Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Struct Mol Biol ; 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38811792

RESUMO

Dysregulation and enhanced expression of MYC transcription factors (TFs) including MYC and MYCN contribute to the majority of human cancers. For example, MYCN is amplified up to several hundredfold in high-risk neuroblastoma. The resulting overexpression of N-myc aberrantly activates genes that are not activated at low N-myc levels and drives cell proliferation. Whether increasing N-myc levels simply mediates binding to lower-affinity binding sites in the genome or fundamentally changes the activation process remains unclear. One such activation mechanism that could become important above threshold levels of N-myc is the formation of aberrant transcriptional condensates through phase separation. Phase separation has recently been linked to transcriptional regulation, but the extent to which it contributes to gene activation remains an open question. Here we characterized the phase behavior of N-myc and showed that it can form dynamic condensates that have transcriptional hallmarks. We tested the role of phase separation in N-myc-regulated transcription by using a chemogenetic tool that allowed us to compare non-phase-separated and phase-separated conditions at equivalent N-myc levels, both of which showed a strong impact on gene expression compared to no N-myc expression. Interestingly, we discovered that only a small percentage (<3%) of N-myc-regulated genes is further modulated by phase separation but that these events include the activation of key oncogenes and the repression of tumor suppressors. Indeed, phase separation increases cell proliferation, corroborating the biological effects of the transcriptional changes. However, our results also show that >97% of N-myc-regulated genes are not affected by N-myc phase separation, demonstrating that soluble complexes of TFs with the transcriptional machinery are sufficient to activate transcription.

2.
BMC Musculoskelet Disord ; 25(1): 359, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38711079

RESUMO

BACKGROUND: With the increasing incidence of steroid-induced necrosis of the femoral head (SNFH), numerous scholars have investigated its pathogenesis. Current evidence suggests that the imbalance between lipogenesis and osteoblast differentiation in bone marrow mesenchymal stem cells (BMSCs) is a key pathological feature of SNFH. MicroRNAs (miRNAs) have strong gene regulatory effects and can influence the direction of cell differentiation. N6-methyladenosine (m6A) is a prevalent epigenetic modification involved in diverse pathophysiological processes. However, knowledge of how miRNAs regulate m6A-related factors that affect BMSC differentiation is limited. OBJECTIVE: We aimed to investigate the role of miR27a in regulating the expression of YTHDF2 in BMSCs. METHODS: We compared miR27a, YTHDF2, and total m6A mRNA levels in SNFH-affected and control BMSCs. CCK-8 and TUNEL assays were used to assess BMSC proliferation and apoptosis. Western blotting and qRT‒PCR were used to measure the expression of osteogenic (ALP, RUNX2, and OCN) and lipogenic (PPARγ and C/EBPα) markers. Alizarin Red and Oil Red O staining were used to quantify osteogenic and lipogenic differentiation, respectively. miR27a was knocked down or overexpressed to evaluate its impact on BMSC differentiation and its relationship with YTHDF2. Bioinformatics analyses identified YTHDF2 as a differentially expressed gene in SNFH (ROC analysis) and revealed potential signaling pathways through GSEA. The effects of YTHDF2 silencing on the lipogenic and osteogenic functions of BMSCs were assessed. RESULTS: miR27a downregulation and YTHDF2 upregulation were observed in the SNFH BMSCs. miR27a knockdown/overexpression modulated YTHDF2 expression, impacting BMSC differentiation. miR27a silencing decreased m6A methylation and promoted osteogenic differentiation, while YTHDF2 silencing exerted similar effects. GSEA suggested potential signaling pathways associated with YTHDF2 in SNFH. CONCLUSION: miR27a regulates BMSC differentiation through YTHDF2, affecting m6A methylation and promoting osteogenesis. This finding suggests a potential therapeutic target for SNFH.


Assuntos
Adenosina/análogos & derivados , Diferenciação Celular , Células-Tronco Mesenquimais , MicroRNAs , Osteogênese , Proteínas de Ligação a RNA , MicroRNAs/genética , MicroRNAs/metabolismo , Células-Tronco Mesenquimais/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Osteogênese/genética , Humanos , Necrose da Cabeça do Fêmur/genética , Necrose da Cabeça do Fêmur/metabolismo , Necrose da Cabeça do Fêmur/induzido quimicamente , Células Cultivadas , Apoptose , Adenosina/metabolismo , Animais , Masculino , Metilação , Proliferação de Células , Lipogênese/genética
3.
Arthritis Rheumatol ; 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589318

RESUMO

OBJECTIVE: Glucocorticoid-induced tumor necrosis factor receptor superfamily-related protein (GITR), with its ligand (GITRL), plays an important role in CD4+ T cell-mediated autoimmunity. This study aimed to investigate the underlying mechanisms of GITRL in primary Sjögren syndrome (pSS). METHODS: Patients with pSS and healthy controls were recruited. Serum GITRL and Th17-related cytokines were determined. RNA sequencing was performed to decipher key signal pathways. Nonobese diabetes (NOD) mice were adopted as experimental Sjögren models and recombinant adeno-associated virus (rAAV) transduction was conducted to verify the therapeutic potentials of targeting GITRL in vivo. RESULTS: Serum GITRL was significantly higher in patients with pSS and showed a positive correlation with leukopenia, thrombocytopenia, autoantibodies, lung involvement, and disease activity. Serum GITRL was correlated with Th17-related cytokines. GITRL promoted the expansion of Th17 and Th17.1 cells. Expansion of granulocyte-macrophage colony-stimulating factor positive (GM-CSF+) CD4+ T cells induced by GITRL could be inhibited by blockade of GITRL. Moreover, GM-CSF could stimulate GITRL expression on monocytes. RNA sequencing revealed mammalian target of rapamycin complexes 1 (mTORC1) might be the key modulator. The increased phosphorylation of S6 and STAT3 and the expansion of Th17 and Th17.1 cells induced by GITRL were effectively inhibited by rapamycin, suggesting a GITRL-mTORC1-GM-CSF positive loop in pathogenic Th17 response in pSS. Administration of an rAAV vector expressing short hairpin RNA targeting GITRL alleviated disease progression in NOD mice. CONCLUSION: Our results identified the pathogenic role of GITRL in exacerbating disease activity and promoting pathogenic Th17 response in pSS through a GITRL-mTORC1-GM-CSF loop. These findings suggest GITRL might be a promising therapeutic target in the treatment of pSS.

4.
J Nanobiotechnology ; 22(1): 197, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38644475

RESUMO

BACKGROUND: Rheumatoid arthritis (RA) is a chronic autoimmune disorder characterized by synovial inflammation, causing substantial disability and reducing life quality. While macrophages are widely appreciated as a master regulator in the inflammatory response of RA, the precise mechanisms underlying the regulation of proliferation and inflammation in RA-derived fibroblast-like synoviocytes (RA-FLS) remain elusive. Here, we provide extensive evidence to demonstrate that macrophage contributes to RA microenvironment remodeling by extracellular vesicles (sEVs) and downstream miR-100-5p/ mammalian target of rapamycin (mTOR) axis. RESULTS: We showed that bone marrow derived macrophage (BMDM) derived-sEVs (BMDM-sEVs) from collagen-induced arthritis (CIA) mice (cBMDM-sEVs) exhibited a notable increase in abundance compared with BMDM-sEVs from normal mice (nBMDM-sEVs). cBMDM-sEVs induced significant RA-FLS proliferation and potent inflammatory responses. Mechanistically, decreased levels of miR-100-5p were detected in cBMDM-sEVs compared with nBMDM-sEVs. miR-100-5p overexpression ameliorated RA-FLS proliferation and inflammation by targeting the mTOR pathway. Partial attenuation of the inflammatory effects induced by cBMDM-sEVs on RA-FLS was achieved through the introduction of an overexpression of miR-100-5p. CONCLUSIONS: Our work reveals the critical role of macrophages in exacerbating RA by facilitating the transfer of miR-100-5p-deficient sEVs to RA-FLS, and sheds light on novel disease mechanisms and provides potential therapeutic targets for RA interventions.


Assuntos
Artrite Reumatoide , Macrófagos , MicroRNAs , Transdução de Sinais , Serina-Treonina Quinases TOR , Animais , Humanos , Masculino , Camundongos , Artrite Experimental/metabolismo , Artrite Experimental/patologia , Artrite Experimental/genética , Artrite Reumatoide/metabolismo , Artrite Reumatoide/genética , Artrite Reumatoide/patologia , Proliferação de Células , Vesículas Extracelulares/metabolismo , Inflamação/metabolismo , Macrófagos/metabolismo , Camundongos Endogâmicos DBA , MicroRNAs/genética , MicroRNAs/metabolismo , Membrana Sinovial/metabolismo , Membrana Sinovial/patologia , Sinoviócitos/metabolismo , Serina-Treonina Quinases TOR/metabolismo
5.
Proc Natl Acad Sci U S A ; 121(7): e2310430121, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38315854

RESUMO

Phase separation (PS) drives the formation of biomolecular condensates that are emerging biological structures involved in diverse cellular processes. Recent studies have unveiled PS-induced formation of several transcriptional factor (TF) condensates that are transcriptionally active, but how strongly PS promotes gene activation remains unclear. Here, we show that the oncogenic TF fusion Yes-associated protein 1-Mastermind like transcriptional coactivator 2 (YAP-MAML2) undergoes PS and forms liquid-like condensates that bear the hallmarks of transcriptional activity. Furthermore, we examined the contribution of PS to YAP-MAML2-mediated gene expression by developing a chemogenetic tool that dissolves TF condensates, allowing us to compare phase-separated and non-phase-separated conditions at identical YAP-MAML2 protein levels. We found that a small fraction of YAP-MAML2-regulated genes is further affected by PS, which include the canonical YAP target genes CTGF and CYR61, and other oncogenes. On the other hand, majority of YAP-MAML2-regulated genes are not affected by PS, highlighting that transcription can be activated effectively by diffuse complexes of TFs with the transcriptional machinery. Our work opens new directions in understanding the role of PS in selective modulation of gene expression, suggesting differential roles of PS in biological processes.


Assuntos
Separação de Fases , Transcriptoma , Fatores de Transcrição/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Oncogenes
6.
Oncol Lett ; 27(4): 152, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38406595

RESUMO

Gastric cancer (GC) is a prominent contributor to global cancer-related mortalities, and a deeper understanding of its molecular characteristics and tumor heterogeneity is required. Single-cell omics and spatial transcriptomics (ST) technologies have revolutionized cancer research by enabling the exploration of cellular heterogeneity and molecular landscapes at the single-cell level. In the present review, an overview of the advancements in single-cell omics and ST technologies and their applications in GC research is provided. Firstly, multiple single-cell omics and ST methods are discussed, highlighting their ability to offer unique insights into gene expression, genetic alterations, epigenomic modifications, protein expression patterns and cellular location in tissues. Furthermore, a summary is provided of key findings from previous research on single-cell omics and ST methods used in GC, which have provided valuable insights into genetic alterations, tumor diagnosis and prognosis, tumor microenvironment analysis, and treatment response. In summary, the application of single-cell omics and ST technologies has revealed the levels of cellular heterogeneity and the molecular characteristics of GC, and holds promise for improving diagnostics, personalized treatments and patient outcomes in GC.

7.
Ann Rheum Dis ; 83(5): 576-588, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38302261

RESUMO

OBJECTIVES: B10 and B10pro cells suppress immune responses via secreting interleukin (IL)-10. However, their regulators and underlying mechanisms, especially in human autoimmune diseases, are elusive. This study aimed to address these questions in rheumatoid arthritis (RA), one of the most common highly disabling autoimmune diseases. METHODS: The frequencies and functions of B10 and B10pro cells in healthy individuals and patients with RA were first analysed. The effects of proinflammatory cytokines, particularly tumour necrosis factor (TNF)-α on the quantity, stability and pathogenic phenotype of these cells, were then assessed in patients with RA before and after anti-TNF therapy. The underlying mechanisms were further investigated by scRNA-seq database reanalysis, transcriptome sequencing, TNF-α-/- and B cell-specific SHIP-1-/- mouse disease model studies. RESULTS: TNF-α was a key determinant for B10 cells. TNF-α elicited the proinflammatory feature of B10 and B10pro cells by downregulating IL-10, and upregulating interferon-γ and IL-17A. In patients with RA, B10 and B10pro cells were impaired with exacerbated proinflammatory phenotype, while anti-TNF therapy potently restored their frequencies and immunosuppressive functions, consistent with the increased B10 cells in TNF-α-/- mice. Mechanistically, TNF-α diminished B10 and B10pro cells by inhibiting their glycolysis and proliferation. TNF-α also regulated the phosphatidylinositol phosphate signalling of B10 and B10pro cells and dampened the expression of SHIP-1, a dominant phosphatidylinositol phosphatase regulator of these cells. CONCLUSIONS: TNF-α provoked the proinflammatory phenotype of B10 and B10pro cells by disturbing SHIP-1 in RA, contributing to the disease development. Reinstating the immunosuppressive property of B10 and B10pro cells might represent novel therapeutic approaches for RA.


Assuntos
Artrite Reumatoide , Doenças Autoimunes , Linfócitos B Reguladores , Fator de Necrose Tumoral alfa , Animais , Humanos , Camundongos , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/metabolismo , Doenças Autoimunes/metabolismo , Linfócitos B Reguladores/metabolismo , Fenótipo , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases/genética , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases/metabolismo , Inibidores do Fator de Necrose Tumoral/uso terapêutico , Fator de Necrose Tumoral alfa/metabolismo
8.
Respir Med ; 222: 107530, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38228214

RESUMO

OBJECTIVE: Anti-melanoma differentiation-associated gene 5 antibody positive dermatomyositis (MDA5+ DM) is a unique subtype of idiopathic inflammatory myopathy (IIM) that is associated with rapidly progressive interstitial lung disease (RPILD) and high mortality. This retrospective study aimed to identify predictors of mortality and discover novel easily detectable indicators. METHODS: We retrospectively reviewed 183 MDA5+ DM-ILD patients who were from West China Hospital of Sichuan University myositis cohort, the largest single-center cohort of southwest China, from January 2016 to October 2021. Clinical characteristics were reviewed, and risk factors for mortality were determined by univariate and multivariable Cox regression analyses. RESULTS: Of the 183 MDA5+ DM-ILD patients, 59 were presented with RP-ILD, and 53 died during the follow-up period. Compared with the survived patients, deceased patients had higher rates of dyspnea, higher concentrations of CRP, and LDH, but lower rates of heliotrope sign, lower quantity of lymphocyte and lower levels of serum uric acid (SUA). Notably, patients with hypouricemia (SUA <154 µmol/L) had higher concentrations of CRP and LDH, higher neutrophil counts, lower lymphocyte counts and higher mortality rate when compared with the non-hypouricemia group. Multivariate Cox regression analyses confirmed that hypouricemia, smoking, RPILD, high HRCT score, elevated LDH, and lymphopenia were independent risk factors for mortality in MDA5+ DM-ILD patients. Moreover, patients with hypouricemia had significantly lower survival rates than non-hypouricemia patients. CONCLUSION: Our study identified hypouricemia as a non-redundant promising prognostic factor for the mortality of MDA5+ DM-ILD patients, which may hopefully provide insight into the prevention and pathogenesis study.


Assuntos
Dermatomiosite , Doenças Pulmonares Intersticiais , Humanos , Estudos Retrospectivos , Prognóstico , Doenças Pulmonares Intersticiais/diagnóstico , Ácido Úrico , Helicase IFIH1 Induzida por Interferon , Autoanticorpos , Progressão da Doença
9.
J Gene Med ; 26(1): e3598, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37743820

RESUMO

BACKGROUND: Immune-mediated necrotizing myopathy (IMNM) is an autoimmune myopathy characterized by severe proximal weakness and muscle fiber necrosis, yet its pathogenesis remains unclear. So far, there are few bioinformatics studies on underlying pathogenic genes and infiltrating immune cell profiles of IMNM. Therefore, we aimed to characterize differentially expressed genes (DEGs) and infiltrating cells in IMNM muscle biopsy specimens, which may be useful for elucidating the pathogenesis of IMNM. METHODS: Three datasets (GSE39454, GSE48280 and GSE128470) of gene expression profiling related to IMNM were obtained from the Gene Expression Omnibus database. Data were normalized, and DEG analysis was performed using the limma package. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses of DEGs were performed using clusterProfiler. The CIBERSORT algorithm was performed to identify infiltrating cells. Machine learning algorithm and gene set enrichment analysis (GSEA) were performed to find distinctive gene signatures and the underlying signaling pathways of IMNM. RESULTS: DEG analysis identified upregulated and downregulated in IMNM muscle compared to the gene expression levels of other groups. GO and KEGG analysis showed that the pathogenesis of IMNM was notable for the under-representation of pathways that were important in dermatomyositis and inclusion body myositis. Three immune cells (M2 macrophages, resting dendritic cells and resting natural killer cells) with differential infiltration and five key genes (NDUFAF7, POLR2J, CD99, ARF5 and SKAP2) in patients with IMNM were identified through the CIBERSORT and machine learning algorithm. The GSEA results revealed that the key genes were remarkably enriched in diverse immunological and muscle metabolism-related pathways. CONCLUSIONS: We comprehensively explored immunological landscape of IMNM, which is indicative for the research of IMNM pathogenesis.


Assuntos
Doenças Musculares , Miosite , Humanos , Transcriptoma , Miosite/genética , Miosite/patologia , Doenças Musculares/genética , Perfilação da Expressão Gênica , Aprendizado de Máquina , RNA Polimerase II/genética
10.
Hereditas ; 160(1): 29, 2023 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-37349788

RESUMO

BACKGROUND: Glioma stem cells (GSCs) are responsible for glioma recurrence and drug resistance, yet the mechanisms underlying their maintenance remains unclear. This study aimed to identify enhancer-controlled genes involved in GSCs maintenance and elucidate the mechanisms underlying their regulation. METHODS: We analyzed RNA-seq data and H3K27ac ChIP-seq data from GSE119776 to identify differentially expressed genes and enhancers, respectively. Gene Ontology analysis was performed for functional enrichment. Transcription factors were predicted using the Toolkit for Cistrome Data Browser. Prognostic analysis and gene expression correlation was conducted using the Chinese Glioma Genome Atlas (CGGA) data. Two GSC cell lines, GSC-A172 and GSC-U138MG, were isolated from A172 and U138MG cell lines. qRT-PCR was used to detect gene transcription levels. ChIP-qPCR was used to detect H3K27ac of enhancers, and binding of E2F4 to target gene enhancers. Western blot was used to analyze protein levels of p-ATR and γH2AX. Sphere formation, limiting dilution and cell growth assays were used to analyze GSCs growth and self-renewal. RESULTS: We found that upregulated genes in GSCs were associated with ataxia-telangiectasia-mutated-and-Rad3-related kinase (ATR) pathway activation, and that seven enhancer-controlled genes related to ATR pathway activation (LIN9, MCM8, CEP72, POLA1, DBF4, NDE1, and CDKN2C) were identified. Expression of these genes corresponded to poor prognosis in glioma patients. E2F4 was identified as a transcription factor that regulates enhancer-controlled genes related to the ATR pathway activation, with MCM8 having the highest hazard ratio among genes positively correlated with E2F4 expression. E2F4 bound to MCM8 enhancers to promote its transcription. Overexpression of MCM8 partially restored the inhibition of GSCs self-renewal, cell growth, and the ATR pathway activation caused by E2F4 knockdown. CONCLUSION: Our study demonstrated that E2F4-mediated enhancer activation of MCM8 promotes the ATR pathway activation and GSCs characteristics. These findings offer promising targets for the development of new therapies for gliomas.


Assuntos
Glioma , Humanos , Glioma/genética , Glioma/metabolismo , Fatores de Transcrição/metabolismo , Proliferação de Células/genética , Células-Tronco Neoplásicas/metabolismo , Proteínas de Manutenção de Minicromossomo/metabolismo , Fator de Transcrição E2F4/metabolismo , Proteínas Associadas aos Microtúbulos , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo
11.
Medicine (Baltimore) ; 102(12): e33404, 2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-36961135

RESUMO

RATIONALE: Pediatric pyloric obstruction is a condition characterized by complete or incomplete obstruction of the distal stomach caused by obstructive lesions of the distal stomach, pyloric duct, or proximal duodenum. Congenital hypertrophic pyloric stenosis is the most common cause of pediatric pyloric obstruction, whereas acquired pyloric stenosis is comparatively rare, with peptic ulcer disease being the most common cause. PATIENT CONCERNS: We describe a case of a 5-year-old girl who had peptic ulcer disease and developed scarring pyloric stenosis. We also give comprehensive details of the diagnosis and course of treatment. DIAGNOSIS: Intraoperative findings revealed ulcerative, scarring pyloric obstruction. INTERVENTIONS: Conservative treatment failed and surgery was subsequently performed. OUTCOMES: No further vomiting symptoms occurred after surgery. And 3 months after surgery, the patient had gained weight on average and had no further complaints. LESSONS: Although scarring pediatric pyloric blockage due to peptic ulcer is less common, emphasis should be placed on rapid diagnosis by accurate gastroscopy, barium meal of the gastrointestinal tract, or ultrasonography. Depending on the patient's condition, conservative treatment or surgery should be chosen carefully selected.


Assuntos
Úlcera Péptica , Estenose Pilórica Hipertrófica , Feminino , Humanos , Criança , Pré-Escolar , Estenose Pilórica Hipertrófica/complicações , Estenose Pilórica Hipertrófica/diagnóstico , Estenose Pilórica Hipertrófica/cirurgia , Cicatriz/complicações , Úlcera Péptica/complicações , Úlcera Péptica/cirurgia , Piloro/cirurgia , Constrição Patológica/complicações
12.
PeerJ ; 10: e14038, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36164609

RESUMO

Background: Medicago polymorpha L., a seasonal vegetable, is commonly grown in China. The increasing use of nanoparticles (NPs) such as ZnO and CuO NPs in agriculture has raised concerns about their potential risks for plant growth and for human consumption. There is a lack of research on the effects of ZnO and CuO NPs on agronomic performance of Medicago polymorpha L. and their potential risks for human health. Methods: In this study, different treatment concentrations of ZnO NPs (25, 50, 100, and 200 mg kg-1) and CuO NPs (10, 25, 50, and 100 mg kg-1) were used to determine their effects on the growth and nutrient absorption of Medicago polymorpha L., as well as their potential risk for human health. Results: The results showed that ZnO and CuO NPs increased the fresh weight of Medicago polymorpha L. by 5.8-11.8 and 3.7-8.1%, respectively. The best performance for ZnO NPs occurred between 25-50 mg kg-1 and the best performance for CuO NPs occurred between 10-25 mg kg-1. Compared with the control, ZnO and CuO NPs improved the macronutrients phosphorus (P), potassium (K), magnesium (Mg), and calcium (Ca). The following micronutrients were also improved: iron (Fe), nickel (Ni), copper (Cu), zinc (Zn), and manganese (Mn), with the exception of nitrogen (N) accumulation. Low treatment concentrations exhibited more efficient nutrient uptake than high treatment concentrations. A comprehensive analysis showed that the optimum concentrations were 25 mg kg-1 for ZnO NPs and 10 mg kg-1 for CuO NPs. The potential non-carcinogenic health risk of Medicago polymorpha L. treated with ZnO and CuO NPs was analyzed according to the estimated daily intake (EDI), the hazard quotient (HQ), and the cumulative hazard quotient (CHQ). Compared with the oral reference dose, the EDI under different ZnO and CuO NPs treatments was lower. The HQ and CHQ under different ZnO and CuO NPs treatments were far below 1. This indicated that Medicago polymorpha L. treated with ZnO and CuO NPs did not pose any non-carcinogenic health risk to the human body. Therefore, ZnO and CuO NPs were considered as a safe nano fertilizer for Medicago polymorpha L. production according to growth analysis and a human health risk assessment.


Assuntos
Nanopartículas , Óxido de Zinco , Humanos , Óxido de Zinco/farmacologia , Verduras , Estações do Ano , Nanopartículas/efeitos adversos
13.
Sci Rep ; 12(1): 7700, 2022 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-35546163

RESUMO

Ethanol is a widely available carbon compound that can be increasingly produced with a net negative carbon balance. Carbon-negative ethanol might therefore provide a feedstock for building a wider range of sustainable chemicals. Here we show how ethanol can be converted with a cell free system into acetyl-CoA, a central precursor for myriad biochemicals, and how we can use the energy stored in ethanol to generate ATP, another key molecule important for powering biochemical pathways. The ATP generator produces acetone as a value-added side product. Our ATP generator reached titers of 27 ± 6 mM ATP and 59 ± 15 mM acetone with maximum ATP synthesis rate of 2.8 ± 0.6 mM/h and acetone of 7.8 ± 0.8 mM/h. We illustrated how the ATP generating module can power cell-free biochemical pathways by converting mevalonate into isoprenol at a titer of 12.5 ± 0.8 mM and a maximum productivity of 1.0 ± 0.05 mM/h. These proof-of-principle demonstrations may ultimately find their way to the manufacture of diverse chemicals from ethanol and other simple carbon compounds.


Assuntos
Etanol , Engenharia Metabólica , Acetona , Acetilcoenzima A/metabolismo , Trifosfato de Adenosina , Carbono/metabolismo , Etanol/metabolismo
14.
Theranostics ; 12(3): 1132-1147, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35154478

RESUMO

Rationale: Employing in situ bioorthogonal catalysis within subcellular organelles, such as lysosomes, remains a challenge. Lysosomal membranes pose an intracellular barrier for drug sequestration, thereby greatly limiting drug accumulation and concentrations at intended targets. Here, we provide a proof-of-concept report of a nanozyme-based strategy that mediates in situ bioorthogonal uncaging reactions within lysosomes, followed by lysosomal escape and the release of uncaged drugs into the cytoplasm. Methods: A model system composed of a protein-based nanozyme platform (based on the transition metals Co, Fe, Mn, Rh, Ir, Pt, Au, Ru and Pd) and caged compound fluorophores was designed to screen for nanozyme/protecting group pairings. The optimized nanozyme/protecting group pairing was then selected for utilization in the design of anti-cancer pro-drugs and drug delivery systems. Results: Our screening system identified Pd nanozymes that mimic mutant P450BM3 activity and specifically cleave propargylic ether groups. We found that the intrinsic peroxidase-like activity of Pd nanozymes induced the production of free radicals under acid conditions, resulting in lysosomal membrane leakage of uncaged molecules into the cytoplasm. Using a multienzyme synergistic approach, our Pd nanozymes achieved in situ bioorthogonal catalysis and nanozyme-mediated lysosomal membrane leakage, which were successfully applied to the design of model pro-drugs for anti-cancer therapy. The extension of our nanozyme system to the construction of a liposome-based "all-in-one" delivery system offers promise for realizing efficacious in vivo tumor-targeted therapies. Conclusions: This strategy shows a promising new direction by utilizing nanotechnology for drug development through in situ catalyzing bioorthogonal chemistry within specific subcellular organelles.


Assuntos
Neoplasias , Pró-Fármacos , Catálise , Humanos , Lisossomos
15.
Cell Death Discov ; 7(1): 292, 2021 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-34645788

RESUMO

N6-methyladenosine (m6A) has been identified to exert critical roles in human cancer; however, the regulation of m6A modification on glioblastoma multiforme (GBM) and long non-coding RNA (lncRNA) CASC9 (cancer susceptibility 9) is still unclear. Firstly, MeRIP-Seq revealed the m6A profile in the GBM. Moreover, the m6A-related lncRNA CASC9 expression was significantly elevated in the GBM tissue and its ectopic high expression was associated with poor survival, acting as an independent prognostic factor for GBM patients. Functionally, the aerobic glycolysis was promoted in the CASC9 overexpression transfection, which was inhibited in CASC9 knockdown in GBM cells. Mechanistically, m6A reader IGF2BP2 (insulin-like growth factor 2 mRNA binding protein 2) could recognize the m6A site of CASC9 and enhance its stability, then CASC9 cooperated with IGF2BP2, forming an IGF2BP2/CASC9 complex, to increase the HK2 (Hexokinase 2) mRNA stability. Our findings reveal that CASC9/IGF2BP2/HK2 axis promotes the aerobic glycolysis of GBM.

16.
Sci Rep ; 10(1): 14386, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32873834

RESUMO

Regulatory CD19+CD24hiCD27+ B cells were proved to be numerically decreased and functionally impaired in the peripheral blood (PB) from rheumatoid arthritis (RA), with the potential of converting into osteoclast-priming cells. However, the distribution and function of CD19+CD24hiCD27+ B cells in RA synovial fluid (SF) were unclear. In this study, we investigated whether RA SF CD19+CD24hiCD27+ B cells were increased and associated with bone destruction. We found that the proportion of RA SF CD19+CD24hiCD27+ B cells was increased significantly, and was positively correlated with swollen joint counts, tender joint counts and disease activity. CXCL12, CXCL13, CCL19 contributed to the recruitment of CD19+CD24hiCD27+ B cells in RA SF. Notably, CD19+CD24hiCD27+ B cells in the SF from RA expressed significantly more RANKL compared to OA and that in the PB from RA. Critically, RA CD19+CD24hiCD27+ B cells promoted osteoclast (OC) differentiation in vitro, and the number of OCs was higher in cultures with RA SF CD19+CD24hiCD27+ B cells than in those derived from RA PB. Collectively, these findings revealed the accumulation of CD19+CD24hiCD27+ B cells in SF and their likely contribution to joint destruction in RA. Modulating the status of CD19+CD24hiCD27+ B cells might provide novel therapeutic strategies for RA.


Assuntos
Antígenos CD19/metabolismo , Artrite Reumatoide/imunologia , Linfócitos B Reguladores/imunologia , Antígeno CD24/metabolismo , Osteoartrite/imunologia , Índice de Gravidade de Doença , Líquido Sinovial/imunologia , Membro 7 da Superfamília de Receptores de Fatores de Necrose Tumoral/metabolismo , Adulto , Idoso , Artrite Reumatoide/sangue , Estudos de Casos e Controles , Feminino , Citometria de Fluxo , Humanos , Masculino , Pessoa de Meia-Idade , Osteoartrite/sangue , Ligante RANK/metabolismo
17.
Nat Commun ; 11(1): 4292, 2020 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-32855421

RESUMO

Cost competitive conversion of biomass-derived sugars into biofuel will require high yields, high volumetric productivities and high titers. Suitable production parameters are hard to achieve in cell-based systems because of the need to maintain life processes. As a result, next-generation biofuel production in engineered microbes has yet to match the stringent cost targets set by petroleum fuels. Removing the constraints imposed by having to maintain cell viability might facilitate improved production metrics. Here, we report a cell-free system in a bioreactor with continuous product removal that produces isobutanol from glucose at a maximum productivity of 4 g L-1 h-1, a titer of 275 g L-1 and 95% yield over the course of nearly 5 days. These production metrics exceed even the highly developed ethanol fermentation process. Our results suggest that moving beyond cells has the potential to expand what is possible for bio-based chemical production.


Assuntos
Bioquímica/métodos , Butanóis/metabolismo , Enzimas/metabolismo , Acetolactato Sintase/química , Acetolactato Sintase/metabolismo , Trifosfato de Adenosina , Oxirredutases do Álcool/genética , Oxirredutases do Álcool/metabolismo , Bioquímica/instrumentação , Reatores Biológicos , Sistema Livre de Células , Evolução Molecular Direcionada , Enzimas/química , Enzimas/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Glucose/metabolismo , Temperatura , Termodinâmica
18.
Int J Clin Exp Pathol ; 13(7): 1755-1759, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32782701

RESUMO

Lymphoproliferative disorders of natural killer cells (LPD-NK) are rare lymphoproliferative diseases involving NK cells. Here, we present two cases of LPD-NK. The first case is a 63-year-old man who presented with high fever, cytopenia, and a history of myelodsyplastic syndrome. He was finally diagnosed with aggressive NK cell leukemia and died due to progression of the disease within 15 days of diagnosis. The second case is a 70-year-old man with granulocytopenia who did not have clinical manifestations; he was diagnosed with chronic lymphoproliferative disorder of NK cells and a watch and wait approach was adopted until six-month follow up. This article describes the clinical features, pathogenesis, diagnosis, treatments, and prognosis of LPD-NK through a literature review of case reports.

19.
Mol Immunol ; 119: 92-100, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32006824

RESUMO

Regulatory B10 cells have been shown to exhibit impaired functions in autoimmune diseases. However, the underlying mechanism is still obscure. In the present study, we aimed to understand the regulatory characteristics of regulatory B10 cells and how these cells are involved in the development of rheumatoid arthritis (RA). Here, we chose CD19+CD24hiCD27+ as the phenotype of regulatory B10 cells. We found that the frequencies of CD19+CD24hiCD27+ regulatory B10 cells were decreased and that their IL-10-producing function was impaired in patients with RA compared with healthy controls (HCs). The impairment in CD19+CD24hiCD27+ B10 cells was partially attributed to the decreased expression of CD27 induced by the upregulated CD70 expression on CD19 + B cells and CD4 + T cells. The proportion of CD19+CD24hiCD27+ regulatory B10 cells could be restored by blocking the CD70-CD27 interaction with an anti-CD70 antibody. Furthermore, the CD70-CD27 interaction significantly elevated IL-10 expression and might compensate for the decreased number of CD19+CD24hiCD27+ B cells. Hence, the CD70-CD27 interaction might play a critical role in the numerical and functional impairments of regulatory B10 cells, thus contributing to RA pathogenesis. In conclusion, the change in CD19+CD24hiCD27+ regulatory B10 cells in RA was only a consequence, not the cause, of RA development, but the increased expression of CD70 might be the culprit.


Assuntos
Artrite Reumatoide/imunologia , Linfócitos B Reguladores/imunologia , Ligante CD27/metabolismo , Membro 7 da Superfamília de Receptores de Fatores de Necrose Tumoral/biossíntese , Adulto , Antígenos CD19 , Linfócitos B Reguladores/metabolismo , Antígeno CD24 , Regulação para Baixo , Feminino , Humanos , Interleucina-10/biossíntese , Interleucina-1beta/metabolismo , Masculino , Pessoa de Meia-Idade , Fator de Necrose Tumoral alfa/metabolismo
20.
J Cell Mol Med ; 23(6): 4386-4394, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30973678

RESUMO

Mounting evidence suggests the vital roles of long noncoding RNA (lncRNAs) in the glioma. However, the role of LINC00511 in gliomagenesis is still uncovered. Here, in this study, we aim to investigate the effects of LINC00511 on the glioma cancer phenotype and its deepgoing mechanism. Results indicated that LINC00511 was up-regulated in glioma tissues and cell lines, moreover its overexpression positively correlated with the poor prognosis and advanced pathological stages. For the upstream regulation, LINC00511 was epigenetically up-regulated by transcription factor specificity protein 1 (SP1). Gain and loss of functional experiments demonstrated that LINC00511 promoted the proliferation and invasion of glioma cells in vitro. The knockdown of LINC00511 repressed the tumour growth in vivo. Mechanistically, LINC00511 positively regulated the CCND2 expression via competitively sponging with miR-124-3p. Overall, our finding illuminates that LINC00511 is induced by SP1 and accelerates the glioma progression through targeting miR-124-3p/CCND2 axis, constructing the SP1/LINC00511/miR-124-3p/CCND2 axis.


Assuntos
Biomarcadores Tumorais/metabolismo , Ciclina D2/metabolismo , Regulação Neoplásica da Expressão Gênica , Glioma/patologia , MicroRNAs/genética , RNA Longo não Codificante/genética , Fator de Transcrição Sp1/metabolismo , Animais , Apoptose , Biomarcadores Tumorais/genética , Estudos de Casos e Controles , Movimento Celular , Proliferação de Células , Ciclina D2/genética , Progressão da Doença , Seguimentos , Glioma/genética , Glioma/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Prognóstico , Fator de Transcrição Sp1/genética , Taxa de Sobrevida , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA