Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Poult Sci ; 103(6): 103696, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38593549

RESUMO

Zinc (Zn) could alleviate the adverse effect of high temperature (HT) on intestinal integrity and barrier function of broilers, but the underlying mechanisms remain unclear. We aimed to investigate the possible protective mechanisms of Zn on primary cultured broiler jejunal epithelial cells exposed to thermal stress (TS). In Exp.1, jejunal epithelial cells were exposed to 40℃ (normal temperature, NT) and 44℃ (HT) for 1, 2, 4, 6, or 8 h. Cells incubated for 8 h had the lowest transepithelial resistance (TEER) and the highest phenol red permeability under HT. In Exp.2, the cells were preincubated with different Zn sources (Zn sulfate as iZn and Zn proteinate with the moderate chelation strength as oZn) and Zn supplemental levels (50 and 100 µmol/L) under NT for 24 h, and then continuously incubated under HT for another 8 h. TS increased phenol red permeability, lactate dehydrogenase (LDH) activity and p-PKC/PKC level, and decreased TEER, cell proliferation, mRNA levels of claudin-1, occludin, zona occludens-1 (ZO-1), PI3K, AKT and mTOR, protein levels of claudin-1, ZO-1 and junctional adhesion molecule-A (JAM-A), and the levels of p-ERK/ERK, p-PI3K/PI3K and p-AKT/AKT. Under HT, oZn was more effective than iZn in increasing TEER, occludin, ZO-1, PI3K, and AKT mRNA levels, ZO-1 protein level, and p-AKT/AKT level; supplementation with 50 µmol Zn/L was more effective than 100 µmol Zn/L in increasing cell proliferation, JAM-A, PI3K, AKT, and PKC mRNA levels, JAM-A protein level, and the levels of p-ERK/ERK and p-PI3K/PI3K; furthermore, supplementation with 50 µmol Zn/L as oZn had the lowest LDH activity, and the highest ERK, JNK-1, and mTOR mRNA levels. Therefore, supplemental Zn, especially 50 µmol Zn/L as oZn, could alleviate the TS-induced integrity and barrier function damage of broiler jejunal epithelial cells possibly by promoting cell proliferation and tight junction protein expression via the MAPK and PI3K/AKT/mTOR signaling pathways.


Assuntos
Células Epiteliais , Jejuno , Fosfatidilinositol 3-Quinases , Transdução de Sinais , Serina-Treonina Quinases TOR , Animais , Jejuno/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Embrião de Galinha , Serina-Treonina Quinases TOR/metabolismo , Serina-Treonina Quinases TOR/genética , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinases/genética , Zinco/administração & dosagem , Zinco/farmacologia , Galinhas , Proteínas Aviárias/metabolismo , Proteínas Aviárias/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Células Cultivadas , Resposta ao Choque Térmico/efeitos dos fármacos , Temperatura Alta/efeitos adversos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos
2.
Poult Sci ; 102(4): 102547, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36878099

RESUMO

The preovulatory hormonal surge (PS) consists of elevated circulating luteinizing hormone (LH) and progesterone levels and serves as the primary trigger for ovarian follicle ovulation. Increased LH and progesterone, produced by the pituitary and the granulosa layer of the largest ovarian follicle (F1), respectively, result from hypothalamic stimulation and steroid hormone feedback on the hypothalamo-pituitary-gonadal (HPG) axis. The hypothalamus, pituitary, F1 granulosa, and granulosa layer of the fifth largest follicle (F5) were isolated from converter turkey hens outside and during the PS and subjected to RNA sequencing (n = 6 per tissue). Differentially expressed genes were subjected to functional annotation using DAVID and IPA. A total of 12, 250, 1235, and 1938 DEGs were identified in the hypothalamus, pituitary, F1 granulosa, and F5 granulosa respectively (q<0.05, |fold change|>1.5, FPKM>1). Gene Ontology (GO) analysis revealed key roles for metabolic processes, steroid hormone feedback, and hypoxia induced gene expression changes. Upstream analysis identified a total of 4, 42, 126, and 393 potential regulators of downstream gene expression in the hypothalamus, pituitary, F1G, and F5G respectively, with a total of 63 potential regulators exhibiting differential expression between samples collected outside and during the PS (|z-score|>2). The results from this study serve to increase the current knowledge base surrounding the regulation of the PS in turkey hens. Through GO analysis, downstream processes and functions associated with the PS were linked to identified DEGs, and through upstream analysis, potential regulators of DEGs were identified for further analysis. Linking upstream regulators to the downstream PS and ovulation events could allow for genetic selection or manipulation of ovulation frequencies in turkey hens.


Assuntos
Galinhas , Progesterona , Feminino , Animais , Progesterona/metabolismo , Galinhas/metabolismo , Folículo Ovariano/fisiologia , Hormônio Luteinizante/metabolismo , Ovulação , Perfilação da Expressão Gênica/veterinária , Células da Granulosa/metabolismo
3.
Front Physiol ; 13: 1020870, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36353371

RESUMO

During embryonic life, chicks mainly derive energy from hepatic oxidation of yolk lipids. After hatch, chicks must rely on carbohydrate-rich feed to obtain energy. This requires an abrupt and intensive switch of metabolic processes, particularly in the liver. We recently identified a number of transcriptional and post-transcriptional regulatory networks that work concordantly to tune metabolic processes during the metabolic switch. Here, we used delayed feeding post-hatch (48 h) to impede the metabolic switch in broilers. We used RNA-seq to identify hepatic transcriptome differences between late stage embryos (E18) and two-day-old chicks (D2), which were either fed-from-hatch (FED) or not fed (DLY). Between FED and E18, 2,430 genes were differentially expressed (fold-change≥ 2; FDR p-value 0.05), of these 1,237 were downregulated in FED birds and 1,193 were upregulated. Between DLY and E18, 1979 genes were differentially expressed, of these 1,043 were downregulated and 936 were upregulated in DLY birds. Between DLY and FED, 880 genes were differentially expressed, of these 543 were downregulated and 337 were upregulated in DLY birds. We found that in addition to disturbances in a number of metabolic pathways, unfed chicks had a widespread suppression of gene networks associated with cell proliferation, cell cycle progression and mitosis. Expression patterns suggest that hepatocytes of delayed-fed birds have abnormal mitosis and increased polyploidization. This suggests that post-hatch feed consumption maintains the rate and integrity of liver growth immediately, which in turn, likely helps facilitate the appropriate programming of hepatic metabolic networks.

4.
Front Genet ; 12: 619196, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33815464

RESUMO

Low and high egg producing hens exhibit gene expression differences related to ovarian steroidogenesis. High egg producing hens display increased expression of genes involved in progesterone and estradiol production, in the granulosa layer of the largest follicle (F1G) and small white follicles (SWF), respectively, whereas low egg producing hens display increased expression of genes related to progesterone and androgen production in the granulosa (F5G) and theca interna layer (F5I) of the fifth largest follicle, respectively. Transcriptome analysis was performed on F1G, F5G, F5I, and SWF samples from low and high egg producing hens to identify novel regulators of ovarian steroidogenesis. In total, 12,221 differentially expressed genes (DEGs) were identified between low and high egg producing hens across the four cell types examined. Pathway analysis implied differential regulation of the hypothalamo-pituitary-thyroid (HPT) axis, particularly thyroid hormone transporters and thyroid hormone receptors, and of estradiol signaling in low and high egg producing hens. The HPT axis showed up-regulation in high egg producing hens in less mature follicles but up-regulation in low egg producing hens in more mature follicles. Estradiol signaling exclusively exhibited up-regulation in high egg producing hens. Treatment of SWF cells from low and high egg producing hens with thyroid hormone in vitro decreased estradiol production in cells from high egg producing hens to the levels seen in cells from low egg producing hens, whereas thyroid hormone treatment did not impact estradiol production in cells from low egg producing hens. Transcriptome analysis of the major cell types involved in steroidogenesis inferred the involvement of the HPT axis and estradiol signaling in the regulation of differential steroid hormone production seen among hens with different egg production levels.

5.
BMC Genomics ; 21(1): 647, 2020 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-32957911

RESUMO

BACKGROUND: High egg producing hens (HEPH) show increased hypothalamic and pituitary gene expression related to hypothalamo-pituitary-gonadal (HPG) axis stimulation as well as increased in vitro responsiveness to gonadotropin releasing hormone (GnRH) stimulation in the pituitary when compared to low egg producing hens (LEPH). Transcriptome analysis was performed on hypothalamus and pituitary samples from LEPH and HEPH to identify novel regulators of HPG axis function. RESULTS: In the hypothalamus and pituitary, 4644 differentially expressed genes (DEGs) were identified between LEPH and HEPH, with 2021 genes up-regulated in LEPH and 2623 genes up-regulated in HEPH. In LEPH, up-regulated genes showed enrichment of the hypothalamo-pituitary-thyroid (HPT) axis. Beta-estradiol was identified as an upstream regulator regardless of tissue. When LEPH and HEPH samples were compared, beta-estradiol was activated in HEPH in 3 of the 4 comparisons, which correlated to the number of beta-estradiol target genes up-regulated in HEPH. In in vitro pituitary cell cultures from LEPH and HEPH, thyroid hormone pretreatment negatively impacted gonadotropin subunit mRNA levels in cells from both LEPH and HEPH, with the effect being more prominent in HEPH cells. Additionally, the effect of estradiol pretreatment on gonadotropin subunit mRNA levels in HEPH cells was negative, whereas estradiol pretreatment increased gonadotropin subunit mRNA levels in LEPH cells. CONCLUSIONS: Up-regulation of the HPT axis in LEPH and upstream beta-estradiol activation in HEPH may play a role in regulating HPG axis function, and ultimately ovulation rates. Thyroid hormone and estradiol pretreatment impacted gonadotropin mRNA levels following GnRH stimulation, with the inhibitory effects of thyroid hormone more detrimental in HEPH and estradiol stimulatory effects more prominent in LEPH. Responsiveness to thyroid hormone and estradiol may be due to desensitization to thyroid hormone and estradiol in LEPH and HEPH, respectively, due to up-regulation of the HPT axis in LEPH and of the HPG axis in HEPH. Further studies will be necessary to identify possible target gene desensitization mechanisms and elicit the regulatory role of the HPT axis and beta-estradiol on ovulation rates in turkey hens.


Assuntos
Ovos/normas , Fertilidade , Hipotálamo/metabolismo , Hipófise/metabolismo , Transcriptoma , Perus/genética , Animais , Proteínas Aviárias/genética , Proteínas Aviárias/metabolismo , Estradiol/metabolismo , Feminino , Hormônio Liberador de Gonadotropina/metabolismo , Perus/fisiologia
6.
Poult Sci ; 99(2): 1163-1173, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32029148

RESUMO

Variation in egg production exists in commercial turkey hens, with low egg producing hens (LEPH) costing more per egg produced than high egg producing hens (HEPH). Egg production correlates with ovulation frequency, which is governed by the hypothalamic-pituitary-gonadal (HPG) axis. Ovulation is stimulated by a preovulatory surge (PS) of progesterone and luteinizing hormone, triggered by gonadotropin releasing hormone release and inhibited by gonadotropin inhibiting hormone. Differences between LEPH and HEPH were characterized by determining HPG axis plasma hormone profiles and mRNA levels for key genes, both outside and inside of the PS (n = 3 per group). Data were analyzed with a 2-way ANOVA using the mixed models procedure of SAS. In the HPG axis, plasma progesterone levels were not affected by egg production level but were elevated during the PS. In contrast, plasma estradiol levels were higher in HEPH than in LEPH but were not associated with the PS. LEPH exhibited decreased gene expression associated with ovulation stimulation and increased gene expression associated with ovulation inhibition in the hypothalamus and pituitary. In ovarian follicle cells, LEPH displayed decreased gene expression associated with progesterone, androgen, and estradiol production in the F1 follicle granulosa cells, F5 theca interna cells, and small white follicle cells, respectively. Different degrees of stimulation and inhibition within all tissues of the HPG axis were noted between LEPH and HEPH turkey hens, with HEPH showing higher expression of genes related to ovulation and steroidogenesis.


Assuntos
Proteínas Aviárias/genética , Estradiol/sangue , Sistema Hipotálamo-Hipofisário/fisiologia , Ovário/fisiologia , Progesterona/sangue , Reprodução/fisiologia , Perus/fisiologia , Animais , Proteínas Aviárias/metabolismo , Feminino
7.
Poult Sci ; 98(12): 7041-7049, 2019 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31399736

RESUMO

A preovulatory surge (PS) of luteinizing hormone (LH) and progesterone triggers follicle ovulation, which is the first step of egg production and is orchestrated by the hypothalamo-pituitary-gonadal (HPG) axis. In the HPG axis, hypothalamic peptides, gonadotropin releasing hormone, and gonadotropin inhibitory hormone, control the production of follicle stimulating hormone and LH by the pituitary, which subsequently regulate ovarian production of estradiol and progesterone, respectively. The goal of this study was to characterize the HPG axis function of average egg producing hens by assessing plasma hormone profiles and hypothalamic, pituitary, and follicle gene expression outside and during the PS (n = 3 per group). Results were analyzed by a one-way ANOVA using the mixed models procedure of SAS. Plasma estradiol was not affected by the PS (P > 0.05), but plasma progesterone levels increased 8-fold during the PS when compared to basal progesterone levels (P < 0.05). HPG axis gene expression related to ovulation stimulation (e.g., GNRH, GNRHR, and LHB) was down-regulated during the PS; whereas gene expression related to follicle development (e.g., FSHB) was up-regulated during the PS. Additionally, in the hypothalamus and pituitary, estradiol receptor expression was up-regulated during the PS, whereas progesterone receptor expression was down-regulated during the PS. In the follicle cells, gene expression pertaining to progesterone (e.g., STAR), androgen (e.g., HSD17B1), and estradiol (e.g., CYP19A1) production was up-regulated during the PS. Prior to this study, the HPG axis had yet to be characterized during the PS in the turkey hen. This study showed that the PS significantly impacted gene expression in the hypothalamus, pituitary, and ovarian follicles. These results provide a foundation for further research into the regulation of ovulation and egg production in turkey hens.


Assuntos
Fase Folicular/fisiologia , Regulação da Expressão Gênica/fisiologia , Sistema Hipotálamo-Hipofisário/fisiologia , Ovário/fisiologia , Perus/fisiologia , Animais , Estradiol/sangue , Feminino , Hormônio Liberador de Gonadotropina/genética , Hormônio Liberador de Gonadotropina/metabolismo , Progesterona/sangue , Receptores de Esteroides/genética , Receptores de Esteroides/metabolismo
8.
Sci Rep ; 9(1): 11042, 2019 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-31363150

RESUMO

Porcine reproductive and respiratory syndrome virus (PRRSV) activates NF-κB during infection. We examined the ability of all 22 PRRSV genes for NF-κB regulation and determined the nucleocapsid (N) protein as the NF-κB activator. Protein inhibitor of activated STAT1 (signal transducer and activator of transcription 1) (PIAS1) was identified as a cellular protein binding to N. PIAS1 is known to bind to p65 (RelA) in the nucleus and blocks its DNA binding, thus functions as a repressor of NF-κB. Binding of N to PIAS1 released p65 for NF-κB activation. The N-terminal half of PIAS1 was mapped as the N-binding domain, and this region overlapped its p65-binding domain. For N, the region between 37 and 72 aa was identified as the binding domain to PIAS1, and this domain alone was able to activate NF-κB. A nuclear localization signal (NLS) knock-out mutant N did not activate NF-κB, and this is mostly likely due to the lack of its interaction with PIAS1 in the nucleus, demonstrating the positive correlation between the binding of N to PIAS1 and the NF-κB activation. Our study reveals a role of N in the nucleus for NF-κB activation and proinflammatory cytokine production during infection.


Assuntos
Proteínas do Capsídeo/metabolismo , NF-kappa B/metabolismo , Síndrome Respiratória e Reprodutiva Suína/metabolismo , Vírus da Síndrome Respiratória e Reprodutiva Suína/patogenicidade , Proteínas Inibidoras de STAT Ativados/metabolismo , Animais , Sítios de Ligação , Células Cultivadas , Células HeLa , Humanos , Macrófagos/metabolismo , Macrófagos/virologia , NF-kappa B/genética , Sinais de Localização Nuclear , Ligação Proteica , Proteínas Inibidoras de STAT Ativados/química , Proteínas Inibidoras de STAT Ativados/genética , Suínos
9.
Genes (Basel) ; 10(2)2019 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-30764490

RESUMO

Marek's Disease is a lymphoproliferative disease of chickens caused by Marek's Disease Virus. Similar to other herpesviruses, Marek's Disease Virus (MDV) encodes its own small non-coding regulatory RNAs termed microRNAs (miRNAs). We previously found that the expression profile of these viral miRNAs is affected by vaccination with Herpesvirus of Turkeys (HVT). To further characterize miRNA-mediated gene regulation in MDV infections, in the current study we examine the impact of HVT vaccination on cellular miRNA expression in MDV-infected specific-pathogen-free (SPF) chickens. We used small RNA-seq to identify 24 cellular miRNAs that exhibited altered splenic expression in MDV infected chickens (42 dpi) compared to age-matched uninfected birds. We then used Real Time-quantitative PCR (RT-qPCR) to develop expression profiles of a select group of these host miRNAs in chickens receiving the HVT vaccine and in vaccinated chickens subsequently infected with MDV. As was seen with viral miRNA, host miRNAs had unique splenic expression profiles between chickens infected with HVT, MDV, or co-infected birds. We also discovered a group of transcription factors, using a yeast one-hybrid screen, which regulates immune responses and cell growth pathways and also likely regulates the expression of these cellular miRNAs. Overall, this study suggests cellular miRNAs are likely a critical component of both protection from and progression of Marek's Disease.


Assuntos
Doença de Marek/genética , MicroRNAs/genética , Baço/metabolismo , Vacinação/veterinária , Animais , Embrião de Galinha , Herpesvirus Meleagrídeo 1/imunologia , Herpesvirus Meleagrídeo 1/patogenicidade , Doença de Marek/imunologia , Doença de Marek/prevenção & controle , Doença de Marek/virologia , MicroRNAs/metabolismo
10.
Poult Sci ; 98(2): 642-652, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30184155

RESUMO

A shared feature of herpesviruses is their ability to enter a latent state following an initially lytic infection. Marek's disease virus serotype 1 (MDV-1) is an oncogenic avian herpesvirus. Small RNA profiling studies have suggested that microRNAs (miRNAs) are involved in viral latency. Sodium butyrate treatment is known to induce herpesvirus reactivation. The present study was undertaken to determine transcriptome and miRNome changes induced by sodium butyrate in 2 MDV-transformed cell lines, RP2 and CU115. In the first 24 h post-treatment, microarray analysis of transcriptional changes in cell lines RP2 and CU115 identified 137 and 114 differentially expressed genes, respectively. Small RNA deep-sequencing analysis identified 17 cellular miRNAs that were differentially expressed. The expression of MDV-encoded miRNAs was also altered upon treatment. Many of the genes and miRNAs that are differentially expressed are involved in regulation of the cell cycle, mitosis, DNA metabolism, and lymphocyte differentiation.


Assuntos
Ácido Butírico/farmacologia , Galinhas , Herpesvirus Galináceo 2/genética , MicroRNAs/genética , RNA Viral/genética , Transcriptoma/genética , Ativação Viral/efeitos dos fármacos , Animais , Linhagem Celular , Doença de Marek/imunologia , Doença de Marek/virologia , MicroRNAs/metabolismo , RNA Viral/metabolismo , Linfócitos T/imunologia , Linfócitos T/virologia
11.
Virus Res ; 249: 85-92, 2018 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-29577951

RESUMO

BACKGROUND: Porcine reproductive and respiratory syndrome (PRRS) is characterized by abortions in pregnant sows and respiratory disease, particularly in young pigs. The causative agent is porcine reproductive and respiratory syndrome virus (PRRSV), a member of the arterivirus family. GP5 and M are the major envelope proteins encoded by PRRSV. To further characterize these two viral proteins, a yeast two-hybrid approach was utilized to identify interacting partners of PRRSV GP5 and M proteins. METHODS: Interacting partners of PRRSV GP5 and M were identified using a porcine macrophage cDNA library yeast two-hybrid screen. Subsequently, the interactions between PRRSV GP5/M and the cellular protein Snapin were mapped using truncated versions of the GP5 and M proteins in a yeast two-hybrid assay to localize the interactions. The Snapin gene from the African green monkey kidney cell line MARC-145, which is permissive to PRRSV, was cloned and sequenced, and compared to porcine Snapin. Cellular Snapin expression was reduced in PRRSV-infected cells via Snapin-specific siRNA targeting. RESULTS: Here we show that the cellular Snap-Associated Protein (Snapin), an accessory protein of the SNARE membrane fusion network and also a member of the BLOC-1 complex, specifically interacts with GP5 and M. Inhibition of Snapin expression via siRNA targeting of Snapin results in the reduction of PRRSV replication. CONCLUSIONS: The PRRSV GP5 and M proteins are known to form a heterodimeric complex which is important for viral structure and infectivity, and both PRRSV proteins can interact with cellular Snapin. Snapin knock-down suggests these interactions could be important in the PRRSV lifecycle. GP5 and M proteins may interact with Snapin to exploit its roles in intracellular transport and membrane fusion.


Assuntos
Interações Hospedeiro-Patógeno , Vírus da Síndrome Respiratória e Reprodutiva Suína/fisiologia , Mapeamento de Interação de Proteínas , Proteínas de Transporte Vesicular/metabolismo , Proteínas do Envelope Viral/metabolismo , Proteínas da Matriz Viral/metabolismo , Animais , Perfilação da Expressão Gênica , Técnicas de Silenciamento de Genes , Macrófagos/virologia , Ligação Proteica , Suínos , Técnicas do Sistema de Duplo-Híbrido , Proteínas de Transporte Vesicular/genética , Replicação Viral
12.
Oncotarget ; 8(52): 89665-89680, 2017 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-29163779

RESUMO

Maternal heat stress induced the aberrant epigenetic patterns resulting in the abnormal development of offspring embryos. It is unclear whether maternal dietary manganese supplementation as an epigenetic modifier could protect the chick embryonic development against maternal heat stress via epigenetic mechanisms. To test this hypothesis using an avian model, a completely randomized design with a 2 (maternal normal and high environmental temperatures of 21 and 32°C, respectively) × 3 (maternal dietary manganese sources, the control diet without manganese supplementation and the control diet + 120 mg/kg as either inorganic or organic manganese) factorial arrangement was adopted. Maternal environmental hyperthermia increased mRNA expressions of heat shock proteins 90 and 70, cyclin-dependent kinase 6 and B-cell CLL/lymphoma 2-associated X protein displaying oxidative damage and apoptosis in the embryonic heart. Maternal environmental hyperthermia impaired the embryonic development associated with the alteration of epigenetic status, as evidenced by global DNA hypomethylation and histone 3 lysine 9 hypoacetylation in the embryonic heart. Maternal dietary manganese supplementation increased the heart anti-apoptotic gene B-cell CLL/lymphoma 2 expressions under maternal environmental hyperthermia and manganese superoxide dismutase enzyme activity in the embryonic heart. Maternal dietary organic Mn supplementation effectively eliminated the impairment of maternal environmental hyperthermia on the embryonic development. Maternal dietary manganese supplementation up-regulated manganese superoxide dismutase mRNA expression by reducing DNA methylation and increasing histone 3 lysine 9 acetylation of its promoter. It is suggested that maternal dietary manganese addition could protect the chick embryonic development against maternal heat stress via enhancing epigenetic-activated antioxidant and anti-apoptotic abilities.

13.
Oncotarget ; 8(12): 19814-19824, 2017 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-28177898

RESUMO

The role of maternal dietary zinc supplementation in protecting the embryos from maternal hyperthermia-induced negative effects via epigenetic mechanisms was examined using an avian model (Gallus gallus). Broiler breeder hens were exposed to two maternal temperatures (21°C and 32°C) × three maternal dietary zinc treatments (zinc-unsupplemented control diet, the control diet + 110 mg zinc/kg inorganic or organic zinc) for 8 weeks. Maternal hyperthermia increased the embryonic mortality and induced oxidative damage evidenced by the elevated mRNA expressions of heat shock protein genes. Maternal dietary zinc deficiency damaged the embryonic development associated with the global DNA hypomethylation and histone 3 lysine 9 hyperacetylation in the embryonic liver. Supplementation of zinc in maternal diets effectively eliminated the embryonic mortality induced by maternal hyperthermia and enhanced antioxidant ability with the increased mRNA and protein expressions of metallothionein IV in the embryonic liver. The increased metallothionein IV mRNA expression was due to the reduced DNA methylation and increased histone 3 lysine 9 acetylation of the metallothionein IV promoter regardless of zinc source. These data demonstrate that maternal dietary zinc addition as an epigenetic modifier could protect the offspring embryonic development against maternal heat stress via enhancing the epigenetic-activated antioxidant ability.


Assuntos
Antioxidantes/metabolismo , Suplementos Nutricionais , Temperatura Alta , Zinco/farmacologia , Acetilação/efeitos dos fármacos , Fenômenos Fisiológicos da Nutrição Animal , Animais , Proteínas Aviárias/genética , Proteínas Aviárias/metabolismo , Western Blotting , Embrião de Galinha , Galinhas , Metilação de DNA/efeitos dos fármacos , Epigênese Genética/efeitos dos fármacos , Feminino , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Histonas/metabolismo , Fígado/efeitos dos fármacos , Fígado/embriologia , Fígado/metabolismo , Lisina/metabolismo , Metalotioneína/genética , Metalotioneína/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Zinco/administração & dosagem
14.
Br J Nutr ; 116(11): 1851-1860, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27890044

RESUMO

To investigate the effect of Mn on antioxidant status and on the expressions of heat shock proteins/factors in tissues of laying broiler breeders subjected to heat challenge, we used a completely randomised design (n 6) with a factorial arrangement of 2 environmental temperatures (normal, 21±1°C, and high, 32±1°C)×3 dietary Mn treatments (a Mn-unsupplemented basal diet (CON), or a basal diet supplemented with 120 mg Mn/kg diet, either as inorganic Mn sulphate (iMn) or as organic Mn proteinate (oMn)). There were no interactions (P>0·10) between environmental temperature and dietary Mn in any of the measured indices. High temperature decreased (P<0·003) Mn content, and also tended (P=0·07) to decrease Cu Zn superoxide dismutase (CuZnSOD) activity in the liver and heart. However, an increased Mn superoxide dismutase (MnSOD) activity (P<0·05) and a slight increase in malondialdehyde level (P=0·06) were detected in breast muscle. Up-regulated (P<0·05) expressions of heat shock factor 1 (HSF1) and HSF3 mRNA and heat shock protein 70 (HSP70) mRNA and protein were found in all three tissues. Broiler breeders fed either iMn or oMn had higher tissue Mn content (P<0·0001), heart MnSOD and CuZnSOD activities (P<0·01) and breast muscle MnSOD protein levels (P<0·05), and lower (P<0·05) breast muscle HSP70 mRNA and protein levels compared with those fed CON. Broiler breeders fed oMn had higher (P<0·03) bone Mn content than those fed iMn. These results indicate that high temperature decreases Mn retention and increases HSP70, HSF1 and HSF3 expressions in the tissues of laying broiler breeders. Furthermore, dietary supplementation with Mn in either source may enhance the heart's antioxidant ability and inhibit the expression of HSP70 in breast muscle. Finally, the organic Mn appears to be more available than inorganic Mn for bone in laying broiler breeders regardless of environmental temperatures.


Assuntos
Proteínas Aviárias/metabolismo , Galinhas/fisiologia , Proteínas de Ligação a DNA/metabolismo , Dieta/veterinária , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico/metabolismo , Resposta ao Choque Térmico , Manganês/administração & dosagem , Transativadores/metabolismo , Fatores de Transcrição/metabolismo , Animais , Proteínas Aviárias/genética , Biomarcadores/metabolismo , Quelantes/administração & dosagem , Galinhas/crescimento & desenvolvimento , China , Proteínas de Ligação a DNA/genética , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Choque Térmico HSP70/genética , Ventrículos do Coração/enzimologia , Ventrículos do Coração/crescimento & desenvolvimento , Ventrículos do Coração/metabolismo , Fatores de Transcrição de Choque Térmico , Proteínas de Choque Térmico/genética , Absorção Intestinal , Fígado/enzimologia , Fígado/crescimento & desenvolvimento , Fígado/metabolismo , Manganês/metabolismo , Compostos de Manganês/administração & dosagem , Músculo Esquelético/enzimologia , Músculo Esquelético/crescimento & desenvolvimento , Músculo Esquelético/metabolismo , Estresse Oxidativo , RNA Mensageiro/metabolismo , Distribuição Aleatória , Sulfatos/administração & dosagem , Transativadores/genética , Fatores de Transcrição/genética
15.
Br J Nutr ; 114(12): 1965-74, 2015 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-26435464

RESUMO

To investigate the effect of Mn on antioxidant status and expression levels of heat-shock proteins/factors in tissues of laying broiler breeders subjected to heat challenge, we used a completely randomised design (n 6) with a factorial arrangement of 2 environmental temperatures (normal, 21 (sem 1)°C and high, 32 (sem 1)°C)×3 dietary Mn treatments (an Mn-unsupplemented basal diet (CON), or a basal diet supplemented with 120 mg Mn/kg diet as inorganic Mn sulphate (iMn) or organic Mn proteinate (oMn)). There were no interactions (P>0·10) between environmental temperature and dietary Mn in all of the measured indices. High temperature decreased (P<0·003) Mn content, and also tended (P=0·07) to decrease copper zinc superoxide dismutase (CuZnSOD) activity in the liver and heart. However, an increased manganese superoxide dismutase (MnSOD) activity (P<0·05) and a slight increase of malondialdehyde level (P=0·06) were detected in breast muscle. Up-regulated (P<0·05) expression levels of heat-shock factor 1 (HSF1) and HSF3 mRNA and heat-shock protein 70 (HSP70) mRNA and protein were found in all three tissues. Broiler breeders fed either iMn or oMn had higher tissue Mn content (P<0·0001), heart MnSOD and CuZnSOD activities (P<0·01) and breast muscle MnSOD protein levels (P<0·05), and lower (P<0·05) breast muscle HSP70 mRNA and protein levels than those fed CON. Broiler breeders fed oMn had higher (P<0·03) bone Mn content than those fed iMn. These results indicate that high temperature decreases Mn retention and increases HSP70 and HSF1, HSF3 expression levels in tissues of laying broiler breeders. Furthermore, dietary supplementation with Mn in either source may enhance heart antioxidant ability and inhibit the expression of HSP70 in breast muscle. Finally, the organic Mn appears to be more available than inorganic Mn for bone in laying broiler breeders regardless of environmental temperatures.


Assuntos
Antioxidantes/metabolismo , Dieta , Proteínas de Choque Térmico/metabolismo , Temperatura Alta , Manganês/administração & dosagem , Temperatura , Animais , Galinhas , Feminino , Proteínas de Choque Térmico/genética , Fígado/enzimologia , Malondialdeído/metabolismo , Manganês/farmacocinética , Miocárdio/enzimologia , RNA/metabolismo , Superóxido Dismutase/metabolismo , Distribuição Tecidual
16.
Avian Dis ; 57(2 Suppl): 332-9, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23901744

RESUMO

MicroRNA (miRNA) is a major family of small RNAs that posttranscriptionally regulate gene expression. Small RNA profiling studies have revealed that some viruses, particularly large DNA viruses, such as Marek's disease virus (MDV), encode their own set of miRNAs. There are currently 406 viral miRNAs in miRBase, of which 392 are encoded by herpesviruses. To date, 26 MDV-1 miRNAs, 36 MDV-2 miRNAs, and 28 herpesvirus of turkeys miRNAs have been identified. Interestingly, herpesvirus miRNAs appear to have spatial conservation, located in clusters within repeat regions, but lack sequence conservation. Two clusters of MDV-1 miRNA have been identified, one located near the MEQ gene and one within the latency-associated transcript (LAT). miRNA profiling studies have shown that MDV miRNA are differentially expressed between strains and stages of infection. For example, mdv1-miR-M4 and mdv1-miR-M2-3p are three- and sixfold higher, expressed, respectively, in vv+ strains compared to vv strains. A recent study found that deletion or seed region mutation of mdv1-miR-M4 reduces viral oncogenicity, suggesting a link between mdv1-mir-M4 and lymphoma development in MDV-infected birds. Taken together, current research suggests that viral miRNAs are a key component of MDV pathogenesis.


Assuntos
Regulação Viral da Expressão Gênica , Mardivirus/genética , Doença de Marek/virologia , MicroRNAs/genética , RNA Viral/genética , Animais , Sequência Conservada , Herpesviridae/genética , Herpesviridae/metabolismo , Herpesviridae/patogenicidade , Interações Hospedeiro-Patógeno , Mardivirus/metabolismo , Mardivirus/patogenicidade , MicroRNAs/metabolismo , Aves Domésticas , Doenças das Aves Domésticas/virologia , RNA Viral/metabolismo
17.
Avian Dis ; 57(2 Suppl): 372-9, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23901749

RESUMO

It is well established that herpesviruses encode numerous microRNAs (miRNAs) and that these virally encoded small RNAs play multiple roles in infection. The present study was undertaken to determine how co-infection of a pathogenic MDV serotype one (MDV1) strain (MD5) and a vaccine strain (herpesvirus of turkeys [HVT]) alters viral miRNA expression in vivo. We first used small RNA deep sequencing to identify MDV1-encoded miRNAs that are expressed in tumorigenic spleens of MDV1-infected birds. The expression patterns of these miRNAs were then further assessed at an early time point (7 days postinfection [dpi]) and a late time point (42 dpi) in birds with and without HVT vaccination using real-time PCR (RT-PCR). Additionally, the effect of MDV1 co-infection on HVT-encoded miRNAs was determined using RT-PCR. A diverse population of miRNAs was expressed in MDV-induced tumorigenic spleens at 42 dpi, with 18 of the 26 known mature miRNAs represented. Of these, both mdv1-miR-M4-5p and mdv1-miR-M2-3p were the most highly expressed miRNAs. RT-PCR analysis further revealed that nine MDV miRNAs were differentially expressed between 7 dpi and 42 dpi infected spleens. At 7 dpi, three miRNAs were differentially expressed between the spleens of birds co-infected with HVT and MD5 compared with birds singly infected with MD5, whereas at 42 dpi, nine miRNAs were differentially expressed. At 7 dpi, the expression of seven HVT-encoded miRNAs was affected in the spleens of co-infected birds compared with birds only receiving the HVT vaccine. At 42 dpi, six HVT-encoded miRNAs were differentially expressed between the two groups. Target prediction analysis suggests that these differentially expressed viral miRNAs are involved in regulating several cellular processes, including cell proliferation and the adaptive immune response.


Assuntos
Galinhas , Herpesvirus Meleagrídeo 1/genética , Herpesvirus Galináceo 2/genética , Doença de Marek/virologia , MicroRNAs/genética , Doenças das Aves Domésticas/virologia , RNA Viral/genética , Animais , Coinfecção/virologia , Herpesvirus Meleagrídeo 1/metabolismo , Herpesvirus Galináceo 2/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala/veterinária , Vacinas contra Doença de Marek/administração & dosagem , MicroRNAs/metabolismo , RNA Viral/metabolismo , Reação em Cadeia da Polimerase em Tempo Real/veterinária , Análise de Sequência de RNA/veterinária , Organismos Livres de Patógenos Específicos , Baço/virologia
18.
J Proteome Res ; 11(12): 5663-77, 2012 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-23106611

RESUMO

Vaccination is an effective strategy to reduce the loss of chickens in the poultry industry caused by Marek's Disease (MD), an avian lymphoproliferative disease. The vaccines currently used are from attenuated serotype 1 Marek's disease virus (MDV) or naturally nononcogenic MDV strains. To prepare for future immunity breaks, functional genomic and proteomic studies have been used to better understand the underlying mechanisms of MDV pathogenicity and the effects induced by the vaccine viruses. In this study, a combined approach of quantitative GeLC-MSE and qualitative ERLIC/IMAC/LC-MS/MS analysis were used to identify abundance changes of proteins and the variations of phosphorylation status resulting from the perturbations due to infection with an attenuated oncogenic virus strain (Md11/75C) and several nononcogenic virus strains (CVI988, FC126 and 301B) in vitro. Using this combined approach, several signal transduction pathways mapped by the identified proteins were found to be altered at both the level of protein abundance and phosphorylation. On the basis of this study, a kinase-dependent pathway to regulate phosphorylation of 4E-BP1 to modulate assembly of the protein translation initiation complex was revealed. The differences of 4E-BP1 phosphorylation patterns as well as the measured abundance changes among several other proteins that regulate host transcriptional and translational activities across the virus strains used in this study provide new insight for future functional and biochemical characterization of specific proteins involved in MDV pathogenesis.


Assuntos
Fibroblastos/virologia , Herpesvirus Galináceo 2/patogenicidade , Fosfoproteínas/análise , Proteoma/análise , Proteômica/métodos , Sequência de Aminoácidos , Animais , Células Cultivadas , Embrião de Galinha , Cromatografia de Afinidade/métodos , Fator de Iniciação 4E em Eucariotos/metabolismo , Fibroblastos/metabolismo , Herpesvirus Galináceo 2/classificação , Doença de Marek , Espectrometria de Massas/métodos , Dados de Sequência Molecular , Complexos Multiproteicos/análise , Complexos Multiproteicos/metabolismo , Iniciação Traducional da Cadeia Peptídica , Fosfopeptídeos/análise , Fosfopeptídeos/metabolismo , Fosfoproteínas/metabolismo , Fosforilação , Proteoma/metabolismo , Transcrição Gênica , Ensaio de Placa Viral
19.
J Proteome Res ; 10(9): 4041-53, 2011 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-21736374

RESUMO

Marek's Disease (MD) is an avian neoplastic disease caused by Marek's Disease Virus (MDV). The mechanism of virus transition between the lytic and latent cycle is still being investigated; however, post-translational modifications, especially phosphorylation, have been thought to play an important role. Previously, our group has used strong cation exchange chromatography in conjunction with reversed-phase liquid chromatography-tandem mass spectrometry (LC-MS/MS) to study the changes in global proteomic expression upon MDV infection (Ramaroson , M. F.; Ruby, J.; Goshe, M. B.; Liu , H.-C. S. J. Proteome Res. 2008, 7, 4346-4358). Here, we extend our study by developing an effective separation and enrichment approach to investigate the changes occurring in the phosphoproteome using electrostatic repulsion-hydrophilic interaction chromatography (ERLIC) to fractionate peptides from chicken embryo fibroblast (CEF) digests and incorporating a subsequent IMAC enrichment step to selectively target phosphorylated peptides for LC-MS/MS analysis. To monitor the multidimensional separation between mock- and MDV-infected CEF samples, a casein phosphopeptide mixture was used as an internal standard. With LC-MS/MS analysis alone, no CEF phosphopeptides were detected, while with ERLIC fractionation only 1.2% of all identified peptides were phosphorylated. However, the incorporation of IMAC enrichment with ERLIC fractionation provided a 50-fold increase in the percentage of identified phosphopeptides. Overall, a total of 581 unique phosphopeptides were identified (p < 0.05) with those of the MDV-infected CEF sample containing nearly twice as many as the mock-infected control of which 11% were unique to MDV proteins. The changes in the phosphoproteome are discussed including the role that microtubule-associated proteins may play in MDV infection mechanisms.


Assuntos
Interações Hospedeiro-Patógeno/fisiologia , Mardivirus , Fragmentos de Peptídeos/análise , Fosfopeptídeos/análise , Proteômica/métodos , Sequência de Aminoácidos , Animais , Proteínas Aviárias/análise , Proteínas Aviárias/metabolismo , Embrião de Galinha , Cromatografia Líquida , Fibroblastos , Interações Hidrofóbicas e Hidrofílicas , Doença de Marek/imunologia , Doença de Marek/metabolismo , Doença de Marek/virologia , Dados de Sequência Molecular , Fragmentos de Peptídeos/metabolismo , Fosfopeptídeos/metabolismo , Proteômica/normas , Reprodutibilidade dos Testes , Eletricidade Estática , Espectrometria de Massas em Tandem , Proteínas Virais/análise , Proteínas Virais/metabolismo
20.
J Nutr ; 140(2): 271-7, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20018808

RESUMO

To investigate the effects of dietary iron (Fe) and age on Fe metabolism, we used 36 weaned barrows in a 2 x 3 design with 2 concentrations of dietary Fe [97 (control) and 797 (high Fe) mg Fe/kg dry matter] and 3 time points of tissue collection (after 21, 42, or 63 d on diets). Pigs were weighed and bled on d 0, 20, 41, and 62. High Fe reduced feed efficiency but did not affect pig weight gain. Blood hemoglobin concentrations and Fe concentrations of liver, intestine, and heart were increased by high dietary Fe on all days. Concentrations of liver and heart Fe increased with age. As determined by quantitative real-time PCR, hepatic expression of hepcidin (HAMP) in pigs given the high-Fe diet was 6.25-fold that of control pigs. In the intestine, relative mRNA levels of ferroportin, divalent metal transporter 1, and transferrin receptor were downregulated by high Fe. Expression of an alternative route of Fe absorption, solute carrier family 39 member 14 (SLC39A14), was downregulated in the intestine of pigs fed high dietary Fe. Additionally, duodenal mRNA level of certain genes including scavenger receptor class A, member 5, and frataxin decreased with age of the animal. Our findings indicate new roles in Fe metabolism for several mineral metabolism-associated genes and that some of these genes, such as SLC39A14, may be regulated in response to dietary Fe in pigs. Additionally, the expression of some genes examined in this study was affected by age, suggesting age dependency of Fe metabolism in pigs.


Assuntos
Envelhecimento/fisiologia , Peptídeos Catiônicos Antimicrobianos/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Expressão Gênica/efeitos dos fármacos , Hemoglobinas/metabolismo , Ferro da Dieta/farmacologia , Ferro/metabolismo , Envelhecimento/genética , Animais , Peptídeos Catiônicos Antimicrobianos/genética , Proteínas de Transporte de Cátions/genética , Regulação para Baixo , Duodeno/metabolismo , Hepcidinas , Homeostase , Absorção Intestinal , Mucosa Intestinal/metabolismo , Ferro/sangue , Ferro da Dieta/sangue , Proteínas de Ligação ao Ferro/genética , Proteínas de Ligação ao Ferro/metabolismo , Fígado/metabolismo , Masculino , Miocárdio/metabolismo , RNA Mensageiro/metabolismo , Receptores da Transferrina/genética , Receptores da Transferrina/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Receptores Depuradores Classe A/genética , Receptores Depuradores Classe A/metabolismo , Suínos , Frataxina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA