Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
1.
Zhongguo Zhong Yao Za Zhi ; 49(5): 1286-1294, 2024 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-38621976

RESUMO

This study explored the specific mechanism by which tetrahydropalmatine(THP) inhibited mitophagy through the UNC-51-like kinase 1(ULK1)/FUN14 domain containing 1(FUNDC1) pathway to reduce hypoxia/reoxygenation(H/R) injury in H9c2 cells. This study used H9c2 cells as the research object to construct a cardiomyocyte H/R injury model. First, a cell viability detection kit was used to detect cell viability, and a micro-method was used to detect lactate dehydrogenase(LDH) leakage to evaluate the protective effect of THP on H/R injury of H9c2 cells. In order to evaluate the protective effect of THP on mitochondria, the chemical fluorescence method was used to detect intracellular reactive oxygen species, intramitochondrial reactive oxygen species, mitochondrial membrane potential, and autophagosomes, and the luciferin method was used to detect intracellular adenosine 5'-triphosphate(ATP) content. Western blot was further used to detect the ratio of microtubule-associated protein 1 light chain 3(LC3) membrane type(LC3-Ⅱ) and slurry type(LC3-Ⅰ) and activated cleaved caspase-3 expression level. In addition, ULK1 expression level and its phosphorylation degree at Ser555 site, as well as the FUNDC1 expression level and its phosphorylation degree of Ser17 site were detected to explore its specific mechanism. The results showed that THP effectively reduced mitochondrial damage in H9c2 cells after H/R. THP protected mitochondria by reducing the level of reactive oxygen species in cells and mitochondria, increasing mitochondrial membrane potential, thereby increasing cellular ATP production, enhancing cellular activity, reducing cellular LDH leakage, and finally alleviating H/R damage in H9c2 cells. Further studies have found that THP could reduce the production of autophagosomes, reduce the LC3-Ⅱ/LC3-Ⅰ ratio, and lower the expression of the apoptosis-related protein, namely cleaved caspase-3, indicating that THP could reduce apoptosis by inhibiting autophagy. In-depth studies have found that THP could inhibit the activation of the ULK1/FUNDC1 pathway of mitophagy and the occurrence of mitophagy by reducing the phosphorylation degree of ULK1 at Ser555 and FUNDC1 at Ser17. The application of ULK1 agonist BL-918 reversely verified the effect of THP on reducing the phosphorylation of ULK1 and FUNDC1. In summary, THP inhibited mitophagy through the ULK1/FUNDC1 pathway to reduce H/R injury in H9c2 cells.


Assuntos
Alcaloides de Berberina , Hipóxia , Mitofagia , Fenilacetatos , Humanos , Mitofagia/fisiologia , Caspase 3 , Espécies Reativas de Oxigênio/metabolismo , Apoptose , Trifosfato de Adenosina/farmacologia , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/genética , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas de Membrana/metabolismo , Proteínas Mitocondriais
2.
Zhongguo Zhong Yao Za Zhi ; 49(2): 334-343, 2024 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-38403309

RESUMO

As important immune cells, macrophages are a key factor involved in maintaining the homeostasis of the pulmonary microenvironment. Under different conditions, macrophages with high plasticity can be polarized into classically activated(M1) and selectively activated(M2) macrophages, which have pro-inflammatory and anti-inflammatory effects, respectively. M1/M2 phenotype is associated with the occurrence and development of pulmonary diseases. A variety of information molecules and cytokines involved in the polarization of macrophages play a role in regulating phenotypes in pulmonary diseases, and the phenotype transformation varies significantly in different diseases. This paper introduces the biological characteristics of macrophage polarization and expounds the roles of macrophage polarization in bronchial asthma, chronic obstructive pulmonary disease, acute lung injury, and pulmonary fibrosis. Moreover, the research progress in the regulation of macrophage polarization by the active components in traditional Chinese medicine(TCM) and the TCM compound prescriptions in the treatment of pulmonary diseases was reviewed. This review aims to explore the potential of macrophage polarization in regulating pulmonary inflammation and provide new ideas for related clinical research.


Assuntos
Doença Pulmonar Obstrutiva Crônica , Fibrose Pulmonar , Humanos , Medicina Tradicional Chinesa , Pulmão , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Macrófagos , Inflamação
3.
Biomed Pharmacother ; 172: 116260, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38382327

RESUMO

Ischemic stroke remains a major disease worldwide, and most stroke patients often suffer from serious sequelae. Endogenous neurogenesis matters in the repair and regeneration of impaired neural cells after stroke. We have previously reported in vivo that PNS could strengthen the proliferation and differentiation of neural stem cells (NSCs), modulate synaptic plasticity and protect against ischemic brain injuries in cerebral ischemia rats, which could be attributed to mTOR signaling activation. Next, to obtain further insights into the function mechanism of PNS, we evaluated the direct influence of PNS on the survival, differentiation and synaptic development of C17.2 NSCs in vitro. The oxygen glucose deprivation/reperfusion (OGD/R) model was established to mimic ischemic brain injuries. We found that after OGD/R injuries, PNS improved the survival of C17.2 cells. Moreover, PNS enhanced the differentiation of C17.2 cells into neurons and astrocytes, and further promoted synaptic plasticity by significantly increasing the expressions of synapse-related proteins BDNF, SYP and PSD95. Meanwhile, PNS markedly activated the Akt/mTOR/p70S6K pathway. Notably, the mTOR inhibitor rapamycin pretreatment could reverse these desirable results. In conclusion, PNS possessed neural differentiation-inducing properties in mouse C17.2 NSCs after OGD/R injuries, and Akt/mTOR/p70S6K signaling pathway was proved to be involved in the differentiation and synaptic development of C17.2 cells induced by PNS treatment under the in vitro ischemic condition. Our findings offer new insights into the mechanisms that PNS regulate neural plasticity and repair triggered by NSCs, and highlight the potential of mTOR signaling as a therapeutic target for neural restoration after ischemic stroke.


Assuntos
Lesões Encefálicas , AVC Isquêmico , Células-Tronco Neurais , Panax notoginseng , Traumatismo por Reperfusão , Acidente Vascular Cerebral , Humanos , Animais , Camundongos , Ratos , Proteínas Quinases S6 Ribossômicas 70-kDa , Neuritos , Proteínas Proto-Oncogênicas c-akt , Neurogênese , Serina-Treonina Quinases TOR , Traumatismo por Reperfusão/tratamento farmacológico , Transdução de Sinais
4.
Zhongguo Zhong Yao Za Zhi ; 48(21): 5863-5870, 2023 Nov.
Artigo em Chinês | MEDLINE | ID: mdl-38114182

RESUMO

This study aims to investigate the effects of baicalein(BAI) on lipopolysaccharide(LPS)-induced human microglial clone 3(HMC3) cells, with a focus on suppressing inflammatory responses and elucidating the potential mechanism underlying the therapeutic effects of BAI on ischemic stroke via modulating the cAMP-PKA-NF-κB/CREB pathway. The findings have significant implications for the application of traditional Chinese medicine in treating cerebral ischemic diseases. First, the safe dosage of BAI was screened, and then an inflammation model was established with HMC3 cells by induction with LPS for 24 h. The cells were assigned into a control group, a model group, and high-, medium-, and low-dose(5, 2.5, and 1.25 µmol·L~(-1), respectively) BAI groups. The levels of superoxide dismutase(SOD) and malondialdehyde(MDA) in cell extracts, as well as the levels of interleukin-1ß(IL-1ß), IL-6, tumor necrosis factor-α(TNF-α), and cyclic adenosine monophosphate(cAMP) in the cell supernatant, were measured. Western blot was performed to determine the expression of protein kinase A(PKA), phosphorylated cAMP-response element binding protein(p-CREB), and nuclear factor-kappa B p65(NF-κB p65). Hoechst 33342/PI staining was employed to assess cell apoptosis. High and low doses of BAI were used for treatment in the research on the mechanism. The results revealed that BAI at the concentrations of 10 µmol·L~(-1) and below had no impact on normally cultured HMC3 cells. LPS induction at 200 ng·mL~(-1) for 24 h reduced the SOD activity and increased the MDA content in HMC3 cells. However, 5, 2.5, and 1.25 µmol·L~(-1) BAI significantly increased the SOD activity and 5 µmol·L~(-1) BAI significantly decreased the MDA content. In addition, BAI ameliorated the M1 polarization of HMC3 cells induced by LPS, as indicated by cellular morphology. The results of ELISA demonstrated that BAI significantly lowered the levels of TNF-α, IL-1ß, IL-6, and cAMP in the cell supernatant. Western blot revealed that BAI up-regulated the protein levels of PKA and p-CREB while down-regulating the expression of NF-κB p65. Hoechst 33342/PI staining results indicated that BAI mitigated the apoptosis of HMC3 cells. Overall, the results indicated that BAI had protective effects on the HMC3 cells induced by LPS, and could inhi-bit inflammatory response and improve cell apoptosis, which might be related to the regulation of the cAMP-PKA-NF-κB/CREB pathway.


Assuntos
Microglia , NF-kappa B , Humanos , NF-kappa B/genética , NF-kappa B/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-6/metabolismo , Lipopolissacarídeos/farmacologia , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Superóxido Dismutase/metabolismo
5.
Biomed Pharmacother ; 168: 115683, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37832402

RESUMO

Following brain injury, neural stem cells (NSCs) can generate mature neurons and replace damaged cells. However, the capacity of endogenous NSCs to self-repair from injured brain is limited as most NSCs die before becoming mature neurons. Therefore, a boosting endogenous NSCs by pharmacological support offers the potential to repair the damaged brain. Recently, small molecules have hold considerable promise for neuron regeneration and repair as they can penetrate the blood-brain barrier easily. Senkyunolide I (SEI) is a bioactive constituent derived from traditional Chinese medicines Ligusticum chuanxiong Hort. and Angelica sinensis (Oliv.) Diels, and was found to able to prevent ischemic stroke. This study examined the effects of SEI on the proliferation and neuronal lineage differentiation of prepared neural stem/progenitor cells (NS/PCs). The NS/PC proliferation was determined by 2-(4-iodophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium, monosodium salt, and neurosphere formation assays. The NS/PC differentiation was also investigated by immunocytochemistry, and western blotting was employed to measure phosphorylated Akt (pAkt) and GSK-3ß (pGSK-3ß), and active-ß-catenin protein levels. We showed that the NS/PC proliferation was enhanced after SEI exposure. Elevated cell numbers were also observed in neurospheres, which were incubated with SEI for 3 days, whereas the NS/PC differentiation was decreased after SEI exposure for 5 days. Furthermore, SEI upregulated pAkt/Akt and active-ß-catenin levels and increased NS/PC proliferation after SEI treatment was reversed by phosphatidylinositol 3-kinase inhibitor LY294002. downregulated differentiated processes. Thus, SEI promoted the NS/PC proliferation and suppressed NS/PC differentiation into neurons and/or astrocytes, therefore SEI could be an interesting and promising candidate for stimulating NSCs.


Assuntos
Células-Tronco Neurais , Proteínas Proto-Oncogênicas c-akt , Proteínas Proto-Oncogênicas c-akt/metabolismo , beta Catenina/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Proliferação de Células , Células-Tronco Neurais/metabolismo , Diferenciação Celular
6.
Phytomedicine ; 118: 154934, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37393828

RESUMO

BACKGROUND: Ischemic stroke is caused by local lesions of the central nervous system and is a severe cerebrovascular disease. A traditional Chinese medicine, Yiqi Tongluo Granule (YQTL), shows valuable therapeutic effects. However, the substances and mechanisms remain unclear. PURPOSE: We combined network pharmacology, multi-omics, and molecular biology to elucidate the mechanisms by which YQTL protects against CIRI. STUDY DESIGN: We innovatively created a combined strategy of network pharmacology, transcriptomics, proteomics and molecular biology to study the active ingredients and mechanisms of YQTL. We performed a network pharmacology study of active ingredients absorbed by the brain to explore the targets, biological processes and pathways of YQTL against CIRI. We also conducted further mechanistic analyses at the gene and protein levels using transcriptomics, proteomics, and molecular biology techniques. RESULTS: YQTL significantly decreased the infarction volume percentage and improved the neurological function of mice with CIRI, inhibited hippocampal neuronal death, and suppressed apoptosis. Fifteen active ingredients of YQTL were detected in the brains of rats. Network pharmacology combined with multi-omics revealed that the 15 ingredients regulated 19 pathways via 82 targets. Further analysis suggested that YQTL protected against CIRI via the PI3K-Akt signaling pathway, MAPK signaling pathway, and cAMP signaling pathway. CONCLUSION: We confirmed that YQTL protected against CIRI by inhibiting nerve cell apoptosis enhanced by the PI3K-Akt signaling pathway.


Assuntos
Isquemia Encefálica , Medicamentos de Ervas Chinesas , Traumatismo por Reperfusão , Animais , Camundongos , Ratos , Multiômica , Farmacologia em Rede , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Biologia Molecular , Traumatismo por Reperfusão/tratamento farmacológico , Isquemia Encefálica/tratamento farmacológico , Medicamentos de Ervas Chinesas/farmacologia , Simulação de Acoplamento Molecular
7.
Biotechnol Genet Eng Rev ; : 1-19, 2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-37038758

RESUMO

Large-artery atherosclerosis type of ischemic stroke happens when a blood clot forms in a major artery that carries blood to the brain. This causes a blockage and a decrease in blood flow to the brain tissue making up approximately 15-20% of all cases. This type of stroke is more prevalent in older adults and those with risk factors such as high blood pressure, high cholesterol, diabetes, smoking, and a family history of stroke. To investigate the correlation and predictive value of platelet-related biological indicators with recurrence of large-artery atherosclerosis type of ischemic stroke (LAA-IS)2. The patients were divided into a relapse group (R, n = 40) and non-relapse group (NR, n = 45). Platelet-related biological indicators were collected from both groups to analyze their correlation with neurological impairment score (NIHSS score). Risk factors were analyzed using binary logistic regression and a survival curve (ROC) was drawn to evaluate the predictive effect of clinical platelet-related biological indicators on LAA-IS recurrence. This study confirmed that PAg-ADP, PAg-COL, and FIB are closely related to the formation of LAA-IS due to carotid atherosclerosis, and the combined PAg-ADP, PAg-COL, and FIB index levels are the most promising for assessing the prognostic development of recurrence in patients with LAA-IS. Combined monitoring of platelet aggregation rate and FIB index is of important evaluation value in judging the recurrence prognosis of LAA-IS patients.

8.
J Proteomics ; 277: 104850, 2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-36813112

RESUMO

Buyang Huanwu Decoction (BYHW) contains chemical components such as ligustrazine, oxypaeoniflora, chlorogenic acid, and others. To explore the neuroprotective effect and potential target protein of BYHW in cerebral infarction (CI). A double-blind, randomized controlled trial was established and patients with CI were divided into the BYHW group (n = 35) and the control group (n = 30). To evaluate the efficacy by TCM syndrome score and clinical indicators, and to explore the changes of serum proteins by proteomics technology, so as to explore the mechanism of BYHW and potential target proteins. The study found that compared with the control group, the TCM syndrome score, including Deficiency of Vital Energy (DVE), Blood Stasis (BS), and NIHSS in the BYHW group decreased significantly (p < 0.05), and the Barthel Index (BI) score was significantly higher. A total of 99 differential regulatory proteins were identified by proteomics, which act on lipids and atherosclerosis, complement and coagulation cascade, and TNF-α signaling pathway. In addition, Elisa verified the results of proteomics and found that BYHW can reduce the neurological impairments focus on IL-1ß, IL-6, TNF-α, MCP-1, MMP-9, and PAI-1. Significance: In this study, quantitative proteomics was used in combination with liquid chromatography-mass spectrometry (LC-MS/MS) to study the therapeutic effect of BYHW on cerebral infarction (CI) and potential changes in serum proteomics. In addition, the public proteomics database was used for bioinformatics analysis, and Elisa experiment verified the results of proteomics, further clarifying the potential protection mechanism of BYHW on CI.


Assuntos
Proteômica , Fator de Necrose Tumoral alfa , Humanos , Cromatografia Líquida , Espectrometria de Massas em Tandem , Infarto Cerebral/tratamento farmacológico
9.
Opt Express ; 30(18): 31913-31924, 2022 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-36242264

RESUMO

Actively tunable or reconfigurable structural colors are highly promising in future development for high resolution imaging and displaying applications. To this end, we demonstrate switchable structural colors covering the entire visible range by integrating aluminum nanoaperture arrays with nematic liquid crystals. The geometrically anisotropic design of the nanoapertures provides strong polarization-dependent coloration. By overlaying a nematic liquid crystal layer, we further demonstrate switchable ability of the structural colors by either changing the polarization of the incident light or applying an external voltage. The switchable structural colors have a fast response time of 28 ms at a driving voltage of 6.5 V. Furthermore, colorful patterns are demonstrated by coding the colors with various dimensions of nanoaperture arrays with dual switching modes. Our proposed technique in this work provides a dual-mode switchable structural colors, which is highly promising for polarimetric displays, imaging sensors, and visual cryptography.

10.
Zhongguo Zhong Yao Za Zhi ; 47(17): 4707-4714, 2022 Sep.
Artigo em Chinês | MEDLINE | ID: mdl-36164878

RESUMO

This study aims to explore the effect of Jinzhen Oral Liquid(JOL) on cough after infection in rats and the mechanism. To be specific, a total of 60 male SD rats were classified into 6 groups: normal group(equivalent volume of distilled water, ig), model group(equivalent volume of distilled water, ig), Dextromethorphan Hydrobromide Oral Solution group(3.67 mL·kg~(-1), ig), high-, medium-, and low-dose JOL groups(11.34, 5.67, and 2.84 mL·kg~(-1), respectively, ig). Lipopolysaccharide(LPS, nasal drip), smoking, and capsaicin(nebulization) were employed to induce cough after infection in rats except the normal group. Administration began on the 19 th day and lasted 7 days. Capsaicin(nebulization) was used to stimulate cough 1 h after the last administration and the cough frequency and cough incubation period in rats were recorded. The pathological morphology of lung tissue was observed based on hematoxylin-eosin(HE) staining. Immunohistochemistry(IHC) was used to detect the specific expression of transient receptor potential vanilloid 1(Trpv1), nerve growth factor(NGF), tropomyosin receptor kinase A(TrkA), and phosphorylated-p38 mitogen-activated protein kinase(p-p38 MAPK) in lung tissue, Western blot the protein expression of Trpv1, NGF, TrkA, and p-p38 MAPK in lung tissue, and real-time fluorescent quantitative polymerase chain reaction(real-time PCR) the mRNA expression of Trpv1, NGF, and TrkA. The results showed that model group demonstrated significantly high cough frequency, obvious proliferation and inflammatory cell infiltration in lung tissue, significantly enhanced positive protein expression of Trpv1, NGF, TrkA, and p-p38 MAPK in lung tissue and significant increase in the mRNA expression of Trpv1, NGF, and TrkA compared with the normal group. Compared with the model group, JOL can significantly reduce the cough frequency, alleviate the pathological changes of lung tissue, and decrease the protein expression of Trpv1, NGF, TrkA, and p-p38 MAPK in lung tissue, and high-dose and medium-dose JOL can significantly lower the mRNA expression of Trpv1, NGF, and TrkA. This study revealed that JOL can effectively inhibit Trpv1 pathway-related proteins and improve cough after infection. The mechanism is that it reduces the expression of NGF, TrkA, and p-p38 MAPK in lung tissue, thereby decreasing the expression of Trpv1 and cough sensitivity.


Assuntos
Tosse , Medicina Tradicional Chinesa , Fator de Crescimento Neural , Receptor trkA , Animais , Capsaicina/efeitos adversos , Tosse/induzido quimicamente , Tosse/tratamento farmacológico , Dextrometorfano/efeitos adversos , Amarelo de Eosina-(YS)/efeitos adversos , Hematoxilina , Lipopolissacarídeos/efeitos adversos , Masculino , Fator de Crescimento Neural/metabolismo , RNA Mensageiro , Ratos , Ratos Sprague-Dawley , Receptor trkA/genética , Receptor trkA/metabolismo , Canais de Cátion TRPV/efeitos adversos , Canais de Cátion TRPV/genética , Canais de Cátion TRPV/metabolismo , Tropomiosina/efeitos adversos , Tropomiosina/metabolismo , Água/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
11.
Zhongguo Zhong Yao Za Zhi ; 47(18): 4966-4971, 2022 Sep.
Artigo em Chinês | MEDLINE | ID: mdl-36164906

RESUMO

Two previously undescribed steroidal alkaloids, compounds 1-2, along with two known ones(3-4), were isolated from the 80% ethanol extract of ripe berries of Solanum nigrum by chromatographic methods, including silica gel, ODS, and HPLC. Based on spectroscopic and chemical evidence, including IR, NMR, and HR-ESI-MS data, the structures of the isolated compounds were identified as 12ß,27-dihydroxy solasodine-3-O-ß-D-glucopyranoside(1), 27-hydroxy solasodine-3-O-ß-D-glucopyranosyl-(1→4)-α-L-rhamnopyranosyl-(1→2)-[α-L-rhamnopyranosyl-(1→4)]-ß-D-glucopyranoside(2), solalyraine A(3), and 12ß,27-dihydroxy solasodine(4). Compounds 1-2 were tested for their potential effects against the proliferation of A549 cells, which revealed that compounds 1-2 had weak cytotoxic activity.


Assuntos
Alcaloides , Saponinas , Solanum nigrum , Solanum , Alcaloides/análise , Etanol , Frutas/química , Estrutura Molecular , Extratos Vegetais/química , Saponinas/análise , Sílica Gel/análise , Solanum/química , Solanum nigrum/química , Esteroides/farmacologia
12.
Comput Math Methods Med ; 2022: 7086472, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35770118

RESUMO

The aim of this study was to explore the value of computed tomography (CT) images based on electronic health (E-health) combined with painless gastrointestinal endoscopy (PGE) in the diagnosis of neurocognitive function in patients with combined anesthesia of propofol and butorphanol tartrate. 126 patients undergoing PGE were selected as the research objects, and all were performed with CT perfusion imaging before and after anesthesia to obtain the cerebral blood volume (CBV), cerebral blood flow (CBF), mean transit time (MTT), and time to peak (TTP). The Montreal Cognitive Assessment (MoCA) was adopted to evaluate the cognitive function of patients. The results showed that after anesthesia, the levels of CBF and CBV in the left and right thalami, frontal lobe, and temporal lobe of the patients were lower than those before anesthesia, while TTP and MTT were higher than those before anesthesia (P < 0.05). The MoCA score after anesthesia was lower than that before anesthesia (P < 0.05). After anesthesia, the CBF, CBV, TTP, and MTT values of the left and right frontal lobes and left and right temporal lobes were significantly positively correlated with MoCA (P < 0.05). In conclusion, the brain CT image parameters based on E-health can clearly display the blood perfusion in the lesion area of the patient, which was beneficial to the PGE-assisted judgment of cognitive dysfunction in patients with propofol tartrate and butorphanol tartrate anesthesia. Therefore, CT-assisted PGE examination based on E-health had a certain clinical value in evaluating the neurocognitive function of patients.


Assuntos
Anestesia , Propofol , Humanos , Butorfanol , Circulação Cerebrovascular , Eletrônica , Endoscopia Gastrointestinal , Propofol/efeitos adversos , Tomografia Computadorizada por Raios X/métodos
13.
Chin J Integr Med ; 28(3): 281-288, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32418175

RESUMO

DNA hypermethylation is an epigenetic modification that plays a critical role in the oncogenesis of myelodysplastic syndromes (MDS). Aberrant DNA methylation represses the transcription of promotors of tumor suppressor genes, inducing gene silencing. Realgar (α-As4S4) is a traditional medicine used for the treatment of various diseases in the ancient time. Realgar was reported to have efficacy for acute promyelocytic leukemia (APL). It has been demonstrated that realgar could efficiently reduce DNA hypermethylation of MDS. This review discusses the mechanisms of realgar on inhibiting DNA hypermethylation of MDS, as well as the species and metabolisms of arsenic in vivo.


Assuntos
Arsenicais , Síndromes Mielodisplásicas , Arsenicais/farmacologia , Arsenicais/uso terapêutico , DNA , Metilação de DNA/genética , Humanos , Síndromes Mielodisplásicas/tratamento farmacológico , Síndromes Mielodisplásicas/genética , Sulfetos
14.
Chemosphere ; 286(Pt 1): 131541, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34293565

RESUMO

To effectively degrade organic pollutants in wastewater, visible-light-driven Bi2MoO6/PPy hierarchical heterogeneous photocatalysts were prepared through a solvothermal method and the following in-situ chemical oxidation polymerization. Compared with pristine Bi2MoO6 photocatalyst, the composite photocatalysts exhibited dramatically improved photocatalytic activity and photostability towards the degradation of methylene blue dye and tetracycline antibiotic. Bi2MoO6/PPy-80 sample achieved the highest photocatalytic degradation rates for methylene blue dye (93.6%) and tetracycline antibiotic (88.3%) under visible light irradiation. These two organic pollutants could be completely degraded into nontoxic small molecules according to in-depth HPLC-MS analysis of degradation products. The transient photocurrent responses, electrochemical impedance spectra, and photoluminescence spectra demonstrated that the introduction of PPy nanoparticles on the surface of Bi2MoO6 nanosheets could effectively accelerate the separation of photo-generated electron-hole pairs. Furthermore, a possible synergetic photocatalytic mechanism was put forward based on the electron spin resonance and XPS valence-band spectra. This work indicated that construction of hierarchical composite photocatalysts combining polypyrrole conductive polymer and Bi2MoO6 semiconductor in nanoscale is an efficient approach to improve photocatalytic activity for environmental remediation.


Assuntos
Poluentes Ambientais , Polímeros , Bismuto , Catálise , Descontaminação , Microesferas , Molibdênio , Pirróis
15.
Front Pharmacol ; 13: 1010079, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36618918

RESUMO

Background: Acute myocardial infarction (AMI) is a common and life-threatening cardiovascular disease. However, there is a lack of pathology and drug studies on AMI within 20 min. Xueshuantong injection (XST) is mainly composed of Panax notoginseng saponins, which can dilate blood vessels and improve blood circulation, and is clinically used in the treatment of cardiovascular and cerebrovascular diseases. Purpose: The study aimed to investigate the protective mechanism of Xueshuantong injection against acute myocardial infarction within 20 min in rats by proteomic methods and molecular docking. Method: The male Sprague-Dawley rat acute myocardial infarction model was established by LAD ligation, and Xueshuantong injection (38 mg/kg) was injected into the caudal vein 15 min before surgery. Cardiac function evaluation, morphological observation, label-free quantitative proteomics, Western blotting analysis, molecular docking, and affinity measurement were applied in this study. Results: In a span of 20 min after acute myocardial infarction, the model group showed significant cardiac function impairment. Xueshuantong injection can significantly improve cardiac function and prevent pathological injury of myocardial tissue. A total of 117 vital differentially expressed proteins were identified by proteomic analysis, including 80 differentially expressed proteins (DEPs) in the sham group compared with model rats (Sham: model) and 43 DEPs in model rats compared with the Xueshuantong injection group (Model: XST). The treatment of Xueshuantong injection mainly involves "poly(A) RNA binding" and "cadherin binding involved in cell-cell adhesion." The differentially expressed levels of the pathways related to proteins Echdc2, Gcdh, Dlst, and Nampt, as well as 14-3-3 family proteins Ywhaz and Ywhab, could be quantitatively confirmed by WB. Molecular docking analysis and SPR analysis revealed that Ywhaz has a generally stable binding with five Xueshuantong injection components. Conclusion: Xueshuantong injection (XST) could protect rat myocardial function injury against AMI in 20 min. Echdc2, Ywhaz, Gcdh, Ywhab, Nampt, and Dlst play an essential role in this protective effect. In particular, Ywhaz might be the core target of Xueshuantong injection when treating acute myocardial infarction in the early stage. This study promoted the understanding of the protective mechanism of Xueshuantong injection in 20 min injury of acute myocardial infarction and contributed to the identification of possible targets of Xueshuantong injection.

16.
Zhongguo Zhong Yao Za Zhi ; 46(21): 5576-5584, 2021 Nov.
Artigo em Chinês | MEDLINE | ID: mdl-34951209

RESUMO

Ischemic cardiovascular and cerebrovascular diseases threatening human health and survival have high morbidity and mortality. The common cause of them is reduced blood supply caused by vascular stenosis, atherosclerosis, and infarction. However,the pathological processes of ischemic cardiovascular and cerebrovascular diseases are complex, involving oxidative stress, calcium overload, inflammation, apoptosis, autophagy and other mechanisms. Protein drugs such as recombinant tissue plasminogen activator(rt-PA) and urokinase have been proved with excellent therapeutic effects and huge economic and social benefits in the clinical treatment and interventional therapy. Among them, peptide drugs have shown unique advantages and potential prospects owing to their strong biological activity, high target specificity, biochemical diversity, and low toxicity. Chinese medicinal materials, characterized by multi-component and multi-target therapy, have also shown excellent clinical efficacy against ischemic cardiovascular and cerebrovascular diseases. However, the research and development of related peptides in Chinese medicinal materials is at the initial stage. Therefore, this paper reviewed the targets and action mechanisms of a variety of Chinese medicinal material-derived polypeptides with activities against ischemic cardiovascular and cerebrovascular diseases, aiming to provide support for the in-depth research as well as the clinical development and application of these polypeptides.


Assuntos
Transtornos Cerebrovasculares , Medicamentos de Ervas Chinesas , Transtornos Cerebrovasculares/tratamento farmacológico , China , Humanos , Medicina Tradicional Chinesa , Peptídeos , Ativador de Plasminogênio Tecidual
17.
Nano Lett ; 21(17): 7183-7190, 2021 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-34410715

RESUMO

Metasurface-based structural coloration is a promising enabling technology for advanced optical encryption with a high-security level. Herein, we propose a paradigm of electrically switchable, polarization-sensitive optical encryption based on designed metasurfaces integrated with polymer-dispersed liquid crystals. The metasurfaces consist of anisotropic and isotropic aluminum nanoaperture arrays. Optical images can be encrypted by elaborately arranging anisotropic and isotropic nanoapertures based on their polarization-dependent plasmonic resonance characteristics. We demonstrate high-quality encrypted images and QR codes with electrically switchable, polarization-sensitive properties based on PDLC-integrated aluminum nanoaperture arrays. The proposed technique can be applied to many fields including high-security optical encryption, security tags, anticounterfeiting, multichannel imaging, and dynamic displays.

18.
Am J Otolaryngol ; 42(6): 103149, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34242882

RESUMO

OBJECTIVE: The association between benign paroxysmal positional vertigo (BPPV) and impaired calcium metabolism has attracted widespread interest. Several studies have suggested that decreased bone mineral density (BMD) and serum 25-hydroxyvitamin D (25(OH)D) level are related to the occurrence and/or recurrence of BPPV; however, the characteristics of bone metabolism in patients with BPPV subtypes have not been fully investigated, and conclusions have been controversial. This study aimed to evaluate BMD and serum levels of 25(OH)D and bone turnover markers to clarify the characteristics of bone metabolism in patients with different types of BPPV. METHOD: We retrospectively analysed the data of new-onset idiopathic postmenopausal female patients with BPPV at our institution from January 2016 to January 2020. The patients' demographic data including age, medication history, concomitant diseases, onset time, clinical form, laboratory indicators, such as serum levels of 25(OH)D, bone formation markers, namely, amino-terminal propeptide of type I procollagen (PINP) and osteocalcin (OC), bone resorption marker, namely, ß-isomerized carboxy-terminal telopeptide of type I collagen (ß-CTX), and BMD were collected and analysed. RESULTS: This study included 201 consecutive postmenopausal female patients with BPPV. Among them, 138 were diagnosed with posterior semicircular canal BPPV, 42 were diagnosed with lateral semicircular canal canalolithiasis, and 21 were diagnosed with lateral semicircular canal cupulolithiasis. There were no significant differences in age distribution, body mass index, clinical history, levels of albumin, globulin, uric acid, creatinine, or blood urea nitrogen, lipid profiles (except high-density lipoprotein cholesterol) and routine blood parameters among these groups (P > 0.05). There were no significant differences in the mean T-score and BMD values of different sites or in the serum levels of 25(OH)D and bone turnover markers (PINP, OC and ß-CTX) among the subgroups (P > 0.05). The proportion of reduction in BMD (T-score < -1 SD) and decreased serum vitamin D level (< 20 ng/ml) were not significantly different between the subgroups (P > 0.05). CONCLUSION: There were no significant differences in bone metabolism in postmenopausal female patients with different types of idiopathic BPPV.


Assuntos
Vertigem Posicional Paroxística Benigna/metabolismo , Osso e Ossos/metabolismo , Pós-Menopausa/metabolismo , Vertigem Posicional Paroxística Benigna/classificação , Biomarcadores/metabolismo , Densidade Óssea , Reabsorção Óssea , Cálcio/metabolismo , Colágeno Tipo I/metabolismo , Feminino , Humanos , Osteocalcina/metabolismo , Osteogênese , Fragmentos de Peptídeos/metabolismo , Peptídeos/metabolismo , Pró-Colágeno/metabolismo , Recidiva , Estudos Retrospectivos , Vitamina D/análogos & derivados , Vitamina D/sangue
19.
Biomed Pharmacother ; 140: 111696, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34044281

RESUMO

Glutamate-induced neurotoxicity is one of the most important pathogenic mechanisms in neurological diseases and is widely used as an in vitro model for ischemic stroke. Senkyunolide I (SEI), an active constituent derived from traditional Chinese medicine Ligusticum chuanxiong Hort. and Angelica sinensis (Oliv.) Diels, has been shown to have beneficial effects against focal cerebral ischemia-reperfusion in rats. However, the mechanisms underlying SEI-mediated neuroprotection remain not well understood. Thus, we explored the influence of SEI in glutamate-mediated injury to mouse neuroblastoma (Neuro2a) cells and determined the mechanisms involved. Neuro2a cells were treated with SEI under exposure to glutamate for 24 h. Cell viability was assessed by using WST-1 reagents, and apoptosis was evaluated using Annexin V-FITC and a PI double staining kit. The protein expression levels of p-AKT, AKT, p-GSK3ß, GSK3ß, p-p38, p38, p-ERK, ERK, p-JNK, JNK, Bcl-2, Bax, Bcl-xl, p-Bad, Bad, p53, and cleaved caspase-3 were determined by Western blot analysis. Glutamate significantly decreased cell viability and elevated the level of apoptosis. Treatment with SEI reversed those effects. Furthermore, the expression of p-JNK/JNK and cleaved caspase-3 were also reduced after treatment with SEI. Our findings demonstrate that SEI protected Neuro2a cells against glutamate toxicity by regulating JNK/caspase-3 pathway and apoptosis. Thus, SEI maybe a promising candidate for neuroprotection.


Assuntos
Apoptose/efeitos dos fármacos , Benzofuranos/farmacologia , Caspase 3/metabolismo , Morte Celular/efeitos dos fármacos , Ácido Glutâmico/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Animais , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Camundongos , Neuroblastoma/tratamento farmacológico , Neuroblastoma/metabolismo , Neuroproteção/efeitos dos fármacos , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/metabolismo , Transdução de Sinais/efeitos dos fármacos
20.
Chin J Integr Med ; 27(6): 440-445, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33420585

RESUMO

OBJECTIVE: Using network pharmacology to explore the mechanism of the 'invigorating qi and promoting blood circulation' drug pair Ginseng-Danshen (Salvia miltiorrhiza) on treatment of ischemic heart disease (IHD). METHODS: The chemical constituents of ginseng and Danshen drug pair were identified by searching the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP), and the potential targets of the pair were identified. The pharmacodynamics of the pair was analyzed using network pharmacology. The targets of IHD were identified by database screening. Using protein-protein interaction network, the interaction targets of Ginseng-Danshen on IHD were constructed. A "constituent-target-disease" interaction network was constructed using Cytoscape software, Gene Ontology (GO) term enrichment analysis and biological pathway enrichment analysis were carried out, and the mechanism of improving myocardial ischemia by the Ginseng-Danshen drug pair was investigated. RESULTS: Seventeen active constituents and 53 targets were identified from ginseng, 53 active constituents and 61 targets were identified from Danshen, and 32 protein targets were shared by ginseng and Danshen. Twenty GO terms were analyzed, including cytokine receptor binding, cytokine activity, heme binding, and antioxidant activity. Sixty Kyoto Encyclopedia of Genes and Genomes (KEGG) signaling pathways were analyzed, including phosphatidylinositol 3-kinase-serine-threonine kinase (PI3K-AKT) signaling pathway, p53 signaling pathway, interleukin 17 signaling pathway, tumor necrosis factor signaling pathway, and the advanced glycation end product (AGE)-the receptor for AGE (RAGE) signaling pathway in diabetic complications. CONCLUSION: The specific mechanism of Ginseng-Danshen drug pair in treating IHD may be associated with improving the changes of metabolites inbody, inhibiting the production of peroxides, removing the endogenous oxygen free radicals, regulating the expression of inflammatory factors, reducing myocardial cell apoptosis and promoting vascular regeneration.


Assuntos
Isquemia Miocárdica , Panax , Salvia miltiorrhiza , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Isquemia Miocárdica/tratamento farmacológico , Fosfatidilinositol 3-Quinases , Qi
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA