Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
Cancer Sci ; 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38700108

RESUMO

Triple-negative breast cancer (TNBC) has greater infiltration of M2-like macrophages (TAMs), which enhances cancer cell invasion and leads to a poor prognosis. TNBC progression is mediated by both tumor cells and the tumor microenvironment (TME). Here we elucidate the mechanism of the interaction between TNBC cells and TAMs. In this study, we confirmed that CD44v5 is highly expressed in TNBC, which drives TNBC cell metastasis and promotes TAM polarization by co-localizing with IL4Rα and inhibiting its internalization and degradation, thereby promoting activation of the STAT3/IL6 signaling axis. At the same time, TAMs also facilitate TNBC cell metastasis by secreting IL-4, IL-6, and other cytokines, in which the IL-4/IL-4R/STAT3/IL-6 signaling axis plays the same role for TNBC cells responding to TAMs. Moreover, we found that the above progress could be suppressed when the CD44v5 domain was blocked. We demonstrated that the CD44v5/IL-4R/STAT3/IL-6 signaling pathway plays a key role in TNBC cell metastasis, and in TNBC cells inducing TAM polarization and responding to TAMs, promoting metastasis. Collectively, we suggest that the CD44v5 domain may be a promising target for regulating the TME of TNBC as well as treating TNBC.

2.
Artigo em Inglês | MEDLINE | ID: mdl-36212967

RESUMO

To further determine how BHE affected the growth of HCC cells, the proportion of each cell cycle phase was explored in HCC cells by flow cytometry. Blue honeysuckle (Lonicera caerulea L.) is a species of bush that grows in eastern Russia. Blue honeysuckle extract (BHE) is rich in bioactive phytochemicals which can inhibit the proliferation of tumor cells. The mechanism underlying the anticancer activity of BHE in primary liver cancer is poorly understood. The purpose of this study was to evaluate the growth inhibition mechanism of bioactive substances from blue honeysuckle on hepatocellular carcinoma (HCC) cells and to explore its protein and gene targets. The compounds in BHE were determined by high-performance liquid chromatography (HPLC) and liquid chromatography-mass spectrometry (LC-MS). Cell counting kit-8 (CCK8) assay was used to evaluate the effects of BHE on HCC cell proliferation, and flow cytometry assay (FCA) was used to determine how BHE arrested the proportion of each cell cycle phase in HCC cells. Western blot (WB) was performed to determine the expression of cell cycle-related proteins in HCC cells treated with different concentrations of BHE. The xenograft tumor animal models were established by HCC cell implantation. The results showed that cyanidin-3-o-glucoside and cyanidin-3-o-sophoroside which are the main biologically active components were detected in BHE. BHE is highly effective in inhibiting the proliferation of HCC cells by arresting the HCC cell cycle in the G2/M phase. BHE also downregulated the expression of conventional or classical dendritic cells-2 (cDC2) and cyclin B1 by promoting the expression of myelin transcription factor 1 (MyT1) in HCC cells. The weight and volume of xenografts were significantly decreased in the BHE treated groups when compared to the control group. BHE increased the expression of MyT1 in xenograft tissues. These findings showed that blue honeysuckle extract inhibits proliferation in vivo and in vitro by downregulating the expression of cDC2 and cyclin B1 and upregulating the expression of MyT1 in HCC cells.

3.
Eur J Pharmacol ; 922: 174917, 2022 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-35341785

RESUMO

Cardiac hypertrophy occurs as a result of high levels of thyroid hormone, which may contribute to heart failure and is closely related to oxidative stress. Hydrogen is a good antioxidant. In this study, we found that intragastric levothyroxine administration for two weeks caused obvious cardiac hypertrophy without reduced systolic function. Additionally, hydrogen inhalation ameliorated the levothyroxine-induced metabolic increase and cardiac hypertrophy in rats. Serum brain natriuretic peptide expression was also attenuated by hydrogen treatment. However, hydrogen had no significant effect on levothyroxine -induced serum troponin I and serum thyroid hormone changes. Hydrogen treatment also reduced the levothyroxine-induced increase in cardiac malondialdehyde, 8-hydroxy-2-deoxyguanosine and serum hydrogen peroxide levels and upregulated superoxide dismutase and glutathione peroxidase activity. Additionally, western blotting results showed that hydrogen inhalation inhibited the expression of cardiac nicotinamide adenine dinucleotide phosphate oxidase 2 (NOX2), angiotensin II type 1 receptor, sarcoplasmic reticulum Ca2+-ATPase (SERCA2), phospho-phospholamban and α-myosin heavy chain proteins. In conclusion, the present study revealed a protective effect of hydrogen on levothyroxine -induced cardiac hypertrophy by regulating angiotensin II type 1 receptors and NOX2-mediated oxidative stress in rats.


Assuntos
Hidrogênio , Receptor Tipo 1 de Angiotensina , Angiotensina II/farmacologia , Animais , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Cardiomegalia/induzido quimicamente , Cardiomegalia/tratamento farmacológico , Cardiomegalia/metabolismo , Hidrogênio/farmacologia , Hidrogênio/uso terapêutico , NADPH Oxidase 2/metabolismo , NADPH Oxidases/metabolismo , Estresse Oxidativo , Ratos , Receptor Tipo 1 de Angiotensina/metabolismo , Hormônios Tireóideos/metabolismo , Tiroxina/farmacologia
4.
J Cardiovasc Pharmacol ; 78(6): 819-825, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34524259

RESUMO

ABSTRACT: The energy used by the heart is generated mainly by the metabolism of fatty acids and glucose. Trimetazidine (TMZ) inhibits fatty acid metabolism and is used for the treatment of heart diseases such as heart failure. 3-Bromopyruvate (3-BrPA) can suppress glucose metabolism, and it is considered a promising candidate agent for tumor therapy. Because TMZ and 3-BrPA can separately inhibit the 2 main cardiac energy sources, it is necessary to investigate the effects of 3-BrPA combined with TMZ on the heart. Forty male Wistar rats were randomly divided into 4 groups: a control group, a TMZ group, a 3-BrPA group, and a 3-BrPA + TMZ group. Weight was recorded every day, and echocardiography was performed 14 days later. Heart function, the levels of adenosine triphosphate, oxidative stress-related factors (ROS, glutathione, oxidized glutathione, malondialdehyde, superoxide dismutase and total antioxidant capacity), and apoptosis in heart tissues were assessed to evaluate the effects of 3-BrPA and TMZ on the heart. In our study, no obvious changes occurred in the 3-BrPA group or the TMZ group compared with the control group. The combination of 3-BrPA and TMZ worsened heart function, decreased adenosine triphosphate levels, and increased oxidative stress and myocardial apoptosis. In conclusion, 3-BrPA and TMZ are not recommended for concurrent use.


Assuntos
Apoptose/efeitos dos fármacos , Fármacos Cardiovasculares/toxicidade , Inibidores Enzimáticos/toxicidade , Cardiopatias/induzido quimicamente , Miócitos Cardíacos/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Piruvatos/toxicidade , Trimetazidina/toxicidade , Trifosfato de Adenosina/metabolismo , Animais , Cardiotoxicidade , Metabolismo Energético/efeitos dos fármacos , Cardiopatias/metabolismo , Cardiopatias/patologia , Cardiopatias/fisiopatologia , Masculino , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Ratos Wistar , Transdução de Sinais , Função Ventricular Esquerda/efeitos dos fármacos
5.
Dis Markers ; 2021: 4572282, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34306253

RESUMO

Heart failure (HF) is the typical terminal stage of cardiac diseases involving inflammatory states. The function of microRNAs (miRNAs) in the progress of HF remains poorly understood. In this study, real-time PCR results showed a decreased expression of miRNA-181b (miR-181b) in HF patients compared with healthy individuals. Besides, miR-181b expressions were negatively correlated with hypersensitive C-reactive protein (hsCRP) levels in the serum of HF patients. Receiver operator characteristic (ROC) curve analysis showed that miR-181b was a diagnostic predictor of HF, and the area under the curve was 0.970 (DCM-induced HF group) and 0.962 (ICM-induced HF group). Strikingly, in HF rats induced by isoproterenol (ISO), the expression of miR-181b of heart tissue was suppressed before tumor necrosis factor-alpha (TNF-α), interleukin-1ß (IL-1ß), and interleukin-6 (IL-6) increase, as revealed by western blot and real-time PCR. Besides, the overexpression of miR-181b also decreased the expression of TNF-α, IL-1ß, and IL-6 in lipopolysaccharide- (LPS-) induced neonatal cardiomyocytes. In conclusion, our results revealed that miR-181b might be a potential biomarker for HF and provided a novel target for anti-inflammatory therapy.


Assuntos
Insuficiência Cardíaca/diagnóstico , Inflamação/prevenção & controle , MicroRNAs/sangue , Adulto , Animais , Biomarcadores/sangue , Western Blotting , Citocinas/sangue , Feminino , Insuficiência Cardíaca/sangue , Insuficiência Cardíaca/complicações , Humanos , Inflamação/sangue , Inflamação/complicações , Mediadores da Inflamação/sangue , Masculino , Pessoa de Meia-Idade , Ratos , Ratos Wistar , Reação em Cadeia da Polimerase em Tempo Real
6.
Opt Express ; 29(11): 16164-16174, 2021 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-34154184

RESUMO

We have developed and experimentally demonstrated a highly coherent and low noise InP-based InAs quantum dash (QDash) buried heterostructure (BH) C-band passively mode-locked laser (MLL) with a pulse repetition rate of 25 GHz for fiber-wireless integrated fronthaul 5G new radio (NR) systems. The device features a broadband spectrum providing over 46 equally spaced highly coherent and low noise optical channels with an optical phase noise and integrated relative intensity noise (RIN) over a frequency range of 10 MHz to 20 GHz for each individual channel typically less than 466.5 kHz and -130 dB/Hz, respectively, and an average total output power of ∼50 mW per facet. Moreover, the device exhibits low RF phase noise with measured RF beat-note linewidth down to 3 kHz and estimated timing jitter between any two adjacent channels of 5.5 fs. By using this QDash BH MLL device, we have successfully demonstrated broadband optical heterodyne based radio-over-fiber (RoF) fronthaul wireless links at 5G NR in the underutilized spectrum of around 25 GHz with a total bit rate of 16-Gb/s. The device performance is experimentally evaluated in an end-to-end fiber-wireless system in real-time in terms of error vector magnitude (EVM) and bit error rate (BER) by generating, transmitting and detecting 4-Gbaud 16-QAM RF signals over 0.5-m to 2-m free-space indoor wireless channel through a total length of 25.22 km standard single mode fiber (SSMF) with EVM and BER under 8.4% and 2.9 × 10-5, respectively. The intrinsic characteristics of the device in conjunction with its system transmission performance indicate that QDash BH MLLs can be readily used in fiber-wireless integrated systems of 5G and beyond wireless communication networks.

7.
Arch Toxicol ; 93(10): 2993-3003, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31506784

RESUMO

As one of the isoprenoids and widely derived from many fruits and vegetables, ß-ionone (BI) has a potent inhibitory proliferation of cancer cells in vitro and in vivo. However, its exact mechanism is still uncompleted understood and needs to be further verified. Cyclooxygenase-2 (COX-2), as a potential target of cancer chemoprevention, has been played pivotal roles in proliferation of tumor cells and carcinogenesis. Thus, the objective of present study was to determine that BI inhibited the activity of COX-2 in breast cancer and related to cancer cell models. Cell proliferation, DNA synthesis, the distribution of cell cycle, apoptosis induction and the expression of P38-MAPK protein were determined in MCF-7 cells by methylene blue, 3H-thymidine (TdR) incorporation, flow cytometry, TUNEL and Western blotting assays. Quinone reductase (QR) activity was determined in murine hepatoma Hepa1c1c7 cells by enzyme-linked immunosorbent assay (ELISA). The expression of COX-2 in a phorbol-12-myristate-13-acetate (PMA)-induced cell model and mammary tumor tissues was examined by Western blotting and immunohistochemistry. The results showed that BI significantly inhibited cell proliferation and DNA synthesis, arrested the distribution of cell cycle at the S phase or decreased proteins related to cell cycle such as cyclin D1 and CDK4, induced apoptosis and increased the expression of p-P38 in MCF-7 cells. BI at low doses (< 50 µmol/L) significantly increased QR activity, decreased the expression of COX-2 protein and prostaglandin E2 (PEG2) release in cell models. In addition, BI also significantly decreased the expression of COX-2 protein in rat mammary tumor tissues. Therefore, our findings indicate that BI possesses inhibitory proliferation of breast cancer cells through down-regulation of COX-2 activity.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Inibidores de Ciclo-Oxigenase 2/farmacologia , Ciclo-Oxigenase 2/efeitos dos fármacos , Norisoprenoides/farmacologia , Animais , Apoptose/efeitos dos fármacos , Neoplasias da Mama/patologia , Carcinoma Hepatocelular/enzimologia , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ciclo-Oxigenase 2/metabolismo , Inibidores de Ciclo-Oxigenase 2/administração & dosagem , Relação Dose-Resposta a Droga , Regulação para Baixo/efeitos dos fármacos , Feminino , Humanos , Neoplasias Hepáticas/enzimologia , Células MCF-7 , Neoplasias Mamárias Experimentais/tratamento farmacológico , Neoplasias Mamárias Experimentais/enzimologia , Neoplasias Mamárias Experimentais/patologia , Camundongos , NAD(P)H Desidrogenase (Quinona)/metabolismo , Norisoprenoides/administração & dosagem , Ratos
8.
Adv Healthc Mater ; 8(18): e1900471, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31402606

RESUMO

A novel sandwich-type complex [Na(H2 O)4 ][{Na3 (H2 O)5 }{Mn3 (bpp)3 } (SbW9 O33 )2 }]·8H3 O (MnSbW-bpp) (bpp = 1,3-bis(4-pyridyl) propane) is synthesized and characterized by elemental analysis, IR, thermogravimetric analysis, and single-crystal X-ray diffraction. The MnSbW-bpp compound is the first sandwich case bridged by a flexible ligand. Its biological function of MnSbW-bpp in antitumor activity is also determined in vitro and in vivo. The inhibitory proliferation and induction of apoptosis are performed by flow cytometry assay, S180 (sarcoma) tumor xenograft in ICR mice, the color Doppler ultrasound monitor, and TdT-mediated dUTP-biotin nick end labeling assay. The results show that the novel compound-MnSbW-bpp-is synthesized and identified by its physical and chemical characteristics, such as the fluorescent and paramagnetic activities. MnSbW-bpp indicates a potency inhibition of human cancer lines, such as SGC-7901, HT-29, HepG2, Hela, U2OS, SaoS2, and HMC cells. MnSbW-bpp also inhibits the growth of tumor xenograft in mice, induced cell apoptosis, and released cytochrome c in vivo and in vitro. Thus, MnSbW-bpp, as a new compound, possesses the potent inhibition of cancer cells, which indicates that the MnSbW-bpp has potential merit for the further evaluation of a novel antitumor agent.


Assuntos
Piridinas/química , Piridinas/síntese química , Animais , Apoptose/efeitos dos fármacos , Ascite/patologia , Caspase 3/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Forma Celular/efeitos dos fármacos , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Citocromos c/metabolismo , Humanos , Concentração Inibidora 50 , Ligantes , Masculino , Camundongos Endogâmicos ICR , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Neoplasias/ultraestrutura , Compostos de Tungstênio
9.
Food Chem Toxicol ; 128: 212-222, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30991129

RESUMO

Perchlorate, as an oxidizer, has many applications such as explosives and pyrotechnics, especially in rocket propellants and missile motors. Because it was found in water including wells and drinking water in the US, its effect on human health was being noted. However, the reproductive toxic effect on perchlorate is still unclear. In present study, the effects of repeated exposure to perchlorate on reproductive toxicity were evaluated in Wistar rats. The rats were treated orally with perchlorate at doses of 0.05, 1.00 or 10.00 mg/kg body weight (b.w.) daily for 8 weeks. The levels of T3 and T4 hormones in the rat serum were detected by radioimmunoassay kit. The indexes of reproduction, percentage of organ in body weight (%) and frequency of abnormal sperm cells were also analyzed in this study. DNA damage in testicular cells was evaluated by Comet assay. The levels of MDA, GSH and SOD were examined in testicle tissues of rats by ELISA. The expression of c-fos and fas protein was examined in testicle tissues by immunohistochemistry. The results showed that perchlorate did not affect the body weight of rats. Perchlorate also significantly decreased indexes of live birth and weaning in the groups of 1.00 and 10.00 mg/kg, and viability index only in the 10.00 mg/kg group (P < 0.05). Perchlorate also significantly decreased the serum level of T3 in male rats of 1.00 and 10.00 mg/kg groups, increased the rate of sperm abnormality (10.00 mg/kg), potentially caused DNA damage in testicular cells and altered the status of oxidative stress in male rats. In addition, because of the increase in the expression of fas and c-fos protein in testicle tissues, perchlorate could induce apoptosis in spermatogenesis. Thus, these findings indicate that perchlorate could cause DNA damage in testicular tissues and reduce testicular spermatogenic ability, resulting in reproductive toxicity.


Assuntos
Percloratos/toxicidade , Compostos de Amônio Quaternário/toxicidade , Reprodução/efeitos dos fármacos , Animais , Ensaio Cometa , Dano ao DNA , Feminino , Masculino , Estresse Oxidativo/efeitos dos fármacos , Percloratos/administração & dosagem , Proteínas Proto-Oncogênicas c-fos/metabolismo , Compostos de Amônio Quaternário/administração & dosagem , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Espermatogênese/efeitos dos fármacos , Testículo/efeitos dos fármacos , Testículo/metabolismo , Tiroxina/sangue , Tri-Iodotironina/sangue , Receptor fas/metabolismo
10.
J Agric Food Chem ; 67(1): 441-451, 2019 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-30562020

RESUMO

γ-Tocotrienol (γ-T3) exhibits the activity of anticancer via regulating cell signaling pathways. Nuclear factor-κB (NF-κB), one of the crucial pro-inflammatory factors, is involved in the regulation of cell proliferation, apoptosis, invasion, and migration of tumor. In the present study, NF-κB activity inhibited by γ-T3 was investigated in gastric cancer cells. Cell proliferation, NF-κB activity, active protein phosphatase type 2A (PP2A), and ataxia-telangiectasia mutated (ATM) protein were explored using 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide (MTT), methylene blue, enzyme-linked immunosorbent assay (ELISA), malachite green, luciferase, and Western blotting assays. The effects of γ-T3 on tumor growth and the expression of NF-κB and PP2A proteins were also further examined by implanting human gastric cancer cells in a BALB/c nude mouse model. The results showed that γ-T3 significantly inhibited the cell proliferation and attenuated the NF-κB activity in vitro and in vivo. γ-T3 dramatically increased PP2A activity and protein expression, which suppressed ATM phosphorylation and its translocation to the cytoplasm in gastric cancer cells. Thus, our findings may provide mechanistic insight into effects of γ-T3 on the regulation of NF-κB activity by a PP2A-dependent mechanism and suggest that PP2A may serve as a molecular target for a potential chemopreventive agent.


Assuntos
Proliferação de Células/efeitos dos fármacos , Cromanos/administração & dosagem , NF-kappa B/metabolismo , Neoplasias Gástricas/tratamento farmacológico , Vitamina E/análogos & derivados , Animais , Apoptose/efeitos dos fármacos , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Linhagem Celular Tumoral , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , NF-kappa B/genética , Proteína Fosfatase 2/genética , Proteína Fosfatase 2/metabolismo , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/fisiopatologia , Vitamina E/administração & dosagem
11.
Int J Biochem Cell Biol ; 104: 55-65, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30195065

RESUMO

The red raspberry (Rubus idaeus L.) is a common fruit worldwide and its extract has been found to inhibit the growth of many types of tumors, mainly because it is rich in bioactive phytochemicals. However, the mechanism underlying its anticancer activity in hepatocellular carcinoma (HCC) is not well understood. Herein, the aim of this study was to determine the effects of red raspberry phytochemicals on the proliferation of hepatocellular carcinoma cells and to elucidate its biochemical and molecular targets. CCK8 and colony formation, as well as flow cytometry assays, were employed to determine the effects of red raspberry extract (RRE) on cell proliferation and cell cycle distribution in HCC cells. Our results showed that RRE significantly inhibited cell proliferation and arrested cell cycle progression at the S phase in HCC cells. RRE increased the expression of phosphatase and tensin homologue deleted on chromosome 10 (PTEN) by reducing the methylation status of the PTEN gene promoter and inhibiting DNMT1 expression and regulated AKT signaling pathway. These findings show that red raspberry phytochemicals inhibit the proliferation of HCC cells by regulating PTEN/AKT signaling pathway, providing evidence that RRE may be used as a potential auxiliary therapy for patients with HCC.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , PTEN Fosfo-Hidrolase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Rubus/química , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ilhas de CpG/genética , Dano ao DNA , Metilação de DNA/efeitos dos fármacos , Células Hep G2 , Humanos , PTEN Fosfo-Hidrolase/genética , Regiões Promotoras Genéticas/genética
12.
Sci Rep ; 6: 32167, 2016 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-27571770

RESUMO

A synthetic monoketone analog of curcumin, termed 3, 5-bis (2-flurobenzylidene) piperidin-4-one (EF24), has been reported to inhibit the growth of a variety of cancer cells both in vitro and in vivo. However, whether EF24 has anticancer effects on cholangiocarcinoma (CCA) cells and the mechanisms remain to be investigated. The aim of our study was to evaluate the molecular mechanisms underlying the anticancer effects of EF24 on CCA tumor growth and metastasis. Cell proliferation, apoptosis, migration, invasion, tumorigenesis and metastasis were examined. EF24 exhibited time- and dose-dependent inhibitory effects on HuCCT-1, TFK-1 and HuH28 human CCA cell lines. EF24 inhibited CCA cell proliferation, migration, and induced G2/M phase arrest. EF24 induced cell apoptosis along with negative regulation of NF-κB- X-linked inhibitor of apoptosis protein (XIAP) signaling pathway. XIAP inhibition by lentivirus mediated RNA interference enhanced EF24-induced apoptosis, while XIAP overexpression reduced it in CCA cells. In vivo, EF24 significantly suppressed the growth of CCA tumor xenografts and tumor metastasis while displaying low toxicity levels. Our findings indicate that EF24 is a potent antitumor agent that inhibits tumor growth and metastasis by inhibiting NF-κB dependent signaling pathways. EF24 may represent a novel approach for CCA treatment.


Assuntos
Compostos de Benzilideno/farmacologia , Colangiocarcinoma/tratamento farmacológico , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Pontos de Checagem da Fase M do Ciclo Celular/efeitos dos fármacos , NF-kappa B/metabolismo , Proteínas de Neoplasias/metabolismo , Piperidonas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Apoptose/genética , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Movimento Celular/genética , Colangiocarcinoma/genética , Colangiocarcinoma/metabolismo , Colangiocarcinoma/patologia , Pontos de Checagem da Fase G2 do Ciclo Celular/genética , Humanos , Pontos de Checagem da Fase M do Ciclo Celular/genética , NF-kappa B/genética , Metástase Neoplásica , Proteínas de Neoplasias/genética , Transdução de Sinais/genética
13.
Biomed Res Int ; 2016: 2789245, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28119923

RESUMO

Benzene is metabolized to hydroquinone in liver and subsequently transported to bone marrow for further oxidization to 1,4-benzoquinone (1,4-BQ), which may be related to the leukemia and other blood disorders. In the present study, we investigated the proteome profiles of human primary bone marrow mesenchymal stem cells (hBM-MSCs) treated by 1,4-BQ. We identified 32 proteins that were differentially expressed. Two of them, HSP27 and Vimentin, were verified at both mRNA and protein levels and their cellular localization was examined by immunofluorescence. We also found increased mRNA level of RAP1GDS1, a critical factor of metabolism that has been identified as a fusion partner in various hematopoietic malignancies. Therefore, these differentially expressed proteins can play important roles in benzene-mediated hematoxicity.


Assuntos
Benzoquinonas/farmacologia , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/metabolismo , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Proteoma/metabolismo , Adulto , Medula Óssea/efeitos dos fármacos , Medula Óssea/metabolismo , Células Cultivadas , Células-Tronco Hematopoéticas/efeitos dos fármacos , Células-Tronco Hematopoéticas/metabolismo , Humanos , Masculino , Adulto Jovem
14.
Oncotarget ; 7(4): 4680-94, 2016 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-26717039

RESUMO

Glioblastoma (GBM) is one of the most lethal brain tumors with a short survival time. EGFR amplification and mutation is the most significant genetic signature in GBM. About half of the GBMs with EGFR amplification express a constitutively autophosphorylated variant of EGFR, known as EGFRvIII. Our in vitro data demonstrated further enhanced EGFRvIII activity and tumor cell invasion in the tumor microenvironment of hypoxia plus extracellular matrix (ECM) vitronectin, in which EGFRvIII and integrin ß3 tended to form complexes. The treatment with ITGB3 siRNA or the integrin antagonist cilengetide preferentially interrupted the EGFRvIII/integrin ß3 complex, effectively reduced tumor cell invasion and activation of downstream signaling effectors. Cilengitide is recently failed in Phase III CENTRIC trial in unselected patients with GBM. However, we found that cilengitide demonstrated efficacious tumor regression via inhibition of tumor growth and angiogenesis in EGFRvIII orthotopic xenografts. Bioinformatics analysis emphasized key roles of integrin ß3, hypoxia and vitronectin and their strong correlations with EGFRvIII expression in malignant glioma patient samples in vivo. In conclusion, we demonstrate that EGFRvIII/integrin ß3 complexes promote GBM progression and metastasis in the environment of hypoxia and vitronectin-enrichment, and cilengitide may serve as a promising therapeutics for EGFRvIII-positive GBMs.


Assuntos
Neoplasias Encefálicas/secundário , Receptores ErbB/metabolismo , Glioblastoma/patologia , Hipóxia/patologia , Integrina beta3/metabolismo , Microambiente Tumoral , Vitronectina/metabolismo , Animais , Apoptose , Western Blotting , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Movimento Celular , Proliferação de Células , Progressão da Doença , Receptores ErbB/genética , Feminino , Imunofluorescência , Regulação Neoplásica da Expressão Gênica , Glioblastoma/genética , Glioblastoma/metabolismo , Humanos , Hipóxia/genética , Hipóxia/metabolismo , Técnicas Imunoenzimáticas , Imunoprecipitação , Integrina beta3/genética , Camundongos , Camundongos Nus , Microscopia de Fluorescência , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Estudos Retrospectivos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais , Células Tumorais Cultivadas , Vitronectina/genética , Ensaios Antitumorais Modelo de Xenoenxerto
15.
Int J Biochem Cell Biol ; 70: 140-8, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26615762

RESUMO

Nuclear factor κB is a key mediator of inflammation during conditions of hypoxia. Here, we used models of hypoxic pre-conditioning as mechanism to decrease nuclear factor κB activity induced by hypoxia. Our initial studies suggested that Disrupted in Schizophrenia-1 may be induced by hypoxic pre-conditioning and possibly involved in the regulation of nuclear factor κB. In this study we used Disrupted in Schizophrenia-1 exogenous over-expression and knock-down to determine its effect on ataxia telangiectasia mutated--nuclear factor κB activation cascade. Our results demonstrated that hypoxic pre-conditioning significantly increased the expression of Disrupted in Schizophrenia-1 at mRNA and protein levels both in vitro and in vivo. Over-expression of Disrupted in Schizophrenia-1 significantly attenuated the hypoxia-mediated ataxia telangiectasia mutated phosphorylation and prevented its cytoplasm translocation where it functions to activate nuclear factor κB. We further determined that Disrupted in Schizophrenia-1 activated the protein phosphatase 2A, preventing the phosphorylation of ataxia telangiectasia mutated serine-1981, the main regulatory site of ataxia telangiectasia mutated activity. Cellular levels of Disrupted in Schizophrenia-1 protein significantly decreased nuclear factor κB activation profiles and pro-inflammatory gene expression. Taken together, these results demonstrate that hypoxic pre-conditioning decreases the activation of nuclear factor κB through the transcriptional induction of Disrupted in Schizophrenia-1.


Assuntos
Células Epiteliais/metabolismo , Hipóxia/genética , NF-kappa B/genética , Proteínas do Tecido Nervoso/genética , RNA Mensageiro/genética , Animais , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Hipóxia Celular/genética , Linhagem Celular Tumoral , Células Epiteliais/patologia , Regulação da Expressão Gênica , Células HeLa , Humanos , Hipóxia/metabolismo , Hipóxia/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mutação , NF-kappa B/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Fosforilação , Proteína Fosfatase 2/genética , Proteína Fosfatase 2/metabolismo , Transporte Proteico , RNA Mensageiro/metabolismo , Serina/metabolismo , Transdução de Sinais
16.
PLoS One ; 10(3): e0122175, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25807493

RESUMO

Tocotrienols have been shown many biologic functions such as antioxidant, anti-cancer, maintaining fertility and regulating the immune system and so on. In this study, after feeding with tocotrienol-rich fraction from palm oil (TRF) for 2 weeks, Balb/c nude mice were inoculated human colon SW620 cancer cell and then continued to feed TRF for 4 weeks. At termination of experiments, xenografts were removed and determined the expression of Wnt-pathways related protein by immunohistochemistry or western blotting. Liver tissues were homogenated for determining the levels of antioxidative enzymes activity or malondialdehyde (MDA). The results showed that TRF significantly inhibited the growth of xenografts in nude mice. TRF also affected the activity of antioxidative enzymes in the liver tissue of mice. These changes were partly contributed to activation of wnt pathways or affecting their related protein. Thus, these finding suggested that the potent anticancer effect of TRF is associated with the regulation of Wnt signal pathways.


Assuntos
Antineoplásicos/toxicidade , Tocotrienóis/toxicidade , Via de Sinalização Wnt/efeitos dos fármacos , Animais , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Catalase/metabolismo , Linhagem Celular Tumoral , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Feminino , Glutationa Peroxidase/metabolismo , Humanos , Imuno-Histoquímica , Leucócitos/citologia , Leucócitos/imunologia , Fígado/metabolismo , Masculino , Malondialdeído/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Óleo de Palmeira , Óleos de Plantas/química , Óleos de Plantas/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Superóxido Dismutase/metabolismo , Tocotrienóis/química , Tocotrienóis/uso terapêutico , Transplante Heterólogo , beta Catenina/metabolismo
17.
Cell Transplant ; 23 Suppl 1: S45-56, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25333841

RESUMO

Human fetal neural stem cells (hNSCs) are used to treat a variety of neurological disorders involving spinal cord injury (SCI). Although their mechanism of action has been attributed to cell substitution, we examined the possibility that NSCs may have neuroprotective activities. The present article studied the action of hNSCs on protecting neurons and promoting corticospinal tract (CST) axon regeneration after SCI. hNSCs were isolated from the cortical tissue of spontaneously aborted human fetuses. The cells were removed from the NSC culture medium to acquire NSCM, thus excluding the effect of cell substitution. Continuous administration of the NSCM after the SCI resulted in extensive growth of the CST in the cervical region and more than tripled the formation of synaptic contacts between CST collaterals and propriospinal interneurons that project from the cervical level of the spinal cord to the lumbar level. NSCM reduced the number of caspase 3-positive apoptotic profiles at 7 days and protected against loss of the neurons 6 weeks after injury. NSCM promoted locomotor recovery with a five-point improvement on the BBB scale in adult rats. Thus, hNSCs help to set up a contour neural circuit via secretory factors, which may be the mechanism for their action in SCI rats. This manuscript is published as part of the International Association of Neurorestoratology (IANR) special issue of Cell Transplantation.


Assuntos
Meios de Cultivo Condicionados/farmacologia , Rede Nervosa/fisiopatologia , Células-Tronco Neurais/citologia , Neurônios/citologia , Fármacos Neuroprotetores/uso terapêutico , Traumatismos da Medula Espinal/tratamento farmacológico , Traumatismos da Medula Espinal/fisiopatologia , Animais , Apoptose/efeitos dos fármacos , Axônios/efeitos dos fármacos , Feminino , Humanos , Masculino , Rede Nervosa/efeitos dos fármacos , Regeneração Nervosa/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Ratos Wistar , Recuperação de Função Fisiológica/efeitos dos fármacos , Medula Espinal/efeitos dos fármacos , Medula Espinal/patologia , Medula Espinal/fisiopatologia , Caminhada
18.
Mol Cancer ; 13: 133, 2014 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-24884809

RESUMO

BACKGROUND: Arsenic trioxide has been demonstrated as an effective anti-cancer drug against leukemia and solid tumors both in vitro and in vivo. However, recent phase II trials demonstrated that single agent arsenic trioxide was poorly effective against hepatocellular carcinoma (HCC), which might be due to drug resistance. METHODS: Mutation detection of p53 gene in arsenic trioxide resistant HCC cell lines was performed. The therapeutic effects of arsenic trioxide and Nutlin-3 on HCC were evaluated both in vitro and in vivo. A series of experiments including MTT, apoptosis assays, co-Immunoprecipitation, siRNA transfection, lentiviral infection, cell migration, invasion, and epithelial-mesenchy-mal transition (EMT) assays were performed to investigate the underlying mechanisms. RESULTS: The acquisition of p53 mutation contributed to arsenic trioxide resistance and enhanced metastatic potential of HCC cells. Mutant p53 (Mutp53) silence could re-sensitize HCC resistant cells to arsenic trioxide and inhibit the metastatic activities, while mutp53 overexpression showed the opposite effects. Neither arsenic trioxide nor Nutlin-3 could exhibit obvious effects against arsenic trioxide resistant HCC cells, while combination of them showed significant effects. Nutlin-3 can not only increase the intracellular arsenicals through inhibition of p-gp but also promote the p73 activation and mutp53 degradation mediated by arsenic trioxide. In vivo experiments indicated that Nutlin-3 can potentiate the antitumor activities of arsenic trioxide in an orthotopic hepatic tumor model and inhibit the metastasis to lung. CONCLUSIONS: Acquisitions of p53 mutations contributed to the resistance of HCC to arsenic trioxide. Nutlin-3 could overcome arsenic trioxide resistance and inhibit tumor metastasis through p73 activation and promoting mutant p53 degradation mediated by arsenic trioxide.


Assuntos
Antineoplásicos/farmacologia , Arsenicais/farmacologia , Carcinoma Hepatocelular/tratamento farmacológico , Regulação Neoplásica da Expressão Gênica , Imidazóis/farmacologia , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Óxidos/farmacologia , Piperazinas/farmacologia , Proteína Supressora de Tumor p53/genética , Animais , Trióxido de Arsênio , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Sinergismo Farmacológico , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/secundário , Camundongos , Camundongos Nus , Mutação , Transplante de Neoplasias , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Transdução de Sinais , Proteína Tumoral p73 , Proteína Supressora de Tumor p53/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
19.
Dalton Trans ; 43(16): 6070-8, 2014 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-24463531

RESUMO

A new cobalt-based polyoxometalate, (Himi)2[Bi(2)W2(0)O(66)(OH)(4)Co2(H2O)(6)Na(4) (H2O)14] · 17H2O (imi = iminazole) (BWCN) has been synthesized and structurally characterized. The inhibitory activities against selected human cancer lines were also determined in this study. The cell viability and chemoresistance of BWCN on human colon carcinoma HT-29 cells were assessed by MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazoliumbromide), cell morphology changes, a comet assay and western blot analysis. The typical morphologic changes of apoptosis and DNA damage indicated that BWCN could have a distinct proliferation inhibitory effect on cancer cells. BWCN as a chemotherapeutic agent also induced apoptosis on HT-29 cells and showed a significant expression of cleaved-caspase-3. These results suggested that the active site of BWCN is the polymeric anion based on the basic tectonic block {BiW(9)}, and the possible mechanism is related to the interference of DNA synthesis in cancer cells.


Assuntos
Antineoplásicos/farmacologia , Cobalto/farmacologia , Compostos de Tungstênio/farmacologia , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Caspase 3/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cobalto/química , Ensaio Cometa , Dano ao DNA , Humanos , Compostos de Tungstênio/química
20.
Hepatology ; 59(3): 935-46, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24037855

RESUMO

UNLABELLED: Although gankyrin is involved in the tumorigenicity and metastasis of some malignancies, the role of gankyrin in cholangiocarcinoma (CCA) is unclear. In this study we investigated the expression of gankyrin in human CCA tissues and cell lines. The effects of gankyrin on CCA tumor growth and metastasis were determined both in vivo and in vitro. The results showed that gankyrin was overexpressed in CCA tissues and cell lines. Gankyrin expression was associated with CCA histological differentiation, TNM stage, and metastasis. The multivariate Cox analysis revealed that gankyrin was an independent prognostic indicator for overall survival. Gankyrin overexpression promoted CCA cell proliferation, migration, and invasion, while gankyrin knockdown inhibited CCA tumor growth, metastasis, and induced Rb-dependent senescence and G1 phase cell cycle arrest. Gankyrin increased the phosphorylation of signal transducer and activator of transcription 3 (STAT3) and promoted the nuclear translocation of p-STAT3. Suppression of STAT3 signaling by small interfering RNA (siRNA) or STAT3 inhibitor interfered with gankyrin-mediated carcinogenesis and metastasis, while interleukin (IL)-6, a known upstream activator of STAT3, could restore the proliferation and migration of gankyrin-silenced CCA cells. The IL-6 level was decreased by gankyrin knockdown, while increased by gankyrin overexpression. Gankyrin regulated IL-6 expression by way of facilitating the phosphorylation of Rb; meanwhile, rIL-6 treatment increased the expression of gankyrin, suggesting that IL-6 was regulated by a positive feedback loop involving gankyrin in CCA. In the xenograft experiments, gankyrin overexpression accelerated tumor formation and increased tumor weight, whereas gankyrin knockdown showed the opposite effects. The in vivo spontaneous metastasis assay revealed that gankyrin promoted CCA metastasis through IL-6/STAT3 signaling pathway. CONCLUSION: Gankyrin is crucial for CCA carcinogenesis and metastasis by activating IL-6/STAT3 signaling pathway through down-regulating Rb protein.


Assuntos
Neoplasias dos Ductos Biliares/metabolismo , Ductos Biliares Intra-Hepáticos/metabolismo , Colangiocarcinoma/metabolismo , Interleucina-6/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Fator de Transcrição STAT3/metabolismo , Neoplasias dos Ductos Biliares/genética , Neoplasias dos Ductos Biliares/patologia , Ductos Biliares Intra-Hepáticos/patologia , Pontos de Checagem do Ciclo Celular/fisiologia , Movimento Celular/fisiologia , Colangiocarcinoma/genética , Colangiocarcinoma/secundário , Regulação Neoplásica da Expressão Gênica , Humanos , Invasividade Neoplásica/patologia , Valor Preditivo dos Testes , Prognóstico , Complexo de Endopeptidases do Proteassoma/genética , Proteínas Proto-Oncogênicas/genética , Proteína do Retinoblastoma/metabolismo , Transdução de Sinais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA