Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
New Phytol ; 237(6): 2238-2254, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36513604

RESUMO

Submergence is an abiotic stress that limits agricultural production world-wide. Plants sense oxygen levels during submergence and postsubmergence reoxygenation and modulate their responses. Increasing evidence suggests that completely submerged plants are often exposed to low-light stress, owing to the depth and turbidity of the surrounding water; however, how light availability affects submergence tolerance remains largely unknown. Here, we showed that Arabidopsis thaliana MYB DOMAIN PROTEIN30 (MYB30) is an important transcription factor that integrates light signaling and postsubmergence stress responses. MYB DOMAIN PROTEIN30 protein abundance decreased upon submergence and accumulated during reoxygenation. Under submergence conditions, CONSTITUTIVE PHOTOMORPHOGENIC1 (COP1), a central regulator of light signaling, caused the ubiquitination and degradation of MYB30. In response to desubmergence, however, light-induced MYB30 interacted with MYC2, a master transcription factor involved in jasmonate signaling, and activated the expression of the VITAMIN C DEFECTIVE1 (VTC1) and GLUTATHIONE SYNTHETASE1 (GSH1) gene families to enhance antioxidant biosynthesis. Consistent with this, the myb30 knockout mutant showed increased sensitivity to submergence, which was partially rescued by overexpression of VTC1 or GSH1. Thus, our findings uncover the mechanism by which the COP1-MYB30 module integrates light signals with cellular oxidative homeostasis to coordinate plant responses to postsubmergence stress.


Assuntos
Arabidopsis , Estresse Fisiológico , Fatores de Transcrição , Antioxidantes/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ácido Ascórbico , Regulação da Expressão Gênica de Plantas , Glutamato-Cisteína Ligase/genética , Glutamato-Cisteína Ligase/metabolismo , Glutationa/metabolismo , Fenômenos Fisiológicos Vegetais , Estresse Fisiológico/genética , Estresse Fisiológico/fisiologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
2.
Cancers (Basel) ; 14(19)2022 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-36230836

RESUMO

Introduction: The global incidence of uterine cancer has increased substantially in recent decades. We evaluated if the trend of increasing prevalence of diabetes mellitus (DM) and obesity are attributed to the development of uterine cancer. Methods: Using data derived from the National Health Insurance database and Taiwan Cancer Registry, multivariate Cox proportional hazards regression models were adapted to analyze the risk factors of uterine cancer with potential confounding variables. Results: There were a total of 5,104,242 women aged 30−70 years enrolled in the study and 147,772 of them were diagnosed with DM during 2005−2007. In a total of 11 years of follow-up, 14,398 subjects were diagnosed with uterine cancer. An elevated risk of uterine cancer was observed in women with DM of all ages (HR 1.66, 95% CI 1.53−1.81, p < 0.0001). The effect of DM was highest at age 30−39 years (RR 3.05, 95% CI 2.35−3.96, p < 0.0001). In the group of <50 years old, DM patients had at least a twofold higher risk of developing uterine cancer (HR 2.39, 95% CI 2.09−2.74, p < 0.0001). Subjects among all ages diagnosed with polycystic ovary syndrome (PCOS) (HR 2.91, 95% CI 2.47−3.42, p < 0.0001), obesity (HR 2.13, 95% CI 1.88−2.41, p < 0.0001), and those undergoing hormone replacement therapy (HRT) (HR 1.60, 95% CI 1.33−1.93, p < 0.0001) were also positively associated with uterine cancer. Positive associations of hyperlipidemia (HR 1.33, 95% CI 1.22−1.46, p < 0.0001) and statin use (HR 1.27, 95% CI 1.12−1.44, p = 0.0002) on uterine cancer were only observed in subjects <50 years. On the contrary, hyperlipidemia was negatively associated with uterine cancer in subjects ≥50 years (HR 0.91, 95% CI: 0.84−0.98, p = 0.0122). Conclusions: DM is in general the most important risk factor for uterine cancer, especially in premenopausal women. Obesity, PCOS, HPL, statin use, and HRT were also associated with uterine cancer in subjects younger than 50 years. Premenopausal women with DM and respective comorbidities should be aware of the development of uterine cancer.

3.
PLoS One ; 15(6): e0234622, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32555690

RESUMO

INTRODUCTION: Acrylamide is widely present in heat-processed food, cigarette smoke and environment. Reproductive toxicity was reported in animals treated with acrylamide, particularly in males. The reproductive toxicity of acrylamide and its active metabolite, glycidamide, was reported to be mainly mediated through DNA damage in spermatocytes. However, the effect of acrylamide on sex hormones in men is unknown. METHODS: There were 468 male subjects (age ≧ 12 years) enrolled to determine the relationships between hemoglobin adducts of acrylamide (HbAA) and hemoglobin adducts of glycidamide (HbGA) with several sex hormones using the National Health and Nutrition Examination Survey (NHANES), 2003 to 2004. All potential confounding variables in the data set were properly adjusted. RESULTS: We found that one unit increase in the natural log-transformed HbAA level was associated with an increase in natural log transformed serum inhibin B level by 0.10 (SE = 0.05; P = 0.046), and natural log transformed serum sex hormone binding globulin (SHBG) by 0.15 (SE = 0.15; P = 0.036). With respect to HbGA, one unit increase in the natural log-transformed HbGA level was associated with an increase in natural log transformed serum anti-Müllerian Hormone (AMH) level by 0.31 (SE = 0.00; P = 0.003). CONCLUSION: In this representative cohort, we identified positive associations between acrylamide exposure and several sex hormones in men. The HbAA is positively associated with inhibin B and SHBG, and HbGA is positively associated with AMH. Other than genotoxicity, our findings suggested that altered sex hormones might also play a role in acrylamide-related reproductive toxicity in males.


Assuntos
Acrilamida/toxicidade , Exposição Ambiental/efeitos adversos , Compostos de Epóxi/toxicidade , Hormônios Esteroides Gonadais/sangue , Globulina de Ligação a Hormônio Sexual/metabolismo , Acrilamida/sangue , Adolescente , Adulto , Criança , Estudos de Coortes , Compostos de Epóxi/sangue , Hemoglobinas/análise , Humanos , Masculino , Pessoa de Meia-Idade , Inquéritos Nutricionais , Estados Unidos , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA