our findings herein reveal an evolutionally conserved mechanism with TopI as a key player for the regulation of satellite transcription at both cellular and animal levels.

3.
Curr Med Sci ; 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38748369

RESUMO

Intraductal papillary neoplasm of the bile duct (IPNB) is a heterogeneous disease similar to intraductal papillary mucinous neoplasm of the pancreas. These lesions have been recognized as one of the three major precancerous lesions in the biliary tract since 2010. In 2018, Japanese and Korean pathologists reached a consensus, classifying IPNBs into type l and type 2 IPNBs. IPNBs are more prevalent in male patients in East Asia and are closely related to diseases such as cholelithiasis and schistosomiasis. From a molecular genetic perspective, IPNBs exhibit early genetic variations, and different molecular pathways may be involved in the tumorigenesis of type 1 and type 2 IPNBs. The histological subtypes of IPNBs include gastric, intestinal, pancreaticobiliary, or oncocytic subtypes, but type 1 IPNBs typically exhibit more regular and well-organized histological features than type 2 IPNBs and are more commonly found in the intrahepatic bile ducts with abundant mucin. Due to the rarity of these lesions and the absence of specific clinical and laboratory features, imaging is crucial for the preoperative diagnosis of IPNB, with local bile duct dilation and growth along the bile ducts being the main imaging features. Surgical resection remains the optimal treatment for IPNBs, but negative bile duct margins and the removal of lymph nodes in the hepatic hilum significantly improve the postoperative survival rates for patients with IPNBs.

4.
Discov Oncol ; 15(1): 157, 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38733530

RESUMO

OBJECTIVE: To investigate the action of circPDK1 in paclitaxel (PTX) resistance in non-small cell lung cancer (NSCLC). METHODS: circPDK1, miR-4731-5p, and GIGYF1 levels were determined by RT-qPCR and Western blot. Cell proliferation was detected by CCK-8 and colony formation assay, apoptosis by flow cytometry, invasion by Transwell assay. The targeting relationship between miR-4731-5p and circPDK1 or GIGYF1 was confirmed by dual luciferase reporter gene and RIP assay. A xenograft tumor model was established to determine the role of circPDK1 in PTX resistance. RESULTS: circPDK1 was overexpressed in PTX-resistant NSCLC, and depleting circPDK1 hampered proliferation and invasion of PTX-resistant cells, activated apoptosis, and improved PTX sensitivity. circPDK1 bound to miR-4731-5p, and increasing miR-4731-5p expression salvaged the effect of circPDK1 depletion on PTX resistance. miR-4731-5p directly targeted GIGYF1, and upregulating GIGYF1 offset the promoting effect of circPDK1 knockdown on PTX sensitivity. NSCLC tumor growth was inhibited and PTX sensitivity improved when circPDK1 was suppressed. CONCLUSION: Depleting circPDK1 promotes PTX sensitivity of NSCLC cells via miR-4731-5p/GIGYF1 axis, thereby inhibiting NSCLC pregnancy.

5.
Am J Cancer Res ; 14(4): 1609-1621, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38726282

RESUMO

Young breast cancer (YBC) patients often face a poor prognosis, hence it's necessary to construct a model that can accurately predict their long-term survival in early stage. To realize this goal, we utilized data from the Surveillance, Epidemiology, and End Results (SEER) databases between January 2010 and December 2020, and meanwhile, enrolled an independent external cohort from Tianjin Medical University Cancer Institute and Hospital. The study aimed to develop and validate a prediction model constructed using the Random Survival Forest (RSF) machine learning algorithm. By applying the Least Absolute Shrinkage and Selection Operator (LASSO) regression analysis, we pinpointed key prognostic factors for YBC patients, which were used to create a prediction model capable of forecasting the 3-year, 5-year, 7-year, and 10-year survival rates of YBC patients. The RSF model constructed in the study demonstrated exceptional performance, achieving C-index values of 0.920 in the training set, 0.789 in the internal validation set, and 0.701 in the external validation set, outperforming the Cox regression model. The model's calibration was confirmed by Brier scores at various time points, showcasing its excellent accuracy in prediction. Decision curve analysis (DCA) underscored the model's importance in clinical application, and the Shapley Additive Explanations (SHAP) plots highlighted the importance of key variables. The RSF model also proved valuable in risk stratification, which has effectively categorized patients based on their survival risks. In summary, this study has constructed a well-performed prediction model for the evaluation of prognostic factors influencing the long-term survival of early-stage YBC patients, which is significant in risk stratification when physicians handle YBC patients in clinical settings.

6.
BMC Anesthesiol ; 24(1): 176, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38760677

RESUMO

BACKGROUND: The role of mechanical power on pulmonary outcomes after thoracic surgery with one-lung ventilation was unclear. We investigated the association between mechanical power and postoperative pulmonary complications in patients undergoing thoracoscopic lung resection surgery. METHODS: In this single-center, prospective observational study, 622 patients scheduled for thoracoscopic lung resection surgery were included. Volume control mode with lung protective ventilation strategies were implemented in all participants. The primary endpoint was a composite of postoperative pulmonary complications during hospital stay. Multivariable logistic regression models were used to evaluate the association between mechanical power and outcomes. RESULTS: The incidence of pulmonary complications after surgery during hospital stay was 24.6% (150 of 609 patients). The multivariable analysis showed that there was no link between mechanical power and postoperative pulmonary complications. CONCLUSIONS: In patients undergoing thoracoscopic lung resection with standardized lung-protective ventilation, no association was found between mechanical power and postoperative pulmonary complications. TRIAL REGISTRATION: Trial registration number: ChiCTR2200058528, date of registration: April 10, 2022.


Assuntos
Ventilação Monopulmonar , Complicações Pós-Operatórias , Humanos , Estudos Prospectivos , Masculino , Feminino , Ventilação Monopulmonar/métodos , Complicações Pós-Operatórias/epidemiologia , Complicações Pós-Operatórias/etiologia , Pessoa de Meia-Idade , Idoso , Pneumonectomia/efeitos adversos , Pneumonectomia/métodos , Toracoscopia/métodos , Pneumopatias/etiologia , Pneumopatias/epidemiologia , Cirurgia Torácica Vídeoassistida/métodos , Cirurgia Torácica Vídeoassistida/efeitos adversos
7.
Adv Sci (Weinh) ; : e2401263, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38767182

RESUMO

Single-cell multiomic and exosome analyses are potent tools in various fields, such as cancer research, immunology, neuroscience, microbiology, and drug development. They facilitate the in-depth exploration of biological systems, providing insights into disease mechanisms and aiding in treatment. Single-cell isolation, which is crucial for single-cell analysis, ensures reliable cell isolation and quality control for further downstream analyses. Microfluidic chips are small lightweight systems that facilitate efficient and high-throughput single-cell isolation and real-time single-cell analysis on- or off-chip. Therefore, most current single-cell isolation and analysis technologies are based on the single-cell microfluidic technology. This review offers comprehensive guidance to researchers across different fields on the selection of appropriate microfluidic chip technologies for single-cell isolation and analysis. This review describes the design principles, separation mechanisms, chip characteristics, and cellular effects of various microfluidic chips available for single-cell isolation. Moreover, this review highlights the implications of using this technology for subsequent analyses, including single-cell multiomic and exosome analyses. Finally, the current challenges and future prospects of microfluidic chip technology are outlined for multiplex single-cell isolation and multiomic and exosome analyses.

8.
Adv Healthc Mater ; : e2400343, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38738846

RESUMO

Stem cell transplantation has been proven to be a promising strategy for intervertebral disc degeneration (IDD) repair. However, replicative senescence of bone marrow-derived mesenchymal stem cells (BMSCs), shear damage during direct injection, mechanical stress, and the reactive oxygen species (ROS)-rich microenvironment in degenerative intervertebral discs (IVDs) cause significant cellular damage and limit the therapeutic efficacy. Here, an injectable manganese oxide (MnOx)-functionalized thermosensitive nanohydrogel was proposed for BMSC transplantation for IDD therapy. The MnOx-functionalized thermosensitive nanohydrogel not only successfully protected BMSCs from shear force and mechanical stress before and after injection but also repaired the harsh high-ROS environment in degenerative IVDs, thus effectively increasing the viability of BMSCs and resident nucleus pulposus cells (NPCs). The MnOx-functionalized thermosensitive nanohydrogel provides mechanical protection for stem cells and helps to remove endogenous ROS, providing a promising stem cell delivery platform for the treatment of IDD. This article is protected by copyright. All rights reserved.

9.
Sci Rep ; 14(1): 10646, 2024 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-38724530

RESUMO

Individual theranostic agents with dual-mode MRI responses and therapeutic efficacy have attracted extensive interest due to the real-time monitor and high effective treatment, which endow the providential treatment and avoid the repeated medication with side effects. However, it is difficult to achieve the integrated strategy of MRI and therapeutic drug due to complicated synthesis route, low efficiency and potential biosafety issues. In this study, novel self-assembled ultrasmall Fe3O4 nanoclusters were developed for tumor-targeted dual-mode T1/T2-weighted magnetic resonance imaging (MRI) guided synergetic chemodynamic therapy (CDT) and chemotherapy. The self-assembled ultrasmall Fe3O4 nanoclusters synthesized by facilely modifying ultrasmall Fe3O4 nanoparticles with 2,3-dimercaptosuccinic acid (DMSA) molecule possess long-term stability and mass production ability. The proposed ultrasmall Fe3O4 nanoclusters shows excellent dual-mode T1 and T2 MRI capacities as well as favorable CDT ability due to the appropriate size effect and the abundant Fe ion on the surface of ultrasmall Fe3O4 nanoclusters. After conjugation with the tumor targeting ligand Arg-Gly-Asp (RGD) and chemotherapy drug doxorubicin (Dox), the functionalized Fe3O4 nanoclusters achieve enhanced tumor accumulation and retention effects and synergetic CDT and chemotherapy function, which serve as a powerful integrated theranostic platform for cancer treatment.


Assuntos
Imageamento por Ressonância Magnética , Nanomedicina Teranóstica , Imageamento por Ressonância Magnética/métodos , Nanomedicina Teranóstica/métodos , Animais , Camundongos , Humanos , Doxorrubicina/química , Doxorrubicina/administração & dosagem , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Linhagem Celular Tumoral , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Neoplasias/terapia , Nanopartículas de Magnetita/química , Nanopartículas de Magnetita/uso terapêutico , Succímero/química , Antineoplásicos/uso terapêutico , Antineoplásicos/química , Antineoplásicos/administração & dosagem , Antineoplásicos/farmacologia
10.
J Transl Med ; 22(1): 442, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38730286

RESUMO

INTRODUCTION: Lung cancer is a prevalent malignancy globally, and immunotherapy has revolutionized its treatment. However, resistance to immunotherapy remains a challenge. Abnormal cholinesterase (ChE) activity and choline metabolism are associated with tumor oncogenesis, progression, and poor prognosis in multiple cancers. Yet, the precise mechanism underlying the relationship between ChE, choline metabolism and tumor immune microenvironment in lung cancer, and the response and resistance of immunotherapy still unclear. METHODS: Firstly, 277 advanced non-small cell lung cancer (NSCLC) patients receiving first-line immunotherapy in Sun Yat-sen University Cancer Center were enrolled in the study. Pretreatment and the alteration of ChE after 2 courses of immunotherapy and survival outcomes were collected. Kaplan-Meier survival and cox regression analysis were performed, and nomogram was conducted to identify the prognostic and predicted values. Secondly, choline metabolism-related genes were screened using Cox regression, and a prognostic model was constructed. Functional enrichment analysis and immune microenvironment analysis were also conducted. Lastly, to gain further insights into potential mechanisms, single-cell analysis was performed. RESULTS: Firstly, baseline high level ChE and the elevation of ChE after immunotherapy were significantly associated with better survival outcomes for advanced NSCLC. Constructed nomogram based on the significant variables from the multivariate Cox analysis performed well in discrimination and calibration. Secondly, 4 choline metabolism-related genes (MTHFD1, PDGFB, PIK3R3, CHKB) were screened and developed a risk signature that was found to be related to a poorer prognosis. Further analysis revealed that the choline metabolism-related genes signature was associated with immunosuppressive tumor microenvironment, immune escape and metabolic reprogramming. scRNA-seq showed that MTHFD1 was specifically distributed in tumor-associated macrophages (TAMs), mediating the differentiation and immunosuppressive functions of macrophages, which may potentially impact endothelial cell proliferation and tumor angiogenesis. CONCLUSION: Our study highlights the discovery of ChE as a prognostic marker in advanced NSCLC, suggesting its potential for identifying patients who may benefit from immunotherapy. Additionally, we developed a prognostic signature based on choline metabolism-related genes, revealing the correlation with the immunosuppressive microenvironment and uncovering the role of MTHFD1 in macrophage differentiation and endothelial cell proliferation, providing insights into the intricate workings of choline metabolism in NSCLC pathogenesis.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Proliferação de Células , Colina , Células Endoteliais , Neoplasias Pulmonares , Microambiente Tumoral , Macrófagos Associados a Tumor , Humanos , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/imunologia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/metabolismo , Colina/metabolismo , Masculino , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Feminino , Macrófagos Associados a Tumor/metabolismo , Macrófagos Associados a Tumor/patologia , Pessoa de Meia-Idade , Prognóstico , Imunoterapia , Terapia de Imunossupressão , Estimativa de Kaplan-Meier , Nomogramas , Reprogramação Metabólica
11.
J Transl Med ; 22(1): 486, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773508

RESUMO

BACKGROUND: Immunotherapy has brought about a paradigm shift in the treatment of cancer. However, the majority of patients exhibit resistance or become refractory to immunotherapy, and the underlying mechanisms remain to be explored. METHODS: Sing-cell RNA sequencing (scRNA­seq) datasets derived from 1 pretreatment and 1 posttreatment achieving pathological complete response (pCR) patient with lung adenocarcinoma (LUAD) who received neoadjuvant immunotherapy were collected, and pySCENIC was used to find the gene regulatory network (GRN) between cell types and immune checkpoint inhibitor (ICI) response. A regulon predicting ICI response was identified and validated using large­scale pan-cancer data, including a colorectal cancer scRNA­seq dataset, a breast cancer scRNA­seq dataset, The Cancer Genome Atlas (TCGA) pan-cancer cohort, and 5 ICI transcriptomic cohorts. Symphony reference mapping was performed to construct the myeloid cell map. RESULTS: Thirteen major cluster cell types were identified by comparing pretreatment and posttreatment patients, and the fraction of myeloid cells was higher in the posttreatment group (19.0% vs. 11.8%). A PPARG regulon (containing 23 target genes) was associated with ICI response, and its function was validated by a colorectal cancer scRNA­seq dataset, a breast cancer scRNA­seq dataset, TCGA pan-cancer cohort, and 5 ICI transcriptomic cohorts. Additionally, a myeloid cell map was developed, and cluster I, II, and III myeloid cells with high expression of PPARG were identified. Moreover, we constructed a website called PPARG ( https://pparg.online/PPARG/ or http://43.134.20.130:3838/PPARG/ ), which provides a powerful discovery tool and resource value for researchers. CONCLUSIONS: The PPARG regulon is a predictor of ICI response. The myeloid cell map enables the identification of PPARG subclusters in public scRNA-seq datasets and provides a powerful discovery tool and resource value.


Assuntos
Imunoterapia , Células Mieloides , Terapia Neoadjuvante , Neoplasias , Regulon , Análise de Sequência de RNA , Análise de Célula Única , Humanos , Regulon/genética , Células Mieloides/metabolismo , Neoplasias/genética , Neoplasias/terapia , Neoplasias/imunologia , Resultado do Tratamento , Redes Reguladoras de Genes , Feminino , Regulação Neoplásica da Expressão Gênica
12.
Sci Total Environ ; 933: 173120, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38750765

RESUMO

BACKGROUND: Although it is widely acknowledged that long-term exposure to ambient air pollution is closely related to the risk of mortality, there were inconsistencies in terms of cause-specific mortality and it is still unknown whether lifestyle and genetic susceptibility could modify the association. METHODS: This population-based prospective cohort study involved 461,112 participants from the UK Biobank. The land-use regression model was used to estimate the concentrations of particulate matter (PM2.5, PMcoarse, PM10), and nitrogen oxides (NO2 and NOx). The association between air pollution and mortality was evaluated using Cox proportional hazard models. Furthermore, a lifestyle score incorporated with smoking status, physical activity, alcohol consumption, and diet behaviors, and polygenic risk score using 12 genetic variants, were developed to assess the modifying effect of air pollution on mortality outcomes. RESULTS: During a median follow-up of 14.0 years, 33,903 deaths were recorded, including 17,083 (2835; 14,248), 6970, 2429, and 1287 deaths due to cancer (lung cancer, non-lung cancer), cardiovascular disease (CVD), respiratory and digestive disease, respectively. Each interquartile range (IQR) increase in PM2.5, NO2 and NOx was associated with 7 %, 6 % and 5 % higher risk of all-cause mortality, respectively. Specifically, for cause-specific mortality, each IQR increase in PM2.5, NO2 and NOx was also linked to mortality due to cancer (lung cancer and non-lung cancer), CVD, respiratory and digestive disease. Furthermore, additive and multiplicative interactions were identified between high ambient air pollution and unhealthy lifestyle on mortality. In addition, associations between air pollution and mortality were modified by lifestyle behaviors. CONCLUSION: Long-term exposure to air pollutants increased the risk of all-cause and cause-specific mortality, which was modified by lifestyle behaviors. In addition, we also revealed a synergistically detrimental effect between air pollution and an unhealthy lifestyle, suggesting the significance of joint air pollution management and adherence to a healthy lifestyle on public health.

13.
J Cancer Res Clin Oncol ; 150(5): 259, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38753081

RESUMO

High mobility group AT-hook 2 (HMGA2) is a member of the non-histone chromosomal high mobility group (HMG) protein family, which participate in embryonic development and other biological processes. HMGA2 overexpression is associated with breast cancer (BC) cell growth, proliferation, metastasis, and drug resistance. Furthermore, HMGA2 expression is positively associated with poor prognosis of patients with BC, and inhibiting HMGA2 signaling can stimulate BC cell progression and metastasis. In this review, we focus on HMGA2 expression changes in BC tissues and multiple BC cell lines. Wnt/ß-catenin, STAT3, CNN6, and TRAIL-R2 proteins are upstream mediators of HMGA2 that can induce BC invasion and metastasis. Moreover, microRNAs (miRNAs) can suppress BC cell growth, invasion, and metastasis by inhibiting HMGA2 expression. Furthermore, long noncoding RNAs (LncRNAs) and circular RNAs (CircRNAs) mainly regulate HMGA2 mRNA and protein expression levels by sponging miRNAs, thereby promoting BC development. Additionally, certain small molecule inhibitors can suppress BC drug resistance by reducing HMGA2 expression. Finally, we summarize findings demonstrating that HMGA2 siRNA and HMGA2 siRNA-loaded nanoliposomes can suppress BC progression and metastasis.


Assuntos
Neoplasias da Mama , Proteína HMGA2 , Humanos , Proteína HMGA2/genética , Proteína HMGA2/metabolismo , Neoplasias da Mama/patologia , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/tratamento farmacológico , Feminino , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , Resistencia a Medicamentos Antineoplásicos/genética
14.
Signal Transduct Target Ther ; 9(1): 108, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38705885

RESUMO

Coinfusion of unrelated cord blood (UCB) units in haploidentical hematopoietic cell transplantation (haplo-HCT) (haplo-cord HCT) for hematopoietic malignancies showed promising results in previous reports, but the efficiency of haplo-cord HCT in acute myeloid leukemia (AML) still lacks sufficient evidence. This multicenter, randomized, phase 3 trial (ClinicalTrials.gov NCT03719534) aimed to assess the efficacy and safety of haplo-cord HCT in AML patients. A total of 268 eligible patients aged 18-60 years, diagnosed with measurable residual disease in AML (excluding acute promyelocytic leukemia), with available haploidentical donors and suitable for allotransplantation, were randomly allocated (1:1) to receive haplo-cord HCT (n = 134) or haplo-HCT (n = 134). The 3-year overall survival (OS) was the primary endpoint in this study. Overall median follow-up was 36.50 months (IQR 24.75-46.50). The 3-year OS of Haplo-cord HCT group was better than haplo-HCT group (80.5%, 95% confidence interval [CI]: 73.7-87.9 vs. 67.8% 95% CI 60.0-76.5, p = 0.013). Favorable progression-free survival (70.3%, 95% CI 62.6-78.8 vs. 57.6%, 95% CI 49.6-67.0, p = 0.012) and cumulative incidence of relapse (12.1%, 95% CI 12.0-12.2 vs. 30.3%, 95% CI 30.1-30.4, p = 0.024) were observed in haplo-cord HCT group. Grade 3-4 adverse events (AEs) within two years posttransplantation in the two groups were similar. Haplo-cord HCT patients exhibited a faster cumulative incidence of neutrophil recovery (p = 0.026) and increased T-cell reconstitution in the early period posttransplantation. Haplo-cord HCT can improve OS in AML patients without excessive AEs, which may exert additional benefits for recipients of haplo-HCT.


Assuntos
Transplante de Células-Tronco de Sangue do Cordão Umbilical , Transplante de Células-Tronco Hematopoéticas , Leucemia Mieloide Aguda , Humanos , Adulto , Leucemia Mieloide Aguda/terapia , Masculino , Feminino , Pessoa de Meia-Idade , Adolescente , Transplante Haploidêntico/efeitos adversos , Adulto Jovem
15.
Cancer Res ; 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38718296

RESUMO

Circadian clock perturbation frequently occurs in cancer and facilitates tumor progression by regulating malignant growth and shaping the immune microenvironment. Emerging evidence has indicated that clock genes are disrupted in melanoma and linked to immune escape. Here, we found that the expression of retinoic acid receptor-related orphan receptor-α (RORA) is downregulated in melanoma patients and that patients with higher RORA expression have a better prognosis after immunotherapy. Additionally, RORA was significantly positively correlated with T-cell infiltration and recruitment. Overexpression or activation of RORA stimulated cytotoxic T-cell-mediated antitumor responses. RORA bound to the CD274 promoter and formed an inhibitory complex with HDAC3 to suppress PD-L1 expression. In contrast, the DEAD-box helicase family member DDX3X competed with HDAC3 for binding to RORA, and DDX3X overexpression promoted RORA release from the suppressive complex and thereby increased PD-L1 expression to generate an inhibitory immune environment. The combination of a RORA agonist with an anti-CTLA4 antibody synergistically increased T-cell antitumor immunity in vivo. A score based on the combined expression of HDAC3, DDX3X and RORA correlated with immunotherapy response in melanoma patients. Together, this study elucidates a mechanism of clock component-regulated antitumor immunity, which will help inform the use of immunotherapy and lead to improved outcomes for melanoma patients receiving combined therapeutic treatments.

16.
BMC Anesthesiol ; 24(1): 168, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38702625

RESUMO

BACKGROUND: Remote ischemic conditioning (RIC) has the potential to benefit graft function following kidney transplantation by reducing ischemia-reperfusion injury; however, the current clinical evidence is inconclusive. This meta-analysis with trial sequential analysis (TSA) aimed to determine whether RIC improves graft function after kidney transplantation. METHODS: A comprehensive search was conducted on PubMed, Cochrane Library, and EMBASE databases until June 20, 2023, to identify all randomized controlled trials that examined the impact of RIC on graft function after kidney transplantation. The primary outcome was the incidence of delayed graft function (DGF) post-kidney transplantation. The secondary outcomes included the incidence of acute rejection, graft loss, 3- and 12-month estimated glomerular filtration rates (eGFR), and the length of hospital stay. Subgroup analyses were conducted based on RIC procedures (preconditioning, perconditioning, or postconditioning), implementation sites (upper or lower extremity), and graft source (living or deceased donor). RESULTS: Our meta-analysis included eight trials involving 1038 patients. Compared with the control, RIC did not significantly reduce the incidence of DGF (8.8% vs. 15.3%; risk ratio = 0.76, 95% confidence interval [CI], 0.48-1.21, P = 0.25, I2 = 16%), and TSA results showed that the required information size was not reached. However, the RIC group had a significantly increased eGFR at 3 months after transplantation (mean difference = 2.74 ml/min/1.73 m2, 95% CI: 1.44-4.05 ml/min/1.73 m2, P < 0.0001, I2 = 0%), with a sufficient evidence suggested by TSA. The secondary outcomes were comparable between the other secondary outcomes. The treatment effect of RIC did not differ between the subgroup analyses. CONCLUSION: In this meta-analysis with trial sequential analysis, RIC did not lead to a significant reduction in the incidence of DGF after kidney transplantation. Nonetheless, RIC demonstrated a positive correlation with 3-month eGFR. Given the limited number of patients included in this study, well-designed clinical trials with large sample sizes are required to validate the renoprotective benefits of RIC. TRIAL REGISTRATION: This systematic review and meta-analysis was registered at the International Prospective Register of Systematic Reviews (Number CRD42023464447).


Assuntos
Função Retardada do Enxerto , Precondicionamento Isquêmico , Transplante de Rim , Humanos , Transplante de Rim/métodos , Precondicionamento Isquêmico/métodos , Função Retardada do Enxerto/epidemiologia , Função Retardada do Enxerto/prevenção & controle , Ensaios Clínicos Controlados Aleatórios como Assunto/métodos , Rejeição de Enxerto/prevenção & controle
17.
MycoKeys ; 105: 97-118, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38708026

RESUMO

Phylogenetic and morphological analyses on Perenniporia s.l. were carried out. Phylogenies on Perenniporia s.l. are reconstructed with two loci DNA sequences including the internal transcribed spacer (ITS) regions and the large subunit (nLSU). Two new species from Yunnan Province, southwest China, Perenniporiaprunicola and P.rosicola in Perenniporia s.l., are illustrated and described. Perenniporiaprunicola is characterised by the perennial and resupinate basidiomata with a clay pink pore surface when fresh, a trimitic hyphal system, the presence of clavate to fusiform hymenial cystidia, ellipsoid to broadly ellipsoid basidiospores measuring 4.8-6.2 × 3.6-4.5 µm. Perenniporiarosicola is characterised by annual and resupinate basidiomata with a white pore surface when fresh, a dimitic hyphal system, the presence of dendrohyphidia, broadly ellipsoid to subglobose basidiospores measuring 5-5.8 × 4-5.2 µm. In addition, Crassisporus is a genus in Perenniporia s.l., in which two new combinations Crassisporusminutus and C.mollissimus are proposed. Main morphological characteristics of species related to new taxa are also provided.

18.
Nanomicro Lett ; 16(1): 197, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38753176

RESUMO

Li metal batteries (LMBs) offer significant potential as high energy density alternatives; nevertheless, their performance is hindered by the slow desolvation process of electrolytes, particularly at low temperatures (LT), leading to low coulombic efficiency and limited cycle stability. Thus, it is essential to optimize the solvation structure thereby achieving a rapid desolvation process in LMBs at LT. Herein, we introduce branch chain-rich diisopropyl ether (DIPE) into a 2.5 M Li bis(fluorosulfonyl)imide dipropyl ether (DPE) electrolyte as a co-solvent for high-performance LMBs at - 20 °C. The incorporation of DIPE not only enhances the disorder within the electrolyte, but also induces a steric hindrance effect form DIPE's branch chain, excluding other solvent molecules from Li+ solvation sheath. Both of these factors contribute to the weak interactions between Li+ and solvent molecules, effectively reducing the desolvation energy of the electrolyte. Consequently, Li (50 µm)||LFP (mass loading ~ 10 mg cm-2) cells in DPE/DIPE based electrolyte demonstrate stable performance over 650 cycles at - 20 °C, delivering 87.2 mAh g-1, and over 255 cycles at 25 °C with 124.8 mAh g-1. DIPE broadens the electrolyte design from molecular structure considerations, offering a promising avenue for highly stable LMBs at LT.

19.
World J Gastrointest Surg ; 16(3): 907-920, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38577086

RESUMO

BACKGROUND: Endoscopic ultrasound-guided biliary drainage using electrocautery-enhanced (ECE) delivery of lumen-apposing metal stent (LAMS) is gradually being recognized as a viable palliative technique for malignant biliary obstruction after endoscopic retrograde cholangiopancreatography (ERCP) failure. However, most of the studies that have assessed its efficacy and safety were small and heterogeneous. Prior meta-analyses of six or fewer studies that were published 2 years ago were therefore underpowered to yield convincing evidence. AIM: To update the efficacy and safety of ECE-LAMS for treatment of biliary obstruction after ERCP failure. METHODS: We searched PubMed, EMBASE, and Scopus databases from the inception of the ECE technique to May 13, 2022. Primary outcome measure was pooled technical success rate, and secondary outcomes were pooled rates of clinical success, reintervention, and adverse events. Meta-analysis was performed using a random-effects model following Freeman-Tukey double-arcsine transformation in R software (version 4.1.3). RESULTS: Fourteen eligible studies involving 620 participants were ultimately included. The pooled rate of technical success was 96.7%, and clinical success was 91.0%. Adverse events were reported in 17.5% of patients. Overall reintervention rate was 7.3%. Subgroup analyses showed results were generally consistent. CONCLUSION: ECE-LAMS has favorable success with acceptable adverse events in relieving biliary obstruction when ERCP is impossible. The consistency of results across most subgroups suggested that this is a generalizable approach.

20.
Carcinogenesis ; 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38573327

RESUMO

Telomerase reactivation is implicated in approximately 85% of human cancers, yet its underlying mechanism remains elusive. In this study, we elucidate that the Cullin RING Ubiquitin Ligase 4 (CRL4) complex drives the reactivation of human telomerase reverse transcriptase (hTERT) in colorectal cancer (CRC) by degrading the tumor suppressor, menin 1 (MEN1). Our data show that, in noncancerous intestinal epithelial cells, the transcription factor specificity protein 1 (Sp1) recruits both the histone acetyltransferase p300 and MEN1 to suppress hTERT expression, thus maintaining telomere shortness post-cell division. Inflammation-induced microenvironments trigger an activation of the CRL4DCAF4 E3 ligase, leading to MEN1 ubiquitination and degradation in CRC cells. This process nullifies MEN1's inhibitory action, reactivates hTERT expression at the transcriptional level, interrupts telomere shortening, and spurs uncontrolled cellular proliferation. Notably, MEN1 overexpression in CRC cells partially counteracts these oncogenic phenotypes. NSC1517, an inhibitor of the CRL4DCAF4 complex identified through high-throughput screening from a plant-derived chemical pool, hinders MEN1 degradation, attenuates hTERT expression, and suppresses tumor growth in mouse xenograft models. Collectively, our research elucidates the transcriptional mechanism driving hTERT reactivation in CRC. Targeting the CRL4DCAF4 E3 ligase emerges as a promising strategy to counteract cancer cell immortalization and curb tumor progression.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA