Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 138
Filtrar
1.
Cell Death Dis ; 15(8): 556, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39090114

RESUMO

Reactive oxygen species (ROS) are highly reactive oxygen-containing molecules generated as natural byproducts during cellular processes, including metabolism. Under normal conditions, ROS play crucial roles in diverse cellular functions, including cell signaling and immune responses. However, a disturbance in the balance between ROS production and cellular antioxidant defenses can lead to an excessive ROS buildup, causing oxidative stress. This stress damages essential cellular components, including lipids, proteins, and DNA, potentially culminating in oxidative cell death. This form of cell death can take various forms, such as ferroptosis, apoptosis, necroptosis, pyroptosis, paraptosis, parthanatos, and oxeiptosis, each displaying distinct genetic, biochemical, and signaling characteristics. The investigation of oxidative cell death holds promise for the development of pharmacological agents that are used to prevent tumorigenesis or treat established cancer. Specifically, targeting key antioxidant proteins, such as SLC7A11, GCLC, GPX4, TXN, and TXNRD, represents an emerging approach for inducing oxidative cell death in cancer cells. This review provides a comprehensive summary of recent progress, opportunities, and challenges in targeting oxidative cell death for cancer therapy.


Assuntos
Morte Celular , Neoplasias , Estresse Oxidativo , Espécies Reativas de Oxigênio , Humanos , Neoplasias/metabolismo , Neoplasias/patologia , Espécies Reativas de Oxigênio/metabolismo , Animais , Oxirredução , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Transdução de Sinais , Apoptose , Ferroptose/efeitos dos fármacos
2.
Redox Biol ; 75: 103259, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38955112

RESUMO

Ferroptosis is a form of iron-related oxidative cell death governed by an integrated redox system, encompassing pro-oxidative proteins and antioxidative proteins. These proteins undergo precise control through diverse post-translational modifications, including ubiquitination, phosphorylation, acetylation, O-GlcNAcylation, SUMOylation, methylation, N-myristoylation, palmitoylation, and oxidative modification. These modifications play pivotal roles in regulating protein stability, activity, localization, and interactions, ultimately influencing both the buildup of iron and lipid peroxidation. In mammalian cells, regulators of ferroptosis typically undergo degradation via two principal pathways: the ubiquitin-proteasome system, which handles the majority of protein degradation, and autophagy, primarily targeting long-lived or aggregated proteins. This comprehensive review aims to summarize recent advances in the post-translational modification and degradation of proteins linked to ferroptosis. It also discusses strategies for modulating ferroptosis through protein modification and degradation systems, providing new insights into potential therapeutic applications for both cancer and non-neoplastic diseases.


Assuntos
Ferroptose , Processamento de Proteína Pós-Traducional , Proteólise , Humanos , Animais , Ferro/metabolismo , Oxirredução , Peroxidação de Lipídeos , Neoplasias/metabolismo , Neoplasias/patologia , Ubiquitinação , Autofagia , Complexo de Endopeptidases do Proteassoma/metabolismo
3.
Aging (Albany NY) ; 16(5): 4736-4758, 2024 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-38461424

RESUMO

Ovarian cancer stands as a prevalent malignancy within the realm of gynecology, and the emergence of resistance to chemotherapeutic agents remains a pivotal impediment to both prognosis and treatment. Through a single-cell level investigation, we scrutinize the drug resistance and mitotic activity of the core tumor cells in ovarian cancer. Our study revisits the interrelationships and temporal trajectories of distinct epithelial cells (EPCs) subpopulations, while identifying genes associated with ovarian cancer prognosis. Notably, our findings establish a strong association between the drug resistance of EPCs and oxidative phosphorylation pathways. Subsequently, through subpopulation and temporal trajectory analysis, we confirm the intermediate position of EPCs subpopulation C0. Furthermore, we delve into the immunological functions and differentially expressed genes associated with the prognosis of C0, shedding light on the potential for constructing novel ovarian cancer prognosis models and identifying new therapeutic targets.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Neoplasias Ovarianas , Humanos , Feminino , Resistencia a Medicamentos Antineoplásicos/genética , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Prognóstico , Células Epiteliais/metabolismo , Análise de Sequência de RNA
4.
Acta Pharm Sin B ; 13(10): 4217-4233, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37799381

RESUMO

Increasing evidences suggest the important role of calcium homeostasis in hallmarks of cancer, but its function and regulatory network in metastasis remain unclear. A comprehensive investigation of key regulators in cancer metastasis is urgently needed. Transcriptome sequencing (RNA-seq) of primary esophageal squamous cell carcinoma (ESCC) and matched metastatic tissues and a series of gain/loss-of-function experiments identified potassium channel tetramerization domain containing 4 (KCTD4) as a driver of cancer metastasis. KCTD4 expression was found upregulated in metastatic ESCC. High KCTD4 expression is associated with poor prognosis in patients with ESCC and contributes to cancer metastasis in vitro and in vivo. Mechanistically, KCTD4 binds to CLIC1 and disrupts its dimerization, thus increasing intracellular Ca2+ level to enhance NFATc1-dependent fibronectin transcription. KCTD4-induced fibronectin secretion activates fibroblasts in a paracrine manner, which in turn promotes cancer cell invasion via MMP24 signaling as positive feedback. Furthermore, a lead compound K279-0738 significantly suppresses cancer metastasis by targeting the KCTD4‒CLIC1 interaction, providing a potential therapeutic strategy. Taken together, our study not only uncovers KCTD4 as a regulator of calcium homeostasis, but also reveals KCTD4/CLIC1-Ca2+-NFATc1-fibronectin signaling as a novel mechanism of cancer metastasis. These findings validate KCTD4 as a potential prognostic biomarker and therapeutic target for ESCC.

5.
Circ Res ; 133(7): 572-587, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37641975

RESUMO

BACKGROUND: A better understanding of the regulation of proteasome activities can facilitate the search for new therapeutic strategies. A cell culture study shows that PKA (cAMP-dependent protein kinase or protein kinase A) activates the 26S proteasome by pS14-Rpn6 (serine14-phosphorylated Rpn6), but this discovery and its physiological significance remain to be established in vivo. METHODS: Male and female mice with Ser14 of Rpn6 (regulatory particle non-ATPase 6) mutated to Ala (S14A [Rpn6/Psmd11S14A]) or Asp (S14D) to respectively block or mimic pS14-Rpn6 were created and used along with cells derived from them. cAMP/PKA were manipulated pharmacologically. Ubiquitin-proteasome system functioning was evaluated with the GFPdgn (green fluorescence protein with carboxyl fusion of the CL1 degron) reporter mouse and proteasomal activity assays. Impact of S14A and S14D on proteotoxicity was tested in mice and cardiomyocytes overexpressing the misfolded protein R120G-CryAB (R120G [arginine120 to glycine missense mutant alpha B-crystallin]). RESULTS: PKA activation increased pS14-Rpn6 and 26S proteasome activities in wild-type but not S14A embryonic fibroblasts (mouse embryonic fibroblasts), adult cardiomyocytes, and mouse hearts. Basal 26S proteasome activities were significantly greater in S14D myocardium and adult mouse cardiomyocytes than in wild-type counterparts. S14D::GFPdgn mice displayed significantly lower myocardial GFPdgn protein but not mRNA levels than GFPdgn mice. In R120G mice, a classic model of cardiac proteotoxicity, basal myocardial pS14-Rpn6 was significantly lower compared with nontransgenic littermates, which was not always associated with reduction of other phosphorylated PKA substrates. Cultured S14D neonatal cardiomyocytes displayed significantly faster proteasomal degradation of R120G than wild-type neonatal cardiomyocytes. Compared with R120G mice, S14D/S14D::R120G mice showed significantly greater myocardial proteasome activities, lower levels of total and K48-linked ubiquitin conjugates, and of aberrant CryAB (alpha B-crystallin) protein aggregates, less fetal gene reactivation, and cardiac hypertrophy, and delays in cardiac malfunction. CONCLUSIONS: This study establishes in animals that pS14-Rpn6 mediates the activation of 26S proteasomes by PKA and that the reduced pS14-Rpn6 is a key pathogenic factor in cardiac proteinopathy, thereby identifying a new therapeutic target to reduce cardiac proteotoxicity.


Assuntos
Complexo de Endopeptidases do Proteassoma , Cadeia B de alfa-Cristalina , Feminino , Masculino , Animais , Camundongos , Fibroblastos , Miócitos Cardíacos , Proteínas Quinases Dependentes de AMP Cíclico , Ubiquitinas
6.
Acta Pharmacol Sin ; 44(12): 2537-2548, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37528233

RESUMO

5-Fluorouracil (5-FU) is the first-line treatment for colorectal cancer (CRC) patients, but the development of acquired resistance to 5-FU remains a big challenge. Deubiquitinases play a key role in the protein degradation pathway, which is involved in cancer development and chemotherapy resistance. In this study, we investigated the effects of targeted inhibition of the proteasomal deubiquitinases USP14 and UCHL5 on the development of CRC and resistance to 5-FU. By analyzing GEO datasets, we found that the mRNA expression levels of USP14 and UCHL5 in CRC tissues were significantly increased, and negatively correlated with the survival of CRC patients. Knockdown of both USP14 and UCHL5 led to increased 5-FU sensitivity in 5-FU-resistant CRC cell lines (RKO-R and HCT-15R), whereas overexpression of USP14 and UCHL5 in 5-FU-sensitive CRC cells decreased 5-FU sensitivity. B-AP15, a specific inhibitor of USP14 and UCHL5, (1-5 µM) dose-dependently inhibited the viability of RKO, RKO-R, HCT-15, and HCT-15R cells. Furthermore, treatment with b-AP15 reduced the malignant phenotype of CRC cells including cell proliferation and migration, and induced cell death in both 5-FU-sensitive and 5-FU-resistant CRC cells by impairing proteasome function and increasing reactive oxygen species (ROS) production. In addition, b-AP15 inhibited the activation of NF-κB pathway, suppressing cell proliferation. In 5-FU-sensitive and 5-FU-resistant CRC xenografts nude mice, administration of b-AP15 (8 mg·kg-1·d-1, intraperitoneal injection) effectively suppressed the growth of both types of tumors. These results demonstrate that USP14 and UCHL5 play an important role in the development of CRC and resistance to 5-FU. Targeting USP14 and UCHL5 with b-AP15 may represent a promising therapeutic strategy for the treatment of CRC.


Assuntos
Neoplasias Colorretais , Complexo de Endopeptidases do Proteassoma , Animais , Camundongos , Humanos , Complexo de Endopeptidases do Proteassoma/metabolismo , Fluoruracila/farmacologia , Fluoruracila/uso terapêutico , Camundongos Nus , Apoptose , Linhagem Celular Tumoral , Neoplasias Colorretais/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos , Ubiquitina Tiolesterase
8.
Cell Discov ; 9(1): 74, 2023 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-37460462

RESUMO

Posttranslational modification dramatically enhances protein complexity, but the function and precise mechanism of novel lysine acylation modifications remain unknown. Chemoresistance remains a daunting challenge to successful treatment. We found that lysine butyrylation (Kbu) is specifically upregulated in chemoresistant tumor cells and tissues. By integrating butyrylome profiling and gain/loss-of-function experiments, lysine 754 in HSP90 (HSP90 K754) was identified as a substrate for Kbu. Kbu modification leads to overexpression of HSP90 in esophageal squamous cell carcinoma (ESCC) and its further increase in relapse samples. Upregulation of HSP90 contributes to 5-FU resistance and can predict poor prognosis in cancer patients. Mechanistically, HSP90 K754 is regulated by the cooperation of KAT8 and HDAC11 as the writer and eraser, respectively; SDCBP increases the Kbu level and stability of HSP90 by binding competitively to HDAC11. Furthermore, SDCBP blockade with the lead compound V020-9974 can target HSP90 K754 to overcome 5-FU resistance, constituting a potential therapeutic strategy.

9.
Nat Commun ; 14(1): 3815, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37369679

RESUMO

N6-methyladenosine (m6A) modification plays important roles in bioprocesses and diseases. AlkB homolog 5 (ALKBH5) is one of two m6A demethylases. Here, we reveal that ALKBH5 is acetylated at lysine 235 (K235) by lysine acetyltransferase 8 and deacetylated by histone deacetylase 7. K235 acetylation strengthens the m6A demethylation activity of ALKBH5 by increasing its recognition of m6A on mRNA. RNA-binding protein paraspeckle component 1 (PSCP1) is a regulatory subunit of ALKBH5 and preferentially interacts with K235-acetylated ALKBH5 to recruit and facilitate the recognition of m6A mRNA by ALKBH5, thereby promoting m6A erasure. Mitogenic signals promote ALKBH5 K235 acetylation. K235 acetylation of ALKBH5 is upregulated in cancers and promotes tumorigenesis. Thus, our findings reveal that the m6A demethylation activity of ALKBH5 is orchestrated by its K235 acetylation and regulatory subunit PSPC1 and that K235 acetylation is necessary for the m6A demethylase activity and oncogenic roles of ALKBH5.


Assuntos
Carcinogênese , Transformação Celular Neoplásica , Humanos , Acetilação , RNA Mensageiro/metabolismo , Carcinogênese/genética , Homólogo AlkB 5 da RNA Desmetilase/genética , Homólogo AlkB 5 da RNA Desmetilase/metabolismo , Desmetilação , Proteínas de Ligação a RNA/metabolismo
11.
Molecules ; 28(7)2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-37049865

RESUMO

The destructive effect and mode of action of lemon verbena essential oil on cells were investigated, taking the isolated Pseudosciaena D4 as the research object. The extracellular absorbance of the Pseudosciaena D4 increased at OD260 and OD280 after being treated with lemon verbena essential oil, which destroyed the integrity of Pseudosciaena D4 cells, showing a significant effect on preventing biomembrane formation and destroying the formed biomembrane. With an increased concentration of lemon verbena essential oil, extracellular polysaccharide showed a significant decrease in content and a significant increase in inhibition rate, indicating that the secretion of extracellular polysaccharide by Pseudosciaena D4 cells could be inhibited by lemon verbena essential oil during the process of biomembrane formation. Cell introcession and shrinkage appeared after the treatment with essential oil, and a transparent cavity was formed by the out-flowed cell content. Lemon verbena essential oil destroyed the cell wall, resulting in an enhanced permeability of the cell membrane and leakage of the contents, thereby causing cell death.


Assuntos
Óleos Voláteis , Verbena , Verbenaceae , Óleos Voláteis/farmacologia , Óleos Voláteis/metabolismo
12.
Autophagy ; 19(8): 2175-2195, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37055935

RESUMO

Copper is an essential trace element in biological systems, maintaining the activity of enzymes and the function of transcription factors. However, at high concentrations, copper ions show increased toxicity by inducing regulated cell death, such as apoptosis, paraptosis, pyroptosis, ferroptosis, and cuproptosis. Furthermore, copper ions can trigger macroautophagy/autophagy, a lysosome-dependent degradation pathway that plays a dual role in regulating the survival or death fate of cells under various stress conditions. Pathologically, impaired copper metabolism due to environmental or genetic causes is implicated in a variety of human diseases, such as rare Wilson disease and common cancers. Therapeutically, copper-based compounds are potential chemotherapeutic agents that can be used alone or in combination with other drugs or approaches to treat cancer. Here, we review the progress made in understanding copper metabolic processes and their impact on the regulation of cell death and autophagy. This knowledge may help in the design of future clinical tools to improve cancer diagnosis and treatment.Abbreviations: ACSL4, acyl-CoA synthetase long chain family member 4; AIFM1/AIF, apoptosis inducing factor mitochondria associated 1; AIFM2, apoptosis inducing factor mitochondria associated 2; ALDH, aldehyde dehydrogenase; ALOX, arachidonate lipoxygenase; AMPK, AMP-activated protein kinase; APAF1, apoptotic peptidase activating factor 1; ATF4, activating transcription factor 4; ATG, autophagy related; ATG13, autophagy related 13; ATG5, autophagy related 5; ATOX1, antioxidant 1 copper chaperone; ATP, adenosine triphosphate; ATP7A, ATPase copper transporting alpha; ATP7B, ATPase copper transporting beta; BAK1, BCL2 antagonist/killer 1; BAX, BCL2 associated X apoptosis regulator; BBC3/PUMA, BCL2 binding component 3; BCS, bathocuproinedisulfonic acid; BECN1, beclin 1; BID, BH3 interacting domain death agonist; BRCA1, BRCA1 DNA repair associated; BSO, buthionine sulphoximine; CASP1, caspase 1; CASP3, caspase 3; CASP4/CASP11, caspase 4; CASP5, caspase 5; CASP8, caspase 8; CASP9, caspase 9; CCS, copper chaperone for superoxide dismutase; CD274/PD-L1, CD274 molecule; CDH2, cadherin 2; CDKN1A/p21, cyclin dependent kinase inhibitor 1A; CDKN1B/p27, cyclin-dependent kinase inhibitor 1B; COMMD10, COMM domain containing 10; CoQ10, coenzyme Q 10; CoQ10H2, reduced coenzyme Q 10; COX11, cytochrome c oxidase copper chaperone COX11; COX17, cytochrome c oxidase copper chaperone COX17; CP, ceruloplasmin; CYCS, cytochrome c, somatic; DBH, dopamine beta-hydroxylase; DDIT3/CHOP, DNA damage inducible transcript 3; DLAT, dihydrolipoamide S-acetyltransferase; DTC, diethyldithiocarbamate; EIF2A, eukaryotic translation initiation factor 2A; EIF2AK3/PERK, eukaryotic translation initiation factor 2 alpha kinase 3; ER, endoplasmic reticulum; ESCRT-III, endosomal sorting complex required for transport-III; ETC, electron transport chain; FABP3, fatty acid binding protein 3; FABP7, fatty acid binding protein 7; FADD, Fas associated via death domain; FAS, Fas cell surface death receptor; FASL, Fas ligand; FDX1, ferredoxin 1; GNAQ/11, G protein subunit alpha q/11; GPX4, glutathione peroxidase 4; GSDMD, gasdermin D; GSH, glutathione; HDAC, histone deacetylase; HIF1, hypoxia inducible factor 1; HIF1A, hypoxia inducible factor 1 subunit alpha; HMGB1, high mobility group box 1; IL1B, interleukin 1 beta; IL17, interleukin 17; KRAS, KRAS proto-oncogene, GTPase; LOX, lysyl oxidase; LPCAT3, lysophosphatidylcholine acyltransferase 3; MAP1LC3, microtubule associated protein 1 light chain 3; MAP2K1, mitogen-activated protein kinase kinase 1; MAP2K2, mitogen-activated protein kinase kinase 2; MAPK, mitogen-activated protein kinases; MAPK14/p38, mitogen-activated protein kinase 14; MEMO1, mediator of cell motility 1; MT-CO1/COX1, mitochondrially encoded cytochrome c oxidase I; MT-CO2/COX2, mitochondrially encoded cytochrome c oxidase II; MTOR, mechanistic target of rapamycin kinase; MTs, metallothioneins; NAC, N-acetylcysteine; NFKB/NF-Κb, nuclear factor kappa B; NLRP3, NLR family pyrin domain containing 3; NPLOC4/NPL4, NPL4 homolog ubiquitin recognition factor; PDE3B, phosphodiesterase 3B; PDK1, phosphoinositide dependent protein kinase 1; PHD, prolyl-4-hydroxylase domain; PIK3C3/VPS34, phosphatidylinositol 3-kinase catalytic subunit type 3; PMAIP1/NOXA, phorbol-12-myristate-13-acetate-induced protein 1; POR, cytochrome P450 oxidoreductase; PUFA-PL, PUFA of phospholipids; PUFAs, polyunsaturated fatty acids; ROS, reactive oxygen species; SCO1, synthesis of cytochrome C oxidase 1; SCO2, synthesis of cytochrome C oxidase 2; SLC7A11, solute carrier family 7 member 11; SLC11A2/DMT1, solute carrier family 11 member 2; SLC31A1/CTR1, solute carrier family 31 member 1; SLC47A1, solute carrier family 47 member 1; SOD1, superoxide dismutase; SP1, Sp1 transcription factor; SQSTM1/p62, sequestosome 1; STEAP4, STEAP4 metalloreductase; TAX1BP1, Tax1 binding protein 1; TEPA, tetraethylenepentamine; TFEB, transcription factor EB; TM, tetrathiomolybdate; TP53/p53, tumor protein p53; TXNRD1, thioredoxin reductase 1; UCHL5, ubiquitin C-terminal hydrolase L5; ULK1, Unc-51 like autophagy activating kinase 1; ULK1, unc-51 like autophagy activating kinase 1; ULK2, unc-51 like autophagy activating kinase 2; USP14, ubiquitin specific peptidase 14; VEGF, vascular endothelial gro wth factor; XIAP, X-linked inhibitor of apoptosis.


Assuntos
Autofagia , Neoplasias , Humanos , Autofagia/fisiologia , Proteína Supressora de Tumor p53 , Fator de Indução de Apoptose , Cobre , Ubiquinona , Complexo IV da Cadeia de Transporte de Elétrons , Proteína Homóloga à Proteína-1 Relacionada à Autofagia , Proteínas Proto-Oncogênicas p21(ras) , Apoptose/fisiologia , Caspases , Fator 1 Induzível por Hipóxia , Superóxido Dismutase , Íons , Proteínas Proto-Oncogênicas c-bcl-2
13.
Free Radic Biol Med ; 203: 1-10, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37011699

RESUMO

Hepatocellular carcinoma (HCC), the most common type of primary liver cancer, remains a global health challenge requiring novel and effective therapeutic agents and approaches. Here, we found that a natural product plumbagin can inhibit the growth of HCC cells by inducing the downregulation of GPX4, but not other antioxidant enzymes such as CAT, SOD1, and TXN. Functionally, genetic silence of GPX4 enhances, whereas the overexpression of GPX4 inhibits plumbagin-induced apoptosis (rather than ferroptosis) in HCC cells. Furthermore, GPX4 protein specifically binds the deubiquitinase USP31, but not other deubiquitinases such as CYLD, USP1, USP14, USP20, USP30, USP38, UCHL1, UCHL3, and UCHL5. As an inhibitor of deubiquitinating enzymes, especially USP31, plumbagin induces ubiquitination of GPX4 and subsequent proteasomal degradation of GPX4 in HCC cells. Accordingly, plumbagin-mediated tumor suppression is also associated with the downregulation of GPX4 and the upregulation of apoptosis in a subcutaneous xenograft tumor model. Taken together, these findings demonstrate a novel anticancer mechanism of plumbagin by inducing GPX4 protein degradation.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Linhagem Celular Tumoral , Apoptose , Ubiquitina Tiolesterase , Tioléster Hidrolases , Proteínas Mitocondriais , Proteases Específicas de Ubiquitina/farmacologia
14.
Cell Res ; 33(5): 355-371, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36882514

RESUMO

Posttranslational modifications add tremendous complexity to proteomes; however, gaps remain in knowledge regarding the function and regulatory mechanism of newly discovered lysine acylation modifications. Here, we compared a panel of non-histone lysine acylation patterns in metastasis models and clinical samples, and focused on 2-hydroxyisobutyrylation (Khib) due to its significant upregulation in cancer metastases. By the integration of systemic Khib proteome profiling in 20 paired primary esophageal tumor and metastatic tumor tissues with CRISPR/Cas9 functional screening, we identified N-acetyltransferase 10 (NAT10) as a substrate for Khib modification. We further showed that Khib modification at lysine 823 in NAT10 functionally contribute to metastasis. Mechanistically, NAT10 Khib modification enhances its interaction with deubiquitinase USP39, resulting in increased NAT10 protein stability. NAT10 in turn promotes metastasis by increasing NOTCH3 mRNA stability in an N4-acetylcytidine-dependent manner. Furthermore, we discovered a lead compound #7586-3507 that inhibited NAT10 Khib modification and showed efficacy in tumor models in vivo at a low concentration. Together, our findings bridge newly identified lysine acylation modifications with RNA modifications, thus providing novel insights into epigenetic regulation in human cancer. We propose that pharmacological inhibition of NAT10 K823 Khib modification constitutes a potential anti-metastasis strategy.


Assuntos
Lisina , Neoplasias , Humanos , Lisina/metabolismo , Epigênese Genética , Acilação , Processamento de Proteína Pós-Traducional , Acetiltransferases/metabolismo , Neoplasias/genética , Acetiltransferases N-Terminal/genética , Acetiltransferases N-Terminal/metabolismo , Proteases Específicas de Ubiquitina/genética
15.
Br J Cancer ; 128(7): 1249-1266, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36755063

RESUMO

BACKGROUND: Tumour-derived small extracellular vesicles (sEVs) play a crucial role in cancer immunomodulation. In addition to tumour immune microenvironment, the peripheral immune system also contributes significantly to cancer progression and is essential for anticancer immunity. However, a comprehensive definition of which and how peripheral immune lineages are regulated by tumour-derived sEVs during cancer development remains incomplete. METHODS: In this study, we used mass cytometry with extensive antibody panels to comprehensively construct the systemic immune landscape in response to tumour development and tumour-derived sEVs. RESULTS: Systemic immunity was dramatically altered by tumour growth and tumour-derived sEVs. Tumour-derived sEVs significantly and extensively affected immune cell population composition as well as intracellular pathways, resulting in an immunosuppressive peripheral and tumour immune microenvironment, characterised by increased myeloid-derived suppressor cells and decreased Ly6C+CD8 T cells. These sEVs largely promoted hematopoietic recovery and accelerate the differentiation towards myeloid-derived suppressor cells. The knockdown of Rab27a reduced sEV secretion from tumour cells and delayed tumour growth and metastasis in vivo. CONCLUSIONS: These results highlight that tumour-derived sEVs function as a bridge between peripheral immunity regulation and the tumour microenvironment, and contribute to cancer progression through altering the composition and function of the global immune macroenvironment.


Assuntos
Vesículas Extracelulares , Humanos , Linfócitos T CD8-Positivos , Diferenciação Celular , Imunomodulação , Imunossupressores
16.
Autophagy ; 19(7): 1982-1996, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36622894

RESUMO

Ferroptosis is a type of iron-dependent regulated cell death characterized by unrestricted lipid peroxidation and membrane damage. Although GPX4 (glutathione peroxidase 4) plays a master role in blocking ferroptosis by eliminating phospholipid hydroperoxides, the regulation of GPX4 remains poorly understood. Here, we report an unexpected role for copper in promoting ferroptotic cell death, but not cuproptosis, by inducing macroautophagic/autophagic degradation of GPX4. Copper chelators reduce ferroptosis sensitivity but do not inhibit other types of cell death, such as apoptosis, necroptosis, and alkaliptosis. Conversely, exogenous copper increases GPX4 ubiquitination and the formation of GPX4 aggregates by directly binding to GPX4 protein cysteines C107 and C148. TAX1BP1 (Tax1 binding protein 1) then acts as an autophagic receptor for GPX4 degradation and subsequent ferroptosis in response to copper stress. Consequently, copper enhances ferroptosis-mediated tumor suppression in a mouse model of pancreatic cancer tumor, whereas copper chelators attenuate experimental acute pancreatitis associated with ferroptosis. Taken together, these findings provide new insights into the link between metal stress and autophagy-dependent cell death.Abbreviations: CALCOCO2, calcium binding and coiled-coil domain 2; GPX4, glutathione peroxidase 4; MAP1LC3A/B, microtubule associated protein 1 light chain 3 alpha/beta; MPO, myeloperoxidase; NCOA4, nuclear receptor coactivator 4; OPTN, optineurin; PDAC, pancreatic ductal adenocarcinoma; RIPK1, receptor interacting serine/threonine kinase 1; ROS, reactive oxygen species; SLC40A1, solute carrier family 40 member 1; SQSTM1, sequestosome 1; TAX1BP1, Tax1 binding protein 1; TEPA, tetraethylenepentamine; TM, tetrathiomolybdate.


Assuntos
Ferroptose , Pancreatite , Animais , Camundongos , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Autofagia , Cobre , Doença Aguda , Proteínas Reguladoras de Apoptose/metabolismo , Quelantes
17.
Int J Biol Sci ; 19(2): 377-392, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36632463

RESUMO

HER2 is a transmembrane receptor with intrinsic tyrosine kinase activity that is overexpressed in almost 25% of human breast cancers. Here, we report that the neddylation of HER2 is a new post-translational modification that controls its expression and oncogenic activity in human breast cancer. Two critical members in the neddylation pathway, NEDD8 and NEDD8-activating enzyme E1 subunit 1 (NAE1), are detected in human breast specimens. Overexpressed NEDD8 and NAE1 are positively correlated with HER2 expression in human breast cancer. Subsequent structure and function experiments show that HER2 directly interacts with NEDD8 and NAE1, whereas HER2 protein expression is decreased by neddylation depletion. Mechanistically, neddylation inhibition promotes the degradation of HER2 protein by improving its ubiquitination. HER2 overexpression abrogates neddylation depletion-triggered cell growth suppression. The inhibition of neddylation synergized with trastuzumab significantly suppresses growth of HER2 positive breast cancer. Collectively, this study demonstrates a previously undiscovered role of NEDD8-dependent HER2 neddylation promotes tumor growth in breast cancer.


Assuntos
Neoplasias da Mama , Proteína NEDD8 , Proteólise , Receptor ErbB-2 , Ubiquitinação , Feminino , Humanos , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Processamento de Proteína Pós-Traducional , Receptor ErbB-2/metabolismo , Proteína NEDD8/metabolismo , Progressão da Doença
18.
Autophagy ; 19(1): 54-74, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35403545

RESUMO

Selective macroautophagy/autophagy maintains cellular homeostasis through the lysosomal degradation of specific cellular proteins or organelles. The pro-survival effect of selective autophagy has been well-characterized, but the mechanism by which it drives cell death is still poorly understood. Here, we use a quantitative proteomic approach to identify HPCAL1 (hippocalcin like 1) as a novel autophagy receptor for the selective degradation of CDH2 (cadherin 2) during ferroptosis. HPCAL1-dependent CDH2 depletion increases susceptibility to ferroptotic death by reducing membrane tension and favoring lipid peroxidation. Site-directed mutagenesis aided by bioinformatic analyses revealed that the autophagic degradation of CDH2 requires PRKCQ (protein kinase C theta)-mediated HPCAL1 phosphorylation on Thr149, as well as a non-classical LC3-interacting region motif located between amino acids 46-51. An unbiased drug screening campaign involving 4208 small molecule compounds led to the identification of a ferroptosis inhibitor that suppressed HPCAL1 expression. The genetic or pharmacological inhibition of HPCAL1 prevented ferroptosis-induced tumor suppression and pancreatitis in suitable mouse models. These findings provide a framework for understanding how selective autophagy promotes ferroptotic cell death.Abbreviations: ANXA7: annexin A7; ARNTL: aryl hydrocarbon receptor nuclear translocator like; CCK8: cell counting kit-8; CDH2: cadherin 2; CETSAs: cellular thermal shift assays; CPT2: carnitine palmitoyltransferase 2; DAMP, danger/damage-associated molecular pattern; DPPH: 2,2-diphenyl-1-picrylhydrazyl; DFO: deferoxamine; EBNA1BP2: EBNA1 binding protein 2; EIF4G1: eukaryotic translation initiation factor 4 gamma 1; FBL: fibrillarin; FKBP1A: FKBP prolyl isomerase 1A; FTH1: ferritin heavy chain 1; GPX4: glutathione peroxidase 4; GSDMs: gasdermins; HBSS: Hanks' buffered salt solution; HMGB1: high mobility group box 1; HNRNPUL1: heterogeneous nuclear ribonucleoprotein U like 1; HPCAL1: hippocalcin like 1; H1-3/HIST1H1D: H1.3 linker histone, cluster member; IKE: imidazole ketone erastin; KD: knockdown; LDH: lactate dehydrogenase; LIR: LC3-interacting region; MAGOH: mago homolog, exon junction complex subunit; MAP1LC3B: microtubule associated protein 1 light chain 3 beta; MDA: malondialdehyde; MLKL: mixed lineage kinase domain like pseudokinase; MPO: myeloperoxidase; MTOR: mechanistic target of rapamycin kinase; OE: overexpressing; OSTM1: osteoclastogenesis associated transmembrane protein 1; PRKC/PKC: protein kinase C; PRKAR1A: protein kinase cAMP-dependent type I regulatory subunit alpha; PRDX3: peroxiredoxin 3; PTGS2: prostaglandin-endoperoxide synthase 2; ROS: reactive oxygen species; SLC7A11: solute carrier family 7 member 11; SLC40A1: solute carrier family 40 member 1; SPTAN1: spectrin alpha, non-erythrocytic 1; STS: staurosporine; UBE2M: ubiquitin conjugating enzyme E2 M; ZYX: zyxin.


Assuntos
Autofagia , Ferroptose , Camundongos , Animais , Autofagia/fisiologia , Hipocalcina/farmacologia , Proteômica , Morte Celular
19.
J Ethnopharmacol ; 301: 115815, 2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36220508

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Piper longum L., an herbal medicine used in India and other Asian countries, is prescribed routinely for a range of diseases, including tumor. Piperlongumine, a natural product isolated from Piper longum L., has received widespread attention due to its various pharmacological activities, such as anti-inflammatory, antimicrobial, and antitumor effects. AIM OF THE STUDY: Chronic myelogenous leukemia (CML) is a hematopoietic disease caused by Bcr-Abl fusion gene, with an incidence of 15% in adult leukemias. Targeting Bcr-Abl by imatinib provides a successful treatment approach for CML. However, imatinib resistance is an inevitable issue for CML treatment. In particular, T315I mutant is the most stubborn of the Bcr-Abl point mutants associated with imatinib resistance. Therefore, it is urgent to find an alternative approach to conquer imatinib resistance. This study investigated the role of a natural product piperlongumine in overcoming imatinib resistance in CML. MATERIALS AND METHODS: Cell viability and apoptosis were evaluated by MTS assay and Annexin V/propidium iodide counterstaining assay, respectively. Levels of intracellular signaling proteins were assessed by Western blots. Mitochondrial membrane potential was reflected by the fluorescence intensity of rhodamine-123. The function of proteasome was detected using 20S proteasomal activity assay, proteasomal deubiquitinase activity assay, and deubiquitinase active-site-directed labeling. The antitumor effects of piperlongumine were assessed with mice xenografts. RESULTS: We demonstrate that (i) Piperlongumine inhibits proteasome function by targeting 20S proteasomal peptidases and 19S proteasomal deubiquitinases (USP14 and UCHL5) in Bcr-Abl-WT and Bcr-Abl-T315I CML cells; (ii) Piperlongumine inhibits the cell viability of CML cell lines and primary CML cells; (iii) Proteasome inhibition by piperlongumine leads to cell apoptosis and downregulation of Bcr-Abl; (iv) Piperlongumine suppresses the tumor growth of CML xenografts. CONCLUSIONS: These results support that blockade of proteasome activity by piperlongumine provides a new therapeutic strategy for treating imatinib-resistant CML.


Assuntos
Antineoplásicos , Produtos Biológicos , Leucemia Mielogênica Crônica BCR-ABL Positiva , Humanos , Camundongos , Animais , Mesilato de Imatinib/farmacologia , Mesilato de Imatinib/uso terapêutico , Complexo de Endopeptidases do Proteassoma/metabolismo , Resistencia a Medicamentos Antineoplásicos , Proliferação de Células , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Proteínas de Fusão bcr-abl/genética , Apoptose , Enzimas Desubiquitinantes/uso terapêutico , Produtos Biológicos/uso terapêutico , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Ubiquitina Tiolesterase/uso terapêutico
20.
Oncogene ; 41(49): 5253-5265, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36316443

RESUMO

Glioma is the most common malignant primary brain tumor with aggressiveness and poor prognosis. Although extracellular vesicles (EVs)-based cell-to-cell communication mediates glioma progression, the key molecular mediators of this process are still not fully understood. Herein, we elucidated an EVs-mediated transfer of suprabasin (SBSN), leading to the aggressiveness and progression of glioma. High levels of SBSN were positively correlated with clinical grade, predicting poor clinical prognosis of patients. Upregulation of SBSN promoted, while silencing of SBSN suppressed tumorigenesis and aggressiveness of glioma cells in vivo. EVs-mediated transfer of SBSN resulted in an increase in SBSN levels, which promoted the aggressiveness of glioma cells by enhancing migration, invasion, and angiogenesis of recipient glioma cells. Mechanistically, SBSN activated NF-κB signaling by interacting with annexin A1, which further induced Lys63-linked and Met1-linear polyubiquitination of NF-κB essential modulator (NEMO). In conclusion, the communication of SBSN-containing EVs within glioma cells drives the formation and development of tumors by activating NF-κB pathway, which may provide potential therapeutic target for clinical intervention in glioma.


Assuntos
Vesículas Extracelulares , Glioma , Humanos , Antígenos de Diferenciação/metabolismo , Linhagem Celular Tumoral , Vesículas Extracelulares/metabolismo , Glioma/patologia , Proteínas de Neoplasias/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , Ubiquitinação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA