Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Zhongguo Dang Dai Er Ke Za Zhi ; 26(8): 823-828, 2024 Aug 15.
Artigo em Chinês | MEDLINE | ID: mdl-39148386

RESUMO

OBJECTIVES: To study the clinical characteristics of children with anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV). METHODS: A retrospective analysis was conducted on the clinical data of 25 children diagnosed with AAV at the Second Xiangya Hospital of Central South University from January 2010 to June 2022. RESULTS: Among the AAV children, there were 5 males and 20 females, with a median age of onset of 11.0 years. Involvement of the urinary system was seen in 18 cases (72%); respiratory system involvement in 10 cases (40%); skin involvement in 6 cases (24%); eye, ear, and nose involvement in 5 cases (20%); joint involvement in 4 cases (16%); digestive system involvement in 2 cases (8%). Eleven cases underwent kidney biopsy, with 5 cases (46%) showing focal type, 2 cases (18%) showing crescentic type, 2 cases (18%) showing mixed type, and 2 cases (18%) showing sclerotic type. Immune complex deposits were present in 5 cases (45%). Seven cases reached chronic kidney disease (CKD) stage V, with 2 cases resulting in death. Two cases underwent kidney transplantation. At the end of the follow-up period, 2 cases were at CKD stage II, and 1 case was at CKD stage III. Of the 16 cases of microscopic polyangiitis (MPA) group, 13 (81%) involved the urinary system. Of the 9 cases of granulomatosis with polyangiitis (GPA), 6 cases (66%) had sinusitis. Serum creatinine and uric acid levels were higher in the MPA group than in the GPA group (P<0.05), while red blood cell count and glomerular filtration rate were lower in the MPA group (P<0.05). CONCLUSIONS: AAV is more common in school-age female children, with MPA being the most common clinical subtype. The onset of AAV in children is mainly characterized by renal involvement, followed by respiratory system involvement. The renal pathology often presents as focal type with possible immune complex deposits. Children with MPA often have renal involvement, while those with GPA commonly have sinusitis. The prognosis of children with AAV is poor, often accompanied by renal insufficiency.


Assuntos
Vasculite Associada a Anticorpo Anticitoplasma de Neutrófilos , Humanos , Feminino , Masculino , Criança , Vasculite Associada a Anticorpo Anticitoplasma de Neutrófilos/complicações , Estudos Retrospectivos , Adolescente , Pré-Escolar , Insuficiência Renal Crônica/etiologia
2.
J Chem Phys ; 160(21)2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38832737

RESUMO

High voltage power capacitors employ the oil-impregnated polypropylene film as the insulation. The swelling phenomenon might drive the antioxidants and small molecules within the film to migrate into the oil. It is necessary to comprehensively investigate the physical migration mechanism of antioxidants and their impact on the electrical performance of the oil-film combination insulation system and, consequently, formulate the proper selective prescription of antioxidants. Theoretical elucidation of the competitive interaction mechanism between the film and the oil in attracting antioxidant molecules was achieved through the calculation of inter-molecular binding energy, and the migration coefficient ηm was introduced to quantify the migration characteristics of antioxidants. Experimentally, the effects of antioxidants on the space charge distribution of the film, the dielectric properties of the oil, and the breakdown characteristics of both the film and oil were investigated. The experimental conclusions are consistent with theoretical analysis. The lamellar structure antioxidant molecules with ηm > 1 tend to migrate from the film to the oil, which results in increased dielectric loss and decreased breakdown strength of the insulating oil. In addition, the presence of phosphorus atoms in phosphite antioxidants contributes to a reduction in the breakdown strength of the film. For capacitor grade polypropylene film, in addition to the synergistic effect between different types of antioxidants on the thermo-oxidative stability, the structure of the antioxidant molecules and its influence on the electrical performance of the oil-film systems should also be taken into account.

4.
Bioconjug Chem ; 34(10): 1727-1737, 2023 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-37750807

RESUMO

Glutathione S-transferase is heterogeneously expressed in breast cancer cells and is therefore emerging as a potential diagnostic biomarker for studying the heterogeneity of breast cancers. However, available fluorescent probes for GSTs depend heavily on GSTs-catalyzed glutathione (GSH) nucleophilic substitution reactions, making them susceptible to interference by the high concentration of nucleophilic species in the cellular environment. Moreover, the functions of subcellular GSTs are generally overlooked due to the lack of suitable luminescence probes. Herein, we report a highly selective affinity-based luminescence probe 1 for GST in breast cancer cells through tethering a GST inhibitor, ethacrynic acid, to an iridium(III) complex. Compared to activity-based probes which require the use of GSH, this probe could image GST-pi in the mitochondria by directly adducting to GST-pi (or potentially GST-pi/GS) in living cells. Probe 1 possesses desirable photophysical properties including a lifetime of 911 ns, a Stokes shift of 343 nm, and high photostability. The "turn on" luminescence mode of the probe enables highly selective detection of the GST with a limit of detection of 1.01 µM, while its long emission lifetime allows sensitive detection in organic dye-spiked autofluorescence samples by a time-resolved mode. The probe was further applied to specifically and quantitatively visualize MDA-MB-231 cells via specific binding to mitochondrial GST, and could differentiate breast cell lines based on their expression levels of GST. To the best of our knowledge, this probe is the first affinity-based iridium(III) imaging probe for the subcellular GST. Our work provides a valuable tool for unmasking the diverse roles of a subcellular GST in living systems, as well as for studying the heterogeneity of breast cancers.


Assuntos
Neoplasias da Mama , Glutationa Transferase , Humanos , Feminino , Glutationa Transferase/metabolismo , Neoplasias da Mama/diagnóstico por imagem , Irídio , Ácido Etacrínico , Mitocôndrias/metabolismo , Glutationa/metabolismo
5.
Int Immunopharmacol ; 120: 110257, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37182447

RESUMO

Induction of antitumor immunity is critical for the therapeutic efficacy of hepatocellular carcinoma (HCC) immunotherapy. The cellular metabolic state underpins the effector function of immune cells, yet our understanding of the phenotypic and metabolic heterogeneity of B cells within HCC microenvironment is poorly developed. Herein, we investigated the composition, distribution, phenotype, function and metabolic profiles of B-cell subsets in HCC and adjacent liver tissues from an orthotopic HCC mouse model using single-cell RNA sequencing (scRNA-seq). Our results identified six B-cell clusters, which can be classified into plasma cells and activated and exhausted B cells according to marker expression, functional and temporal distribution. Exhausted B cells exhibited low metabolic activities and impaired effector functions. Activated B and plasma cells showed higher metabolic activity than exhausted B cells, but there were clear differences in their metabolic profiles. In addition, we found that the effector function of exhausted B cells was further diminished in HCC tissues compared with adjacent liver tissues, but their metabolic activity was significantly enhanced. Collectively, we comprehensively characterized the metabolic profile and alterations in B-cell subsets in HCC, which contributes to the understanding of B-cell immunology in HCC and lays the foundation for exploring novel targets in HCC immunotherapy.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Camundongos , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , Microambiente Tumoral , Fenótipo
6.
Front Pediatr ; 11: 1169486, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37063660

RESUMO

Background: Bartter syndrome (BS) type III is a rare autosomal recessive genetic disease. Its clinical features are polyuria, hypokalemia, hypochloremia, metabolic alkalosis, and hyperreninaemia. A few BS type III can be complicated with chronic kidney disease. Case presentation: We report a 14-year-old boy with Bartter syndrome caused by a c.1792C > T (p.Q598*) mutation in the CLCNKB gene. He was a no deafness and full-term baby, and he had renal dysplasia and chronic kidney disease (CKD). In addition, we summarize all cases of BS type III complicated with CKD. Conclusions: We report a case of Bartter syndrome complicated by chronic kidney disease caused by a new mutation of CLCNKB. As we all know, BS type IV is usually combined with chronic kidney disease, and BS type III can also integrate with CKD. We don't find BS type III with glomerular dysplasia in the literature. So renal damage in BS type III is not only FSGS; clinicians must also be aware of glomerular dysplasia.

7.
Front Endocrinol (Lausanne) ; 14: 1090552, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37056673

RESUMO

Objectives: The time of onset of puberty has been increasingly earlier, but its mechanism is still unclear. This study aimed to reveal the mechanism of leptin and NPY in the onset of puberty in male offspring rats after androgen intervention during pregnancy. Methods: Eight-week-old specific pathogen-free (SPF) healthy male Sprague-Dawley (SD) rats and 16 female SD rats were selected and caged at 1:2. The pregnant rats were randomly divided into the olive oil control group (OOG) and testosterone intervention group (TG), with 8 rats in each group. Olive oil and testosterone were injected from the 15th day of pregnancy, for a total of 4 injections (15th, 17th, 19th, 21st day). After the onset of puberty, the male offspring rats were anesthetized with 2% pentobarbital sodium to collect blood by ventral aorta puncture and decapitated to peel off the hypothalamus and abdominal fat. Serum testosterone (T), free testosterone (FT), dihydrotestosterone (DHT), dehydroepiandrosterone (DHEA), sex hormone binding globulin (SHBG), and leptin were detected by ELISA, and then the free androgen index (FAI) was calculated. The mRNA levels of androgen receptor (AR), estrogen receptor α (ERα), NPY, leptinR, and NPY2R in the hypothalamus and abdominal fat were detected by RT-PCR. Protein expression levels of AR, ERα, NPY, leptinR, and NPY2R in the arcuate nucleus (ARC) of the hypothalamus were detected by immunohistochemistry. Results: The time of onset of puberty was significantly earlier in the TG than in the OOG (P< 0.05) and was positively correlated with body weight, body length, abdominal fat, and leptinR mRNA levels in adipose tissue in the OOG (P< 0.05), while it was positively correlated with serum DHT and DHEA concentrations and FAI and AR mRNA levels in the hypothalamus in the TG (P< 0.05). The NPY2R mRNA level and protein expression levels of ERα, NPY2R, and leptinR in the TG were significantly higher than those in the OOG, while the protein expression levels of AR and NPY in the TG were significantly lower than those in the OOG (P< 0.05). Conclusions: Testosterone intervention during pregnancy led to an earlier onset of puberty in male offspring rats, which may render the male offspring rats more sensitive to androgens, leptin, and NPY at the onset of puberty.


Assuntos
Androgênios , Leptina , Gravidez , Ratos , Masculino , Feminino , Animais , Receptor alfa de Estrogênio , Azeite de Oliva , Ratos Sprague-Dawley , Maturidade Sexual , Testosterona , Di-Hidrotestosterona , Desidroepiandrosterona , RNA Mensageiro/metabolismo
8.
Mol Oncol ; 17(6): 1093-1111, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36587393

RESUMO

Preclinical studies have proven that nanosecond pulsed electric field (nsPEF) ablation can be a safe and effective treatment for humans with unresectable liver cancer that are ineligible for thermal ablation. The concomitant activation of antitumor immunity by nsPEF can also potentially prevent tumor recurrence. However, whether nsPEF exhibits similar efficacy in a clinical setting remains to be investigated. A prospective clinical trial (clinicaltrials.gov identifier: NCT04039747) was conducted to evaluate the safety and efficacy of ultrasound (US)-guided nsPEF ablation in 15 patients with unresectable liver cancer that were ineligible for thermal ablation. We found that nsPEF ablation was safe and produced a 12-month recurrence-free survival (RFS) and local RFS of 60% (9/15) and 86.7% (13/15), respectively, in the enrolled patients. Integrative proteomic and metabolomic analysis showed that sphingolipid metabolism was the most significantly enriched pathway in patient sera after nsPEF without recurrence within 8 months. A similar upregulation of sphingolipid metabolism was observed in the intratumoral mononuclear phagocytes (MNPs), rather than other immune and nonimmune cells, of an nsPEF-treated mouse model. We then demonstrated that lymphocyte antigen 6 complex, locus C2-positive (Ly6c2+ ) monocytes first differentiated into Ly6c2+ monocyte-derived macrophages with an increase in sphingolipid metabolic activity, and subsequently into Ly6c2+ dendritic cells (DCs). Ly6c2+ DCs communicated with CD8+ T cells and increased the proportions of IFN-γ+ CD8+ memory T cells after nsPEF, and this finding was subsequently confirmed by depletion of liver Ly6c2+ MNPs. In conclusion, nsPEF was a safe and effective treatment for liver cancer. The alteration of sphingolipid metabolism induced by nsPEF was associated with the differentiation of Ly6c2+ MNPs, and subsequently induced the formation of memory CD8+ T cells with potent antitumor effect.


Assuntos
Linfócitos T CD8-Positivos , Neoplasias Hepáticas , Camundongos , Animais , Humanos , Linfócitos T CD8-Positivos/patologia , Estudos Prospectivos , Proteômica , Neoplasias Hepáticas/terapia , Neoplasias Hepáticas/patologia , Macrófagos/patologia , Diferenciação Celular
9.
Front Oncol ; 12: 1052763, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36303831

RESUMO

[This corrects the article DOI: 10.3389/fonc.2020.621092.].

10.
Artigo em Inglês | MEDLINE | ID: mdl-36293806

RESUMO

The aim of this study was to investigate the effect of different training modalities on improving the inflammatory response in adolescents with obesity. For the study methodology, the databases such as China National Knowledge Infrastructure (CNKI), Wanfang Data, Pubmed, Web of Science, and EBSCO were selected for searching. The methodological quality of the included studies was assessed using the Cochrane Risk of Bias (ROB) tool, and statistical analysis was performed by applying RevMan 5.4.1 analysis software. A total of 14 studies with 682 subjects were included. The results of this meta-analysis showed that aerobic training (AT) and aerobic plus resistance training (AT + RT) reduced the levels of IL-6 and CRP in adolescents with obesity. Among them, AT + RT was more effective than other training modalities in reducing IL-6 and CRP in adolescents with obesity. Different training modalities have no effect on the TNF-α level in adolescents with obesity. However, regarding the increase in IL-6, CRP, and TNF-α in adolescents with obesity, resistance training (RT) did not lead to significant differences. In conclusion, long-term regular AT, AT + RT, and HIIT are all helpful in improving the inflammatory state of adolescents with obesity, with AT + RT being the best training modality to combat inflammation in adolescents with obesity.


Assuntos
Obesidade Infantil , Treinamento Resistido , Adolescente , Humanos , Obesidade Infantil/terapia , Fator de Necrose Tumoral alfa , Interleucina-6 , Inflamação
11.
Anal Chim Acta ; 1195: 339479, 2022 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-35090653

RESUMO

Immunosorbent assay is the gold standard diagnostic technique for the detection of protein biomarkers. However, this technique tends to have low sensitivity and requires laborious manipulation. Although advanced CRISPR-Cas-based biosensors offer advantages of simplicity, low cost and high accuracy, the synergy of using CRISPR-Cas-assisted dual signal amplification system for rapid diagnosis of protein biomarkers remains scarce. In this work, we report a synergetic signal amplification system comprising CRISPR-Cas12a and nicking enzyme-free strand displacement amplification (SDA) technique for accurate detection of prostate-specific antigen (PSA). The presence of PSA will initiate the nicking enzyme-free SDA process, generating amplicons that can be recognized by the CRISPR-Cas12a system. The activated CRISPR-Cas system will then mediate trans-ssDNA cleavage of neighboring linker DNA, which unlocks the gold nanoparticles (AuNPs) signal probes and gives a distance-dependent colorimetric readout. This assay could detect PSA in aqueous buffer sensitively and selectively with a limit of detection (LOD) down to 0.030 ng mL-1. Importantly, this assay was successfully applied for discriminating four blood samples from prostate cancer patients among thirteen blood samples from normal individuals/cancer patients accurately. This work will open an avenue for the development of SDA-CRISPR-AuNPs hybrid sensing systems, offering great potential for the development of non-invasive point-of-care diagnostic tools for prostate cancer.


Assuntos
Nanopartículas Metálicas , Antígeno Prostático Específico , Sistemas CRISPR-Cas , Colorimetria , Ouro , Humanos , Masculino
12.
Cell Res ; 31(12): 1244-1262, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34702946

RESUMO

The infusion of coronavirus disease 2019 (COVID-19) patients with mesenchymal stem cells (MSCs) potentially improves clinical symptoms, but the underlying mechanism remains unclear. We conducted a randomized, single-blind, placebo-controlled (29 patients/group) phase II clinical trial to validate previous findings and explore the potential mechanisms. Patients treated with umbilical cord-derived MSCs exhibited a shorter hospital stay (P = 0.0198) and less time required for symptoms remission (P = 0.0194) than those who received placebo. Based on chest images, both severe and critical patients treated with MSCs showed improvement by day 7 (P = 0.0099) and day 21 (P = 0.0084). MSC-treated patients had fewer adverse events. MSC infusion reduced the levels of C-reactive protein, proinflammatory cytokines, and neutrophil extracellular traps (NETs) and promoted the maintenance of SARS-CoV-2-specific antibodies. To explore how MSCs modulate the immune system, we employed single-cell RNA sequencing analysis on peripheral blood. Our analysis identified a novel subpopulation of VNN2+ hematopoietic stem/progenitor-like (HSPC-like) cells expressing CSF3R and PTPRE that were mobilized following MSC infusion. Genes encoding chemotaxis factors - CX3CR1 and L-selectin - were upregulated in various immune cells. MSC treatment also regulated B cell subsets and increased the expression of costimulatory CD28 in T cells in vivo and in vitro. In addition, an in vivo mouse study confirmed that MSCs suppressed NET release and reduced venous thrombosis by upregulating kindlin-3 signaling. Together, our results underscore the role of MSCs in improving COVID-19 patient outcomes via maintenance of immune homeostasis.


Assuntos
COVID-19/terapia , Imunomodulação , Transplante de Células-Tronco Mesenquimais , Idoso , Animais , Anticorpos Antivirais/sangue , Subpopulações de Linfócitos B/citologia , Subpopulações de Linfócitos B/imunologia , Subpopulações de Linfócitos B/metabolismo , Proteína C-Reativa/análise , COVID-19/imunologia , COVID-19/virologia , Citocinas/genética , Citocinas/metabolismo , Proteínas do Citoesqueleto/metabolismo , Modelos Animais de Doenças , Armadilhas Extracelulares/metabolismo , Feminino , Humanos , Leucócitos Mononucleares/citologia , Leucócitos Mononucleares/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , SARS-CoV-2/isolamento & purificação , Linfócitos T/citologia , Linfócitos T/imunologia , Linfócitos T/metabolismo , Trombose Venosa/metabolismo , Trombose Venosa/patologia
13.
Cell Prolif ; 54(5): e13028, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33738881

RESUMO

OBJECTIVES: Acute lung injury (ALI) not only affects pulmonary function but also leads to intestinal dysfunction, which in turn contributes to ALI. Mesenchymal stem cell (MSC) transplantation can be a potential strategy in the treatment of ALI. However, the mechanisms of synergistic regulatory effects by MSCs on the lung and intestine in ALI need more in-depth study. MATERIALS AND METHODS: We evaluated the therapeutic effects of MSCs on the murine model of lipopolysaccharide (LPS)-induced ALI through survival rate, histopathology and bronchoalveolar lavage fluid. Metagenomic sequencing was performed to assess the gut microbiota. The levels of pulmonary and intestinal inflammation and immune response were assessed by analysing cytokine expression and flow cytometry. RESULTS: Mesenchymal stem cells significantly improved the survival rate of mice with ALI, alleviated histopathological lung damage, improved intestinal barrier integrity, and reduced the levels of inflammatory cytokines in the lung and gut. Furthermore, MSCs inhibited the inflammatory response by decreasing the infiltration of CD8+ T cells in both small-intestinal lymphocytes and Peyer's patches. The gut bacterial community diversity was significantly altered by MSC transplantation. Furthermore, depletion of intestinal bacterial communities with antibiotics resulted in more severe lung and gut damages and mortality, while MSCs significantly alleviated lung injury due to their immunosuppressive effect. CONCLUSIONS: The present research indicates that MSCs attenuate lung and gut injury partly via regulation of the immune response in the lungs and intestines and gut microbiota, providing new insights into the mechanisms underlying the therapeutic effects of MSC treatment for LPS-induced ALI.


Assuntos
Lesão Pulmonar Aguda/terapia , Linfócitos T CD8-Positivos/imunologia , Intestinos/imunologia , Pulmão/imunologia , Transplante de Células-Tronco Mesenquimais , Lesão Pulmonar Aguda/imunologia , Lesão Pulmonar Aguda/mortalidade , Lesão Pulmonar Aguda/patologia , Animais , Líquido da Lavagem Broncoalveolar/química , Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Microbioma Gastrointestinal , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Intestinos/microbiologia , Intestinos/patologia , Lipopolissacarídeos/toxicidade , Pulmão/metabolismo , Pulmão/patologia , Masculino , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Análise de Componente Principal , Taxa de Sobrevida
14.
Theranostics ; 11(5): 2232-2246, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33500722

RESUMO

Rationale: Acute lung injury (ALI)-recruited mononuclear phagocytes play a pivotal role in lung injury and repair. This study investigated the types of recruited mononuclear phagocytes and the immunotherapeutic effects of allograft mesenchymal stem cells (MSCs) in a mouse model of lipopolysaccharide (LPS)-induced ALI. Methods: C57BL/6 mice were orotracheally instilled with LPS (20 mg/kg). Compact bone-derived MSCs were administered orotracheally 4 h after LPS inhalation. Mononuclear phagocytes recruited in the lung tissues were characterized at different timepoints by high-dimensional analysis including flow cytometry, mass cytometry, and single-cell RNA sequencing. Results: Eight mononuclear phagocyte subsets recruited to LPS-challenged lungs were precisely identified. On day 3 after LPS administration, both Ly6ChiCD38+ and Ly6ClowCD38+ monocytes were recruited into acutely injured lungs, which was associated with increased secretion of neutrophil chemokines. Ly6ChiCD38+ monocytes differentiated into M1 macrophages on day 3, and subsequently differentiated into CD38+ monocyte-derived dendritic cells (mo-DCs) on day 7, while Ly6ClowCD38+ monocytes differentiated into CD11b+CD38+ DCs on day 7. When ALI mice were treated with MSCs, the mortality significantly reduced. Notably, MSCs reduced the amount of M1 macrophages and reduced the secretion of neutrophil chemokines on day 3. Furthermore, MSCs reduced the number of CD38+ mo-DCs and CD11b+CD38+ DCs on day 7, suppressing the antigen presentation process. Recruited mononuclear phagocyte subsets with a high level of CD38 exhibited an activated phenotype and could secrete higher levels of cytokines and chemokines. Conclusions: This study characterized the dynamic functions and phenotypes of recruited mononuclear phagocytes in ALI mice and MSC-treated ALI mice.


Assuntos
Lesão Pulmonar Aguda/terapia , Modelos Animais de Doenças , Imunomodulação , Macrófagos/imunologia , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/citologia , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/imunologia , Lesão Pulmonar Aguda/patologia , Animais , Diferenciação Celular , Citocinas/metabolismo , Lipopolissacarídeos/toxicidade , Macrófagos/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Neutrófilos/efeitos dos fármacos , Neutrófilos/imunologia , Fagócitos/efeitos dos fármacos , Fagócitos/imunologia
15.
Arch Med Sci ; 17(1): 142-151, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33488867

RESUMO

INTRODUCTION: Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide. Despite the therapeutic advances in HCC in the past few decades, the mortality rate of HCC is still high. Hepatitis C (HCV) infection is one of the major etiological risk factors of HCCs. However, the underlying mechanisms of HCV-induced hepatocarcinogenesis remain largely unclear. MATERIAL AND METHODS: Our study represented the comprehensive analysis of differentially expressed lncRNAs in HCV-positive HCC for the first time by analyzing the public dataset GSE17856. Co-expression network and gene ontology (GO) analysis revealed the functions of those differentially expressed lncRNAs. RESULTS: We identified 256 upregulated lncRNAs and 198 downregulated lncRNAs in HCV- positive HCC compared to the normal liver tissues. Co-expression network and GO analysis showed that these lncRNAs were involved in regulating metabolism, energy pathways, proliferation and the immune response. Seven lncRNAs (LOC341056, CCT6P1, PTTG3P, LOC643387, LOC100133920, C3P1 and C22orf45) were identified as key lncRNAs and co-expressed with more than 100 differentially expressed genes (DEGs) in HCV-related HCC. Kaplan-Meier analysis showed that higher expression levels of LOC643387, PTTG3P, LOC341056, CCT6P1 and lower expression levels of C3P1 and C22orf45 were associated with shorter survival time in the TCGA dataset. CONCLUSIONS: We believe that this study can provide novel potential therapeutic and prognostic biomarkers for HCV-positive HCC.

16.
Cell Death Dis ; 11(10): 829, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-33024074

RESUMO

Systemic inflammatory processes, including alveolar injury, cytokine induction, and neutrophil accumulation, play key roles in the pathophysiology of acute lung injury (ALI). The immunomodulatory effects of mesenchymal stem cells (MSCs) can contribute to the treatment of inflammatory disorders. In previous studies, the focus was on innate immune cells and the effects of MSCs on ALI through CD8+ T cells remain unclear. In the present study, lipopolysaccharide (LPS) was used to induce ALI in mice. ALI mice were treated with MSCs via intratracheal instillation. Survival rate, histopathological changes, protein levels, total cell count, cytokine levels, and chemokine levels in alveolar lavage fluid were used to determine the efficacy of MSCs. Mass cytometry and single-cell RNA sequencing (scRNA-seq) were used to characterize the CD8+ T cells in the lungs. Ly6C- CD8+ T cells are prevalent in normal mice, whereas a specialized effector phenotype expressing a high level of Ly6C is predominant in advanced disease. MSCs significantly mitigated ALI and improved survival. MSCs decreased the infiltration of CD8+ T cells, especially Ly6C+ CD8+ T cells into the lungs. Mass cytometry revealed that CD8+ T cells expressing high Ly6C and CXCR3 levels caused tissue damage in the lungs of ALI mice, which was alleviated by MSCs. The scRNA-seq showed that Ly6C+ CD8+ T cells exhibited a more activated phenotype and decreased expression of proinflammatory factors that were enriched the most in immune chemotaxis after treatment with MSCs. We showed that CD8+ T cells play an important role in MSC-mediated ALI remission, and both infiltration quantity and proinflammatory function were inhibited by MSCs, indicating a potential mechanism for therapeutic intervention.


Assuntos
Lesão Pulmonar Aguda/patologia , Linfócitos T CD8-Positivos/efeitos dos fármacos , Inflamação/metabolismo , Células-Tronco Mesenquimais/metabolismo , Lesão Pulmonar Aguda/induzido quimicamente , Animais , Linfócitos T CD8-Positivos/metabolismo , Células Cultivadas , Imunomodulação/efeitos dos fármacos , Inflamação/induzido quimicamente , Lipopolissacarídeos/farmacologia , Pulmão/metabolismo , Pulmão/patologia , Masculino , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Neutrófilos/metabolismo
17.
Stem Cell Res Ther ; 11(1): 418, 2020 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-32977837

RESUMO

BACKGROUND: Immune system disorders play important roles in acute lung injury (ALI), and mesenchymal stem cell (MSC) treatment can reduce inflammation during ALI. In this study, we compared the changes in lung B cells during MSC treatment. METHODS: We investigated the effects of MSCs on lung B cells in a mouse model of lipopolysaccharide (LPS)-induced ALI. MSCs were administered intratracheally 4 h after LPS. As vehicle-treated controls, mice were treated with phosphate-buffered saline (PBS) containing 2% C57BL/6 (PBS group). Histopathological changes, survival rate, inflammatory factor levels, and the number of neutrophils in bronchoalveolar lavage fluid (BALF) were determined. Single-cell RNA sequencing (scRNA-Seq) analysis was performed to evaluate the transcriptional changes in lung B cells between the PBS, LPS, and LPS/MSC groups on days 3 and 7. RESULTS: MSC treatment ameliorated LPS-induced ALI, as indicated by the reductions in mortality, the levels of chemokines and cytokines in BALF, and the severity of lung tissue histopathology in ALI mice. Lung B cells in the PBS group remained undifferentiated and had an inhibitory phenotype. Based on our scRNA-Seq results, the differentially expressed genes (DEGs) in lung B cells in both the PBS group and LPS group were involved in chemotaxis processes and some proinflammatory pathways. MSC treatment inhibited the expression of chemokine genes that were upregulated by LPS and were related to the recruitment of neutrophils into lung tissues. Immunoglobulin-related gene expression was decreased in lung B cells of mice treated with LPS/MSC for 7 days. The DEGs regulated by MSCs were enriched in biological processes, including humoral immune response and apoptotic signaling. CONCLUSIONS: Lung B cells played an important role in the effects of treatment of ALI with MSCs. These observations provide new insights into the mechanisms underlying the effects of MSC treatment for ALI.


Assuntos
Lesão Pulmonar Aguda , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/genética , Lesão Pulmonar Aguda/terapia , Animais , Linfócitos B , Expressão Gênica , Lipopolissacarídeos/toxicidade , Pulmão , Camundongos , Camundongos Endogâmicos C57BL
18.
Arch Med Sci ; 16(2): 374-385, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32190149

RESUMO

INTRODUCTION: Nonalcoholic fatty liver disease (NAFLD) is one of the most common types of liver disease in the world. However, the molecular mechanisms regulating the development of NAFLD have remained unclear. MATERIAL AND METHODS: In the present study, we analyzed two public datasets (GSE48452 and GSE89632) to identify differentially expressed mRNAs in the progression of NAFLD. Next, we performed bioinformatics analysis to explore key pathways underlying NAFLD development. RESULTS: Gene Ontology (GO) analysis showed that differentially expressed genes (DEGs) were mainly involved in regulating a series of metabolism-related pathways (including proteolysis and lipid metabolism), cell proliferation and adhesion, the inflammatory response, and the immune response. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed that DEGs in NAFLD were mainly enriched in the insulin signaling pathway, peroxisome proliferator-activated receptor (PPAR) signaling pathway, and p53 signaling pathway. We also constructed protein-protein interaction (PPI) networks for these DEGs. Interestingly, we observed that key hub nodes in PPI networks were also associated with the progression of hepatocellular carcinoma (HCC). CONCLUSIONS: Taken together, our analysis revealed that a series of pathways, such as metabolism and PPAR signaling pathways, were involved in NAFLD development. Moreover, we observed that many DEGs in NAFLD were also dysregulated in HCC. Although further validation is still needed, we believe this study could provide useful information to explore the potential candidate biomarkers for diagnosis, prognosis, and drug targets of NAFLD.

19.
J Cell Physiol ; 235(10): 6779-6793, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-31990045

RESUMO

The placenta and umbilical cord are pre-eminent candidate sources of mesenchymal stem cells (MSCs). However, placenta-derived MSCs (P-MSCs) showed greater proliferation capacity than umbilical cord-derived MSCs (UC-MSCs) in our study. We investigated the drivers of this proliferation difference and elucidated the mechanisms of proliferation regulation. Proteomic profiling and Gene Ontology (GO) functional enrichment were conducted to identify candidate proteins that may influence proliferation. Using lentiviral or small interfering RNA infection, we established overexpression and knockdown models and observed changes in cell proliferation to examine whether a relationship exists between the candidate proteins and proliferation capacity. Real-time quantitative polymerase chain reaction, western blot analysis, and immunofluorescence assays were conducted to elucidate the mechanisms underlying proliferation. Six candidate proteins were selected based on the results of proteomic profiling and GO functional enrichment. Through further validation, yes-associated protein 1 (YAP1) and ß-catenin were confirmed to affect MSCs proliferation rates. YAP1 and ß-catenin showed increased nuclear colocalization during cell expansion. YAP1 overexpression significantly enhanced proliferation capacity and upregulated the expression of both ß-catenin and the transcriptional targets of Wnt signaling, CCND1, and c-MYC, whereas silencing ß-catenin attenuated this influence. We found that YAP1 directly interacts with ß-catenin in the nucleus to form a transcriptional YAP/ß-catenin/TCF4 complex. Our study revealed that YAP1 and ß-catenin caused the different proliferation capacities of P-MSCs and UC-MSCs. Mechanism analysis showed that YAP1 stabilized the nuclear ß-catenin protein, and also triggered the Wnt/ß-catenin pathway, promoting proliferation.


Assuntos
Proliferação de Células/fisiologia , Células-Tronco Mesenquimais/fisiologia , Placenta/fisiologia , Cordão Umbilical/fisiologia , Núcleo Celular/metabolismo , Núcleo Celular/fisiologia , Células Cultivadas , Feminino , Humanos , Células-Tronco Mesenquimais/metabolismo , Placenta/metabolismo , Gravidez , Proteômica/métodos , Fatores de Transcrição/metabolismo , Cordão Umbilical/metabolismo , Regulação para Cima/fisiologia , Via de Sinalização Wnt/fisiologia , beta Catenina/metabolismo
20.
Front Oncol ; 10: 621092, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33634030

RESUMO

Nanosecond pulsed electric fields (nsPEFs) have emerged as a novel and effective strategy for the non-surgical and minimally invasive removal of tumors. However, the effects of nsPEFs treatment on the tumor immune microenvironment remain unknown. In this study, the changes in the morphology and function of pancreatic cancer cells after nsPEFs were assessed and the modifications in the immune profile in pancreatic cancer models were investigated. To this end, electrodes were inserted with different parameters applied to ablate the targeted tumor tissues. Tumor development was found to be inhibited, with decreased volumes post-nsPEFs treatment compared with control tumors (P < 0.05). Hematoxylin and eosin staining showed morphological changes in pancreatic cancer cells, Ki-67 staining confirmed the effects of nsPEFs on tumor growth, and caspase-3 staining indicated that nsPEFs caused apoptosis in the early stages after treatment. Three days after nsPEFs, positron emission tomography demonstrated little residual metabolic activity compared with the control group. Gene expression profiling identified significant changes in immune-related pathways. After treatment with nsPEFs, CD8+ T lymphocytes increased. We showed that nsPEFs led to a significant decrease in immune suppressive cells, including myeloid derived suppressor cells, T regulatory cells, and tumor-associated macrophages. In addition, the levels of TNF-α and IL-1ß increased (P < 0.05), while the level of IL-6 was decreased (P < 0.05). NsPEFs alleviated the immunosuppressive components in pancreatic cancer stroma, including hyaluronic acid and fibroblast activation protein-α. Our data demonstrate that tumor growth can be effectively inhibited by nsPEFs in vivo. NsPEFs significantly altered the infiltration of immune cells and triggered immune response.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA