Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Chem Asian J ; 19(9): e202400052, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38436107

RESUMO

Aminopeptidases, enzymes with critical roles in human body, are emerging as vital biomarkers for metabolic processes and diseases. Aberrant aminopeptidase levels are often associated with diseases, particularly cancer. Small-molecule probes, such as fluorescent, fluorescent/photoacoustics, bioluminescent, and chemiluminescent probes, are essential tools in the study of aminopeptidases-related diseases. The fluorescent probes provide real-time insights into protein activities, offering high sensitivity in specific locations, and precise spatiotemporal results. Additionally, photoacoustic probes offer signals that are able to penetrate deeper tissues. Bioluminescent and chemiluminescent probes can enhance in vivo imaging abilities by reducing the background. This comprehensive review is focused on small-molecule probes that respond to four key aminopeptidases: aminopeptidase N, leucine aminopeptidase, Pyroglutamate aminopeptidase 1, and Prolyl Aminopeptidase, and their utilization in imaging tumors and afflicted regions. In this review, the design strategy of small-molecule probes, the variety of designs from previous studies, and the opportunities of future bioimaging applications are discussed, serving as a roadmap for future research, sparking innovations in aminopeptidase-responsive probe development, and enhancing our understanding of these enzymes in disease diagnostics and treatment.


Assuntos
Aminopeptidases , Corantes Fluorescentes , Humanos , Aminopeptidases/metabolismo , Corantes Fluorescentes/química , Corantes Fluorescentes/síntese química , Sondas Moleculares/química , Imagem Óptica , Animais , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/síntese química , Neoplasias/diagnóstico por imagem
2.
Biomaterials ; 293: 121955, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36565600

RESUMO

Developing chemiluminescence probe with a slow kinetic profile, even a constant emission within analytical time, would improve the analytical sensitivity, but still remains challenging. This work reports a novel strategy to afford long-lasting in vivo imaging by developing a self-assembled chemiluminophore HPQCL-Cl via the introduction of the hydrogen-bond-driven self-assembled dye HPQ to Schaap's dioxetane. Compared with classical chemiluminophore HCL, self-assembled HPQCL-Cl was isolated from the physiological environment, thereby lowering its deprotonation and prolonging its half-life. Based on HPQCL-Cl, the long-lasting in vivo imaging of 9L-lacz tumor was achieved by developing a ß-gal-responsive probe. Its signals remained constant (<5% change) for about 20 min, which may provide a wide time window for the determination of ß-gal. This probe also showed high tumor-to-normal tissue ratio throughout tumor resection, highlighting its potential in image-guided clinical surgery.


Assuntos
Neoplasias , Humanos , Luminescência , Imagem Óptica/métodos , Hidrogênio
3.
Plants (Basel) ; 11(22)2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36432892

RESUMO

The Staphylococcus aureus SsbA protein (SaSsbA) is a single-stranded DNA-binding protein (SSB) that is categorically required for DNA replication and cell survival, and it is thus an attractive target for potential antipathogen chemotherapy. In this study, we prepared the stem extract of Sarracenia purpurea obtained from 100% acetone to investigate its inhibitory effect against SaSsbA. In addition, the cytotoxic effects of this extract on the survival, apoptosis, proliferation, and migration of B16F10 melanoma cells were also examined. Initially, myricetin, quercetin, kaempferol, dihydroquercetin, dihydrokaempferol, rutin, catechin, ß-amyrin, oridonin, thioflavin T, primuline, and thioflavin S were used as possible inhibitors against SaSsbA. Of these compounds, dihydrokaempferol and oridonin were capable of inhibiting the ssDNA-binding activity of SaSsbA with respective IC50 values of 750 ± 62 and 2607 ± 242 µM. Given the poor inhibition abilities of dihydrokaempferol and oridonin, we screened the extracts of S. purpurea, Nepenthes miranda, and Plinia cauliflora for SaSsbA inhibitors. The stem extract of S. purpurea exhibited high anti-SaSsbA activity, with an IC50 value of 4.0 ± 0.3 µg/mL. The most abundant compounds in the stem extract of S. purpurea were identified using gas chromatography−mass spectrometry. The top five most abundant contents in this extract were driman-8,11-diol, deoxysericealactone, stigmast-5-en-3-ol, apocynin, and α-amyrin. Using the MOE-Dock tool, the binding modes of these compounds, as well as dihydrokaempferol and oridonin, to SaSsbA were elucidated, and their binding energies were also calculated. Based on the S scores, the binding capacity of these compounds was in the following order: deoxysericealactone > dihydrokaempferol > apocynin > driman-8,11-diol > stigmast-5-en-3-ol > oridonin > α-amyrin. Incubation of B16F10 cells with the stem extract of S. purpurea at a concentration of 100 µg/mL caused deaths at the rate of 76%, reduced migration by 95%, suppressed proliferation and colony formation by 99%, and induced apoptosis, which was observed in 96% of the B16F10 cells. Overall, the collective data in this study indicate the pharmacological potential of the stem extract of S. purpurea for further medical applications.

4.
Anal Chem ; 93(16): 6463-6471, 2021 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-33852265

RESUMO

Aminopeptidase N (APN) is capable of cleaving N-terminal amino acids from peptides with alanine in the N-terminal position and plays a key role in the growth, migration, and metastasis of cancer. However, reliable in situ information is hard to be obtained with the current APN-responsive molecular probes because the released fluorophores are cytoplasmic soluble and thus rapidly depart from the enzymatic reaction sites and spread out all over the cytoplasm. Here, we report a de novo precipitated fluorophore, HBPQ, which is completely insoluble in water and shows strong yellow solid emission when excited with a 405 nm laser. Owing to the controllable solid fluorescence of HBPQ by the protection-deprotection of phenolic hydroxyl, we further utilized HBPQ to design an APN-responsive fluorogenic probe (HBPQ-A) for the imaging of intracellular APN. Importantly, HBPQ-A can not only perform in situ imaging of APN in different organelles (e.g., lysosomes, mitochondria, endoplasmic reticula, and so forth) but also display a stable and indiffusible fluorescent signal for reliable mapping of the distribution of APN in living cells. In addition, through real-time imaging of APN in 4T1 tumors, we found that the fluorescent signal with high fidelity generated by HBPQ-A could remain constant even after 12 h, which further confirmed its diffusion-resistant ability and long-term reliable imaging ability. We believe that the precipitated fluorophore may have great potential for long-term in situ imaging.


Assuntos
Antígenos CD13 , Corantes Fluorescentes , Neoplasias , Fluorescência , Humanos , Sondas Moleculares , Neoplasias/diagnóstico por imagem
5.
Proc Natl Acad Sci U S A ; 118(8)2021 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-33602816

RESUMO

Cell membrane-targeted bioimaging is a prerequisite for studying the roles of membrane-associated biomolecules in various physiological and pathological processes. However, long-term in situ bioimaging on the cell membrane with conventional fluorescent probes leads to diffusion into cells from the membrane surface. Therefore, we herein proposed a de novo strategy to construct an antidiffusion probe by integrating a fluorochrome characterized by strong hydrophobicity and low lipophilicity, with an enzyme substrate to meet this challenge. This precipitating fluorochrome HYPQ was designed by conjugating the traditionally strong hydrophobic solid-state fluorochrome 6-chloro-2-(2-hydroxyphenyl) quinazolin-4(3H)-one (HPQ) with a 2-(2-methyl-4H-chromen-4-ylidene) malononitrile group to obtain closer stacking to lower lipophilicity and elongate emission to the far-red to near-infrared wavelength. As proof-of-concept, the membrane-associated enzyme γ-glutamyltranspeptidase (GGT) was selected as a model enzyme to design the antidiffusion probe HYPQG. Then, benefiting from the precipitating and stable signal properties of HYPQ, in situ imaging of GGT on the membrane was successfully realized. Moreover, after HYPQG was activated by GGT, the fluorescence signal on the cell membrane remained unchanged, with incubation time even extending to 6 h, which is significant for in situ monitoring of enzymatic activity. In vivo testing subsequently showed that the tumor region could be accurately defined by this probe after long-term in situ imaging of tumor-bearing mice. The excellent performance of HYPQ indicates that it may be an ideal alternative for constructing universal antidiffusion fluorescent probes, potentially providing an efficient tool for accurate imaging-guided surgery in the future.


Assuntos
Membrana Celular , Corantes Fluorescentes/química , Imagem Molecular/métodos , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Animais , Linhagem Celular Tumoral , Membrana Celular/química , Membrana Celular/metabolismo , Difusão , Corantes Fluorescentes/síntese química , Corantes Fluorescentes/metabolismo , Células Hep G2 , Humanos , Camundongos , Células NIH 3T3 , Neoplasias Experimentais/diagnóstico por imagem , Estudo de Prova de Conceito , Quinazolinonas/química , Ensaios Antitumorais Modelo de Xenoenxerto , gama-Glutamiltransferase/análise , gama-Glutamiltransferase/metabolismo
6.
Chem Commun (Camb) ; 56(90): 14007-14010, 2020 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-33094758

RESUMO

The in situ and real-time supervision of reactive oxygen species (ROS) generated during photodynamic therapy (PDT) is of great significance for lessening nonspecific damage and guiding personalized therapy. However, photosensitizers frequently fail to deliver successful treatment accompanying the ROS-related imaging signals produced, impeding simple treatment outcome predictions and therapeutic schedule adjustments. Here, we report a two-photon fluorescence self-reporting strategy for the in situ and real-time monitoring of treatment response via a novel black phosphorus-based two-photon nanoprobe (TPBP). TPBP effectively generated singlet oxygen (1O2) under near-infrared laser irradiation for PDT, and 1O2 stimulated a two-photon molecule to emit fluorescence signals for feedback of 1O2 generation, which facilitated the regulation of treatment parameters to achieve precise and personalized medicine in deep tissue.


Assuntos
Antineoplásicos/farmacologia , Fluorescência , Corantes Fluorescentes/farmacologia , Fósforo/farmacologia , Fotoquimioterapia , Fótons , Fármacos Fotossensibilizantes/farmacologia , Animais , Antineoplásicos/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Corantes Fluorescentes/química , Humanos , Raios Infravermelhos , Neoplasias Mamárias Experimentais/diagnóstico por imagem , Neoplasias Mamárias Experimentais/tratamento farmacológico , Camundongos , Estrutura Molecular , Imagem Óptica , Fósforo/química , Fármacos Fotossensibilizantes/química , Medicina de Precisão , Espécies Reativas de Oxigênio/metabolismo , Oxigênio Singlete/metabolismo
7.
Chem Commun (Camb) ; 56(13): 1956-1959, 2020 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-31956868

RESUMO

Herein, we report a pH stimulus-disaggregated BODIPY sensitizer (PTS) with low background-toxicity for achieving activated photodynamic/photothermal tumor therapy. Both the photodynamic and photothermal properties of PTS can be activated under acidic conditions, and PTS exhibits excellent antitumor properties, which is revealed by both in vitro and in vivo tests.


Assuntos
Compostos de Boro/química , Fármacos Fotossensibilizantes/química , Animais , Compostos de Boro/farmacologia , Compostos de Boro/uso terapêutico , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Humanos , Concentração de Íons de Hidrogênio , Luz , Camundongos , Camundongos Endogâmicos BALB C , Neoplasias/tratamento farmacológico , Fotoquimioterapia , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Fototerapia , Transplante Heterólogo
8.
Anal Chem ; 91(15): 9682-9689, 2019 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-31282656

RESUMO

Furin, an important member in the family of proprotein convertases, is a participant in the activation of various precursor proteins. The expression level of furin stays in a very low range in most normal cells, but elevates with a big margin in many cancer cells. More importantly, furin is closely related to tumor formation and migration. Herein, a furin-activatable near-infrared (NIR) fluorescent probe (HD-F) was first developed that allowed for specific, sensitive detection and imaging of furin both in vitro and in vivo. HD-F consists of a classical NIR fluorophore (HD), a furin-particular polypeptide sequence RVRR, and a self-eliminating linker. Without the interaction with furin, no noticeable fluorescence enhancement was detected, even over 3 days, demonstrating the excellent stability of HD-F. Upon conversion by furin, there was a distinct signal increase around 708 nm. It has achieved assay and visualization of endogenous furin in various cells, tumor tissues, and tumor-bearing mouse models. Importantly, HD-F is well-suited for monitoring the change of furin expression level in the process of hypoxia-inducible factor-1 stabilized by CoCl2. Moreover, HD-F could visualize the divergence in the expression level of furin between normal and cancer cells, indicating its potential in specific cancer imaging. Thus, this novel probe is able to serve as a potential tackle for better understanding of the intrinsic link between a hypoxic physiological environment and cellular carcinogenesis and predicting cancer in preclinical applications.


Assuntos
Carcinogênese , Furina/química , Animais , Fluorescência , Corantes Fluorescentes , Furina/metabolismo , Células Hep G2 , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Neoplasias Experimentais , Transporte Proteico , Análise de Célula Única
9.
Chem Commun (Camb) ; 55(31): 4487-4490, 2019 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-30912542

RESUMO

In this work, we report the first bioluminescent probe BP-PS for detecting H2Sn with high specificity and sensitivity. Owing to the bioluminescence imaging without requiring an excitation light source, tissue autofluorescence is eliminated and BP-PS shows a high signal-to-noise ratio. Moreover, BP-PS was successfully utilized to visualize endogenous H2Sn in live cells and a murine model of bacterial infection.


Assuntos
Infecções Bacterianas/diagnóstico por imagem , Corantes Fluorescentes/química , Sulfetos/química , Animais , Infecções Bacterianas/patologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Escherichia coli/patogenicidade , Humanos , Camundongos , Microscopia de Fluorescência , Imagem Óptica , Espectrometria de Fluorescência
10.
Chem Sci ; 10(1): 320-325, 2019 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-30713640

RESUMO

Carbon monoxide (CO) acts as an important gasotransmitter in delivering intramolecular and intermolecular signals to regulate a variety of physiological processes. This lipid-soluble gas can freely pass through the cell membrane and then diffuse to adjacent cells acting as a messenger. Although many fluorescent probes have been reported to detect intracellular CO, it is still a challenge to visualize the release behavior of endogenous CO. The main obstacle is the lack of a probe that can anchor onto the cell membrane while having the ability to image CO in real time. In this work, by grafting a polar head onto a long and linear hydrophobic Nile Red molecule, a cell membrane-anchored fluorophore ANR was developed. This design strategy of a cell membrane-anchored probe is simpler than the traditional one of using a long hydrophobic alkyl chain as a membrane-anchoring group, and endows the probe with better water solubility. ANR could rapidly bind to the cell membrane (within 1 min) and displayed a long retention time. ANR was then converted to a CO-responsive fluorescent probe (ANRP) by complexation with palladium based on a metal palladium-catalyzed reaction. ANRP exhibited a fast response to CO with a 25-fold fluorescence enhancement in vitro. The detection limit was calculated to be 0.23 µM, indicating that ANRP is sensitive enough to image endogenous CO. Notably, ANRP showed excellent cell membrane-anchoring ability. With ANRP, the release of CO from HepG2 cells under LPS- and heme-stimulated conditions was visualized and the cell self-protection effect during a drug-induced hepatotoxicity process was also studied. Moreover, ANRP was successfully applied to the detection of intracellular CO in several cell lines and tissues, and the results demonstrated that the liver is the main organ for CO production, and that cancer cells release more CO from their cells than normal cells. ANRP is the first membrane-anchored CO fluorescent probe that has the ability to reveal the relationship between CO release and diseases. It also has prospects for the studying of intercellular signaling functions of CO.

11.
Talanta ; 197: 436-443, 2019 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-30771959

RESUMO

Nitric oxide (NO) plays vital roles in many physiological process and is closely related to many diseases. So far, a number of fluorescent probes have been constructed for the detection of NO successfully. However, the probes still suffer from long-time reaction and limited selectivity. Herein, a fluorescent probe named dRB-OPD is synthesized and used to recognize NO. The probe contains a deoxy-rhodamine B as fluorophore and o-phenylenediamino as reaction site. dRB-OPD shows fast response to NO within 40 s with 170-fold fluorescence enhancement. Moreover, the probe shows high selectivity towards NO over dehydroascorbic acid (DHA), ascorbic acid (AA), and methylglyoxal (MGO). Particularly, the probe can avoid the serious interference from cysteine (Cys) found in the rhodamine lactam-based fluorescent NO probes (RB-OPD). In addition, the probe is applied for the detection of exogenous and endogenous NO in the HepG2 and RAW 264.7 cells with satisfactory results.


Assuntos
Corantes Fluorescentes/química , Óxido Nítrico/análise , Rodaminas/química , Animais , Corantes Fluorescentes/síntese química , Células Hep G2 , Humanos , Camundongos , Estrutura Molecular , Células RAW 264.7
12.
Chem Commun (Camb) ; 55(12): 1758-1761, 2019 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-30664144

RESUMO

A bioluminescent probe, BP-HNO, which exhibits a turn-on response to nitroxyl with high sensitivity and selectivity, is reported for the first time in this work. BP-HNO is free from the interference of biological autofluorescence to afford a high signal-to-noise ratio for bioimaging, and was successfully applied to imaging nitroxyl in live cells and mice.


Assuntos
Corantes Fluorescentes/química , Óxidos de Nitrogênio/química , Animais , Linhagem Celular Tumoral , Humanos , Medições Luminescentes , Camundongos , Neoplasias/diagnóstico por imagem , Neoplasias/patologia , Imagem Óptica , Transfecção , Transplante Heterólogo
13.
Anal Chem ; 91(1): 1056-1063, 2019 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-30539637

RESUMO

The ability to detect cancer early in an accurate and rapid fashion is of critical importance for cancer diagnosis and accurate resection in surgery. γ-Glutamyltranspeptidase (GGT) is overexpressed in several human cancers, while maintaining a low expression in normal microenvironments, and thus is recognized as an important cancer biomarker. To date, rational design of a zero cross-talk ratiometric near-infrared (NIR) GGT fluorescent probe for efficient cancer diagnosis in various biological samples is still a big challenge. In this work, a zero cross-talk ratiometric NIR GGT fluorescent probe named Cy-GSH is developed. Cy-GSH shows high sensitivity to GGT, which is desired for early cancer diagnosis. Upon additional GGT, a large emission shift from 805 to 640 nm is observed, which is suitable for visualizing deeply located cancer in vivo. In addition, successful monitoring of GGT activity in blood, cells, tissues, and in vivo makes Cy-GSH possess great potential for the clinical cancer early diagnosis. Furthermore, accurately visualizing tumors and metastases in mouse models illuminates that the probe may be a convenient tool for fluorescence-guided cancer surgery. To our knowledge, this is the first report to describe the strategy of a zero cross-talk ratiometric NIR GGT fluorescent probe for early cancer diagnosis and fluorescence-guided surgery.


Assuntos
Biomarcadores Tumorais/química , Técnicas Biossensoriais , Fluorescência , Corantes Fluorescentes/química , Imagem Óptica , gama-Glutamiltransferase/química , Animais , Biomarcadores Tumorais/metabolismo , Linhagem Celular , Corantes Fluorescentes/metabolismo , Glutationa/química , Glutationa/metabolismo , Células HCT116 , Células Hep G2 , Humanos , Raios Infravermelhos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Estrutura Molecular , Neoplasias Experimentais/diagnóstico por imagem , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/cirurgia , Espectrometria de Fluorescência , gama-Glutamiltransferase/metabolismo
14.
Anal Chem ; 90(19): 11680-11687, 2018 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-30191711

RESUMO

Furin, a kind of trans-Golgi proprotein convertases, plays important role in various physiological processes. It is overexpressed in many cancers and relates to tumor growth and migration. In situ detection and imaging of furin is of great significance for obtaining real-time information about its activity. However, the previously reported fluorescent probes for furin usually failed to realize in situ detection and long-term bioimaging, because these probes are based on water-soluble fluorophores, which tend to diffuse away from the reaction sites after converted by furin. Such a problem can be addressed by designing a probe, which releases a precipitating fluorophore upon furin conversion. Herein, we developed a probe HPQF for in situ detection of endogenous furin activity and long-term bioimaging by integrating a strictly insoluble solid-state fluorophore 6-chloro-2-(2-hydroxyphenyl) quinazolin-4(3H)-one (Cl-HPQ) with a furin specific peptide substrate (RVRR) through a self-immolative linker. The HPQF probe shows high selectivity and sensitivity to furin. Upon converted by furin, HPQF releases free Cl-HPQ, which precipitates near the enzyme active site. The precipitates emit bright solid-state fluorescence for in situ imaging. HPQF could truly visualize the location of intracellular furin, which was further confirmed by colocalization and immunofluorescence experiments. Excitingly, the long-term bioimaging was also achieved benefiting from its outstanding signal-stability and antidiffusion ability. HPQF was further utilized to monitor the level change of furin under stabilizing of hypoxia-inducible factor (HIF) regulated by cobalt chloride (CoCl2) as well as visualization of furin in MDA-MB-468 cell tumor tissues.


Assuntos
Corantes Fluorescentes/química , Furina/metabolismo , Microscopia de Fluorescência , Linhagem Celular Tumoral , Cobalto/química , Complexo de Golgi/metabolismo , Humanos , Fator 1 Induzível por Hipóxia/metabolismo , Peptídeos/química , Peptídeos/metabolismo
15.
Chem Soc Rev ; 47(18): 7140-7180, 2018 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-30140837

RESUMO

Abnormal enzymatic activities are directly related to the development of cancers. Identifying the location and expression levels of these enzymes in live cancer cells have considerable importance in early-stage cancer diagnoses and monitoring the efficacy of therapies. Small-molecule fluorescent probes have become a powerful tool for the detection and imaging of enzymatic activities in biological systems by virtue of their higher sensitivity, nondestructive fast analysis, and real-time detection abilities. Moreover, due to their structural tailorability, numerous small-molecule enzymatic fluorescent probes have been developed to meet various demands involving real-time tracking and visualizing different enzymes in live cancer cells or in vivo. In this review, we provide an overview of recent advances in small-molecule enzymatic fluorescent probes mainly during the past decade, including the design strategies and applications for various enzymes in live cancer cells. We also highlight the challenges and opportunities in this rapidly developing field of small-molecule fluorescent probes for interventional surgical imaging, as well as cancer diagnosis and therapy.


Assuntos
Enzimas/análise , Corantes Fluorescentes/química , Neoplasias/diagnóstico por imagem , Neoplasias/enzimologia , Imagem Óptica , Bibliotecas de Moléculas Pequenas/química , Enzimas/metabolismo , Humanos , Neoplasias/patologia
16.
Chem Sci ; 9(24): 5347-5353, 2018 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-30009005

RESUMO

Mitophagy induced by hypoxia plays an important role in regulating cellular homeostasis via the removal of dysfunctional mitochondria in the lysosomal degradation pathway, which results in physiological changes in the mitochondria, such as the pH, polarity and viscosity. However, the lack of an effective method for imaging of both the hypoxic microenvironment and the resulting variable mitochondria limits the visualization of hypoxia-induced mitophagy. Based on the specific mitochondrial pH changes during the hypoxia-induced mitophagy process, we have reported a near-infrared fluorescent probe (NIR-HMA) for real-time simultaneous visualization of the hypoxic microenvironment and the subsequent mitophagy process in live cells. NIR-HMA selectively accumulated in the hypoxic mitochondria in the NIR-MAO form, emitting at 710 nm, and then transformed into NIR-MAOH, emitting at 675 nm, in the acidified mitochondria-containing autolysosomes. Importantly, by smartly tethering the hypoxia-responsive group to the hydroxyl group of the NIR-fluorochrome, which shows ratiometric pH changes, NIR-HMA can differentiate between different levels of the hypoxic microenvironment and mitophagy. Furthermore, using NIR-HMA, we could track the complete mitophagy process from the mitochondria to the autolysosomes and visualize mitophagy caused only by hypoxia both in cancer cells and normal cells. Finally, NIR-HMA was applied to investigate the role that mitophagy plays in the hypoxic microenvironment via the cycling hypoxia-reoxygenation model. We observed a decreased fluorescence ratio after reoxygenation and a further increased mitophagy level after hypoxia was induced again, suggesting that mitophagy might be a self-protective process that allows cells to adapt to hypoxia. Our work may provide an attractive way for real-time visualization of relevant physiological processes in hypoxic microenvironments.

17.
ACS Sens ; 3(7): 1354-1361, 2018 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-29877700

RESUMO

γ-Glutamytranspeptidase (GGT) is a significant tumor-related biomarker that overexpresses in several tumor cells. Accurate detection and imaging of GGT activity in serum, live cells, and pathological tissues hold great significance for cancer diagnosis, treatment, and management. Recently developed small molecule fluorescent probes for GGT tend to diffuse to the whole cytoplasm and then translocate out of live cells after enzymatic reaction, which make them fail to provide high spatial resolution and long-term imaging in biological systems. To address these problems, a novel fluorescent probe (HPQ-PDG) which releases a precipitating fluorochrome upon the catalysis of GGT is designed and synthesized. HPQ-PDG is able to detect GGT activity with high spatial resolution and good signal-stability. The large Stokes shift of the probe enables it to detect the activity of GGT in serum samples with high sensitivity. To our delight, the probe is used for imaging GGT activity in live cells with the ability of discriminating cancer cells from normal cells. What's more, we successfully apply it for pathological tissues imaging, with the results indicating that the potential application of HPQ-PDG in histopathological examination. All these results demonstrate the potential application of HPQ-PDG in the clinic.


Assuntos
Corantes Fluorescentes/química , Imagem Óptica/métodos , Quinazolinas/química , gama-Glutamiltransferase/análise , gama-Glutamiltransferase/sangue , Animais , Células HCT116 , Halogenação , Humanos , Camundongos , Microscopia de Fluorescência/métodos , Neoplasias/diagnóstico por imagem , Neoplasias/enzimologia , Ratos , Espectrometria de Fluorescência/métodos
18.
Anal Chem ; 90(6): 4167-4173, 2018 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-29468879

RESUMO

Peroxynitrite (ONOO-), an extremely reactive nitrogen species (RNS), is implicated in diverse pathophysiological conditions, including cancer, neurodegenerative diseases, and inflammation. Sensing and imaging of ONOO- in living systems remains challenging due to the high autofluorescence and the limited light penetration depth. In this work, we developed a bioluminescent probe BP-PN, based on luciferase-luciferin pairs and the ONOO--responded group α-ketoamide, for highly sensitive detection and imaging of endogenous ONOO- in living cells and mice for the first time. Attributed to the BL without external excitation, the probe BP-PN exhibits a high signal-to-noise ratio with relatively low autofluorescence. Furthermore, we examine the application of the probe BP-PN using the mice model of inflammation, and BP-PN shows high sensitivity for imaging endogenous ONOO- in inflamed mice. This newly developed bioluminescent probe would be a potentially useful tool for in vivo imaging of ONOO- in wider physiological and pathological processes.


Assuntos
Substâncias Luminescentes/química , Medições Luminescentes/métodos , Imagem Óptica/métodos , Ácido Peroxinitroso/análise , Animais , Linhagem Celular Tumoral , Sobrevivência Celular , Luciferina de Vaga-Lumes/química , Humanos , Luciferases de Vaga-Lume/química , Camundongos , Camundongos Nus , Imagem Corporal Total/métodos
19.
Talanta ; 175: 421-426, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-28842011

RESUMO

Alkaline phosphatase (ALP), one of the important hydrolases, is associated with the progress of many diseases as a well-defined biomarker. Fluorescence imaging of ALP in living organisms is of great importance for biological studies. However, in vivo detection of ALP remains a great challenge because current fluorescent probes show short excitation and emission wavelength, which are not desired for in vivo fluorescence imaging. Herein we reported a near-infrared (NIR) fluorescent probe (NALP) for turn-on trapping of ALP activity in living cancer cells and tumors. NALP was composed of a NIR-emitting fluorophore as a reporter and phosphate as a triggered moiety. Phosphate group was directly tethered to the hydroxyl group of fluorophore, which prohibited the fluorescence. The probe exhibited a high selectivity and remarkable fluorescence turn-on response to ALP in aqueous solutions with a detection limit of 0.28U/L. Benefiting from NIR excitation and emission, high contrast on the imaging signal could be achieved in response to endogenous ALP activity. Impressively, not only we successfully used NALP for imaging of endogenous ALP activity in cancer cells, but also, applied it for fluorescence imaging of ALP in tumor tissues and living tumor xenograft in nude mice for the first time. The probe was expected to be promising tool for practical application in disease diagnosis on the roles of ALP in disease.


Assuntos
Fosfatase Alcalina/análise , Corantes Fluorescentes/química , Neoplasias/diagnóstico por imagem , Imagem Óptica/métodos , Animais , Células HeLa , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Microscopia Confocal/métodos , Neoplasias/enzimologia
20.
Angew Chem Int Ed Engl ; 56(39): 11788-11792, 2017 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-28755456

RESUMO

Current enzyme-responsive, fluorogenic probes fail to provide in situ information because the released fluorophores tend to diffuse away from the reaction sites. The problem of diffusive signal dilution can be addressed by designing a probe that upon enzyme conversion releases a fluorophore that precipitates. An excited-state intramolecular proton transfer (ESIPT)-based solid-state fluorophore HTPQ was developed that is strictly insoluble in water and emits intense fluorescence in the solid state, with λex/em =410/550 nm, thus making it far better suited to use with a commercial confocal microscope. HTPQ was further utilized in the design of an enzyme-responsive, fluorogenic probe (HTPQA), targeting alkaline phosphatase (ALP) as a model enzyme. HTPQA makes possible diffusion-resistant in situ detection of endogenous ALP in live cells. It was also employed in the visualizing of different levels of ALP in osteosarcoma cells and tissue, thus demonstrating its interest for the diagnosis of this type of cancer.


Assuntos
Fosfatase Alcalina/metabolismo , Corantes Fluorescentes/química , Sondas Moleculares/química , Células HeLa , Humanos , Espectrometria de Fluorescência/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA