Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
J Cancer ; 15(9): 2475-2485, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38577600

RESUMO

Background: Chemotherapy resistance is a barrier to effective cancer prognoses. Cisplatin (CDDP) resistance is a major challenge for esophageal cancer (EC) therapy. A deeper understanding of the fundamental mechanisms of cisplatin resistance and improved targeting strategies are required in clinical settings. This study was performed to identify and characterize a marker of cisplatin resistance in EC cells. Method: KYSE140 and Eca-109 cells were subjected to escalating concentrations of cisplatin, resulting in the development of cisplatin-resistant KYSE140/CDDP and Eca-109/CDDP cell lines, respectively. RNA Sequencing (RNA-seq) was utilized to screen for the genes exhibiting differential expression between cisplatin-resistant and parental cells. Reverse transcription quantitative PCR was conducted to assess gene expression, and western blotting was employed to analyze protein levels. A sphere-formation assay was performed to validate tumor cell stemness. Cell counting kit-8 (CCK-8) experiments were conducted to confirm the sensitivity of cells to cisplatin. We examined the relationship between target genes and the clinicopathological features of patients with EC. Furthermore, the expression of target genes in EC tissues was evaluated via western blotting and fluorescence probe in situ hybridization (FISH). Results: KYNU was upregulated in cisplatin-resistant EC cells (KYSE140/CDDP and Eca-109/CDDP cells) and in EC tissues compared to that in the respective parental cell lines (KYSE140 and Eca-109 cells) and non-carcinoma tissues. Downregulation of KYNU increased cell sensitivity to cisplatin and suppressed tumor stemness, whereas abnormal KYNU expression had the opposite effect. KYNU expression was correlated with the expression of tumor stemness-associated factors (SOX2, Nanog, and OCT4) and the tumor size. Conclusions: KYNU may promote drug resistance in EC by regulating cancer stemness, and could serve as a biomarker and therapeutic target for EC.

2.
Mol Carcinog ; 63(6): 1038-1050, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38411361

RESUMO

Heat shock protein 90 (Hsp90) is a tumor marker that accelerates cancer growth by disrupting protein homeostasis. However, concerns such as low clinical efficacy and drug resistance continue to be obstacles to the successful marketing of Hsp90 inhibitors. The cytoprotective function of autophagy has been identified as one of the mechanisms by which tumor cells gain resistance to chemotherapy. JD-02 was identified as a new Hsp90 inhibitor that suppressed colorectal cancer (CRC) growth by lowering client protein levels in vivo and in vitro. We found that JD-02 increased cellular autophagy, which inhibited apoptosis. JD-02 enhanced cytoprotective autophagy and regulated apoptotic suppression by increasing intracellular reactive oxygen species and inhibiting SRC protein levels, as demonstrated by quantitative proteomics, bioinformatic analysis, western blotting, and flow cytometry. This effect was reversed by autophagy inhibition. Therefore, due to the synergistic effects of Hsp90 and autophagy inhibitors in efficiently activating apoptotic pathways, they could potentially serve as promising therapeutic options for CRC.


Assuntos
Apoptose , Autofagia , Neoplasias Colorretais , Proteínas de Choque Térmico HSP90 , Espécies Reativas de Oxigênio , Humanos , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Proteínas de Choque Térmico HSP90/metabolismo , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Autofagia/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Apoptose/efeitos dos fármacos , Animais , Camundongos , Linhagem Celular Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto , Proliferação de Células/efeitos dos fármacos , Quinases da Família src/metabolismo , Quinases da Família src/antagonistas & inibidores , Camundongos Nus , Antineoplásicos/farmacologia , Transdução de Sinais/efeitos dos fármacos , Camundongos Endogâmicos BALB C
3.
Plant J ; 117(1): 121-144, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37738430

RESUMO

Plants have evolved a sophisticated immune system to defend against invasion by pathogens. In response, pathogens deploy copious effectors to evade the immune responses. However, the molecular mechanisms used by pathogen effectors to suppress plant immunity remain unclear. Herein, we report that an effector secreted by Ralstonia solanacearum, RipAK, modulates the transcriptional activity of the ethylene-responsive factor ERF098 to suppress immunity and dehydration tolerance, which causes bacterial wilt in pepper (Capsicum annuum L.) plants. Silencing ERF098 enhances the resistance of pepper plants to R. solanacearum infection not only by inhibiting the host colonization of R. solanacearum but also by increasing the immunity and tolerance of pepper plants to dehydration and including the closure of stomata to reduce the loss of water in an abscisic acid signal-dependent manner. In contrast, the ectopic expression of ERF098 in Nicotiana benthamiana enhances wilt disease. We also show that RipAK targets and inhibits the ERF098 homodimerization to repress the expression of salicylic acid-dependent PR1 and dehydration tolerance-related OSR1 and OSM1 by cis-elements in their promoters. Taken together, our study reveals a regulatory mechanism used by the R. solanacearum effector RipAK to increase virulence by specifically inhibiting the homodimerization of ERF098 and reprogramming the transcription of PR1, OSR1, and OSM1 to boost susceptibility and dehydration sensitivity. Thus, our study sheds light on a previously unidentified strategy by which a pathogen simultaneously suppresses plant immunity and tolerance to dehydration by secreting an effector to interfere with the activity of a transcription factor and manipulate plant transcriptional programs.


Assuntos
Capsicum , Ralstonia solanacearum , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Ralstonia solanacearum/fisiologia , Desidratação , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas/metabolismo , Imunidade Vegetal/genética , Regulação da Expressão Gênica de Plantas , Doenças das Plantas/microbiologia , Capsicum/metabolismo , Resistência à Doença/genética
4.
BMC Pharmacol Toxicol ; 24(1): 54, 2023 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-37833798

RESUMO

BACKGROUND: AT-533 is a novel heat shock protein 90 inhibitor that exerting anti-inflammatory, antiviral, and antitumor efficacy. Furthermore, the gel made of AT-533 as raw material named AT-533 gel has the function of repairing keratitis and dermatitis caused by herpes virus infection. However, the acute safety evaluation of AT-533 and AT-533 gel has not been conducted. METHODS AND RESULTS: Herein, we performed acute toxicological studies of AT-533 and AT-533 gel in Sprague-Dawley rats. Fifteen-day acute toxicity study of AT-533 was conducted in both male and female Sprague-Dawley rats at doses of 5, 50, 250 and 500 mg/kg and AT-533 gel at 5 g/kg in the study. During experiment, food consumption and mortality were observed and body weight, hematology, serum biochemistry and histopathological assessment of rats were carried out. No abnormal changes were observed in rats percutaneously treated with AT-533 at 5 mg/kg and 50 mg/kg and AT-533 gel. However, loss of appetite and body weight, adverse reactions, toxicologically relevant alterations in hematology and biochemistry were found in rats percutaneously treated with AT-533 at 250 mg/kg and 500 mg/kg during 15-day acute dermic toxicity study. CONCLUSIONS: The aforementioned results suggested that the LD50 of AT-533 is 228.382 mg/kg and the LD50 of AT-533 gel is greater than 5 g/kg. These findings indicated that AT-533 is non-toxic in rats when the dose less than 50 mg/kg and AT-533 gel can be considered a gel with no toxicity at doses less than 5 g/kg.


Assuntos
Ratos Sprague-Dawley , Ratos , Masculino , Feminino , Animais , Dose Letal Mediana , Peso Corporal , Administração Oral
5.
Artigo em Inglês | MEDLINE | ID: mdl-37303182

RESUMO

BACKGROUND: Melanoma is the deadliest form of skin cancer. Heat shock protein 90 (Hsp90) is highly expressed in human melanoma. Hsp90 inhibitors can suppress the growth of human melanoma A375 cells; however, the underlying mechanism remains unclear. METHODS: A375 cells were treated with SNX-2112, an Hsp90 inhibitor, for 48 h, and whole-transcriptome sequencing was performed. RESULTS: A total of 2,528 differentially expressed genes were identified, including 895 upregulated and 1,633 downregulated genes. Pathway enrichment analyses of differentially expressed mRNAs identified the extracellular matrix (ECM)-receptor interaction pathway as the most significantly enriched pathway. The ECM receptor family mainly comprises integrins (ITGs) and collagens (COLs), wherein ITGs function as the major cell receptors for COLs. 19 upregulated miRNAs were found to interact with 6 downregulated ITG genes and 8 upregulated miRNAs were found to interact with 3 downregulated COL genes. 9 differentially expressed circRNAs in SNX-2112-treated A375 cells were identified as targets of the ITG- and COL-related miRNAs. Based on the differentially expressed circRNAs, miRNAs, and mRNAs, ITGs- and COL-based circRNA-miRNA-mRNA regulatory networks were mapped, revealing a novel regulatory mechanism of Hsp90-regulated melanoma. CONCLUSION: Targeting the ITG-COL network is a promising approach to the treatment of melanoma.

6.
Discov Oncol ; 14(1): 64, 2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37160815

RESUMO

PURPOSE: Esophageal squamous cell carcinoma (ESCC) remains one of the most common causes of cancer death due to the lack of effective therapeutic options. New targets and the targeted drugs are required to be identified and developed. METHODS: Highly expressed genes in ESCA were identified using the edgeR package from public datasets. Immunostaining assay verified the high expression level of EFNA1 in ESCC. CCK-8, colony formation and wound healing assays were performed to examine the role of EFNA1 and EPHA2 in ESCC progression. Cell cycle was analyzed by flow cytometry and autophagy activation was determined by autophagolysosome formation using transmission electron microscopy. The small molecule targeting to EFNA1 was identified by molecular docking and the anti-tumor effects were verified by in vitro and in vivo models with radiation treatment. RESULTS: EFNA1 was highly expressed in esophageal cancer and significantly associated with poor prognosis. Downregulation of EFNA1 remarkably inhibited cell proliferation and migration. Furthermore, decreased EFNA1 significantly suppressed the expression of cMYC along with its representative downstream genes involved in cell cycle, and activated autophagy. Similar effects on ESCC progression were obtained from knockdown of the corresponding receptor, EPHA2. The potential small molecule targeting to EFNA1, salvianolic acid A (SAA), could significantly suppress ESCC progression and increase the sensitivity to radiotherapy. CONCLUSION: We revealed that EFNA1 facilitated the ESCC progression via the possible mechanism of activating cMYC-modulated cell proliferation and suppressing autophagy, and identified SAA as a potential drug targeting EFNA1, providing new options for the future treatments for ESCC patients.

7.
Theranostics ; 13(8): 2657-2672, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37215573

RESUMO

Rationale: The role of circadian clock in pituitary tumorigenesis remains elusive. Here we investigate whether and how circadian clock modulates the development of pituitary adenomas. Methods and Results: We found altered expression of pituitary clock genes in patients with pituitary adenomas. In particular, PER2 is prominently upregulated. Further, jetlagged mice with PER2 upregulation have accelerated growth of GH3 xenograft tumor. Conversely, loss of Per2 protects mice against developing estrogen-induced pituitary adenoma. Similar antitumor effect is observed for SR8278, a chemical that can decrease pituitary PER2 expression. RNA-seq analysis suggests involvement of cell cycle disturbance in PER2 regulation of pituitary adenoma. Subsequent in vivo and cell-based experiments validate that PER2 induces pituitary expression of Ccnb2, Cdc20 and Espl1 (three cell cycle genes) to facilitate cell cycle progression and inhibit apoptosis, thereby promoting pituitary tumorigenesis. Mechanistically, PER2 regulates the transcription of Ccnb2, Cdc20 and Espl1 through enhancing the transcriptional activity of HIF-1α. HIF-1α trans-activates Ccnb2, Cdc20 and Espl1 via direct binding to its specific response element in the gene promoters. Conclusion: PER2 integrates circadian disruption and pituitary tumorigenesis. These findings advance our understanding of crosstalk between circadian clock and pituitary adenomas and highlight the relevance of clock-based approaches in disease management.


Assuntos
Relógios Circadianos , Neoplasias Hipofisárias , Humanos , Camundongos , Animais , Neoplasias Hipofisárias/genética , Ritmo Circadiano/genética , Proteínas Circadianas Period/genética , Proteínas Circadianas Period/metabolismo , Relógios Circadianos/genética , Proteínas de Ciclo Celular/metabolismo , Carcinogênese/genética , Transformação Celular Neoplásica/genética
8.
ACS Nano ; 16(9): 13919-13932, 2022 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-36082976

RESUMO

The triple-negative breast cancer (TNBC) microenvironment makes a feature of aberrant vasculature, high interstitial pressure, and compact extracellular matrix, which combine to reduce the delivery and penetration of therapeutic agents, bringing about incomplete elimination of cancer cells. Herein, employing the tumor penetration strategy of size-shrinkage combined with ligand modification, we constructed a photothermal nanocluster for cascaded deep penetration in tumor parenchyma and efficient eradication of TNBC cells. In our approach, the photothermal agent indocyanine green (ICG) is laded in human serum albumin (HSA), which is cross-linked by a thermally labile azo linker (VA057) and then further modified with a tumor homing/penetrating tLyP-1 peptide (HP), resulting in a TNBC-targeting photothermal-responsive size-switchable albumin nanocluster (ICG@HSA-Azo-HP). Aided by the enhanced permeability and retention effect and guidance of HP, the ca. 149 nm nanoclusters selectively accumulate in the tumor site and then, upon mild irradiation with the 808 nm laser, disintegrate into 11 nm albumin fractions that possess enhanced intratumoral diffusion ability. Meanwhile, HP initiates the CendR pathway among the nutrient-deficient tumor cells and facilitates the transcellular delivery of the nanocluster and its disintegrated fractions for subsequent therapy. By employing this size-shrinkage and peptide-initiated transcytosis strategy, ICG@HSA-Azo-HP possesses excellent penetration capabilities and shows extensive penetration depth in three-dimensional multicellular tumor spheroids after irradiation. Moreover, with a superior photothermal conversion effect, the tumor-penetrating nanocluster can implement effective photothermal therapy throughout the tumor tissue under a second robust irradiation. Both in vivo orthotopic and ectopic TNBC therapy confirmed the efficient tumor inhibition of ICG@HSA-Azo-HP after dual-stage irradiation. The synergistic penetration strategy of on-demanded size-shrinkage and ligand guidance accompanied by clinically feasible NIR irradiation provides a promising approach for deep-penetrating TNBC therapy.


Assuntos
Hipertermia Induzida , Nanopartículas , Neoplasias de Mama Triplo Negativas , Albuminas , Animais , Linhagem Celular Tumoral , Humanos , Hipertermia Induzida/métodos , Verde de Indocianina/farmacologia , Ligantes , Camundongos , Camundongos Endogâmicos BALB C , Nanopartículas/metabolismo , Fototerapia/métodos , Terapia Fototérmica , Albumina Sérica Humana , Neoplasias de Mama Triplo Negativas/terapia , Microambiente Tumoral
9.
Front Microbiol ; 13: 838808, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35387080

RESUMO

Herpes simplex virus type 1 (HSV-1) is a highly prevalent virus in humans and causes severe forms of inflammation, such as herpes simplex encephalitis (HSE). Pyroptosis is a new inflammatory cell death triggered by inflammasome and cysteine-requiring aspartate protease-1 (caspase-1) activation. Nonetheless, HSV-1 induces encephalitis, and cell death mechanisms are not understood. In this study, we confirmed for the first time that the DNA virus HSV-1 triggers Gasdermin D-dependent pyroptosis by activating NLR family pyrin domain containing 3 (NLRP3) inflammasomes in mouse microglia, leading to mature IL-1ß production and active caspase-1 (p10) release. Inhibition of microglial NLRP3 inflammasome activation suppressed HSV-1-induced Gasdermin D-dependent pyroptosis. In addition, NLRP3 and IL-1ß expression levels were significantly increased in the mouse model of herpes simplex encephalitis compared with normal mice without viral infection. Collectively, our data revealed that the activation of inflammasomes and GSDMD-dependent pyroptosis is the mechanism of HSV-1 inducing inflammation and provides treatment targets for viral inflammation.

10.
Mol Cancer ; 21(1): 43, 2022 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-35144642

RESUMO

BACKGROUND: Identification of potential novel targets for reversing resistance to Epidermal Growth Factor Receptor (EGFR)-tyrosine kinase inhibitors (EGFR-TKIs) holds great promise for the treatment of relapsed lung adenocarcinoma (LUAD). In the present study, we aim to investigate the role of methyltransferase-like 7B (METTL7B) in inducing EGFR-TKIs resistance in LUAD and whether it could be a therapeutic target for reversing the resistance. METHODS: METTL7B-overexpressed LUAD cell lines, gefitinib and osimertinib-resistant Cell-Derived tumor Xenograft (CDX) and Patient-Derived tumor Xenograft (PDX) mouse models were employed to evaluate the role of METTL7B in TKIs resistance. Ultraperformance liquid chromatography-tandem mass spectrometer (UPLC-MS/MS) was used to identify the metabolites regulated by METTL7B. Methylated RNA immunoprecipitation (MeRIP)-qPCR analysis was performed to measure the N6-methyladenosine (m6A) status of mRNA of METTL7B targeted genes. Gold nanocluster-assisted delivery of siRNA targeting METTL7B (GNC-siMETTL7B) was applied to evaluate the effect of METTL7B in TKIs resistance. RESULTS: Increased expression of METTL7B was found in TKIs-resistant LUAD cells and overexpression of METTL7B in LUAD cells induced TKIs resistance both in vitro and in vivo. Activated ROS-metabolism was identified in METTL7B-overexpressed LUAD cells, accompanied with upregulated protein level of GPX4, HMOX1 and SOD1 and their enzymatic activities. Globally elevated m6A levels were found in METTL7B-overexpressed LUAD cells, which was reduced by knock-down of METTL7B. METTL7B induced m6A modification of GPX4, HMOX1 and SOD1 mRNA. Knock-down of METTL7B by siRNA re-sensitized LUAD cells to gefitinib and osimertinib both in vitro and in vivo. CONCLUSIONS: This study uncovered a new critical link in METTL7B, glutathione metabolism and drug resistance. Our findings demonstrated that METTL7B inhibitors could be used for reversing TKIs resistance in LUAD patients.


Assuntos
Adenocarcinoma de Pulmão , Proteínas de Transporte , Receptores ErbB , Neoplasias Pulmonares , Inibidores de Proteínas Quinases , Adenocarcinoma de Pulmão/tratamento farmacológico , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/patologia , Animais , Linhagem Celular Tumoral , Cromatografia Líquida , Resistencia a Medicamentos Antineoplásicos , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/metabolismo , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/enzimologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Metiltransferases/genética , Metiltransferases/metabolismo , Camundongos , Mutação , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Espectrometria de Massas em Tandem , Ensaios Antitumorais Modelo de Xenoenxerto
11.
Gut ; 71(2): 333-344, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-33692094

RESUMO

OBJECTIVE: Solid tumours respond poorly to immune checkpoint inhibitor (ICI) therapies. One major therapeutic obstacle is the immunosuppressive tumour microenvironment (TME). Cancer-associated fibroblasts (CAFs) are a key component of the TME and negatively regulate antitumour T-cell response. Here, we aimed to uncover the mechanism underlying CAFs-mediated tumour immune evasion and to develop novel therapeutic strategies targeting CAFs for enhancing ICI efficacy in oesophageal squamous cell carcinoma (OSCC) and colorectal cancer (CRC). DESIGN: Anti-WNT2 monoclonal antibody (mAb) was used to treat immunocompetent C57BL/6 mice bearing subcutaneously grafted mEC25 or CMT93 alone or combined with anti-programmed cell death protein 1 (PD-1), and the antitumour efficiency and immune response were assessed. CAFs-induced suppression of dendritic cell (DC)-differentiation and DC-mediated antitumour immunity were analysed by interfering with CAFs-derived WNT2, either by anti-WNT2 mAb or with short hairpin RNA-mediated knockdown. The molecular mechanism underlying CAFs-induced DC suppression was further explored by RNA-sequencing and western blot analyses. RESULTS: A negative correlation between WNT2+ CAFs and active CD8+ T cells was detected in primary OSCC tumours. Anti-WNT2 mAb significantly restored antitumour T-cell responses within tumours and enhanced the efficacy of anti-PD-1 by increasing active DC in both mouse OSCC and CRC syngeneic tumour models. Directly interfering with CAFs-derived WNT2 restored DC differentiation and DC-mediated antitumour T-cell responses. Mechanistic analyses further demonstrated that CAFs-secreted WNT2 suppresses the DC-mediated antitumour T-cell response via the SOCS3/p-JAK2/p-STAT3 signalling cascades. CONCLUSIONS: CAFs could suppress antitumour immunity through WNT2 secretion. Targeting WNT2 might enhance the ICI efficacy and represent a new anticancer immunotherapy.


Assuntos
Fibroblastos Associados a Câncer/metabolismo , Carcinoma de Células Escamosas/metabolismo , Neoplasias Colorretais/metabolismo , Neoplasias Esofágicas/metabolismo , Inibidores de Checkpoint Imunológico/uso terapêutico , Proteína Wnt2/metabolismo , Animais , Linfócitos T CD8-Positivos , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/patologia , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/patologia , Células Dendríticas/fisiologia , Modelos Animais de Doenças , Neoplasias Esofágicas/tratamento farmacológico , Neoplasias Esofágicas/patologia , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Microambiente Tumoral
12.
Front Cell Dev Biol ; 9: 637650, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34765598

RESUMO

Background: Emerging evidence suggests that inflammatory response biomarkers are predictive factors that can improve the accuracy of colorectal cancer (CRC) prognoses. We aimed to evaluate the prognostic significance of C-reactive protein (CRP), the Glasgow Prognostic Score (GPS), and the CRP-to-albumin ratio (CAR) in CRC. Methods: Overall, 307 stage I-III CRC patients and 72 colorectal liver metastases (CRLM) patients were enrolled between October 2013 and September 2019. We investigated the correlation between the pretreatment CRP, GPS, and CAR and the clinicopathological characteristics. The Cox proportional hazards model was used for univariate or multivariate analysis to assess potential prognostic factors. A receiver operating characteristic (ROC) curve was constructed to evaluate the predictive value of each prognostic score. We established CRC survival nomograms based on the prognostic scores of inflammation. Results: The optimal cutoff levels for the CAR for overall survival (OS) in all CRC patients, stage I-III CRC patients, and CRLM patients were 0.16, 0.14, and 0.25, respectively. Kaplan-Meier analysis and log-rank tests demonstrated that patients with high CRP, CAR, and GPS had poorer OS in CRC, both in the cohorts of stage I-III patients and CRLM patients. In the different cohorts of CRC patients, the area under the ROC curve (AUC) of these three markers were all high. Multivariate analysis indicated that the location of the primary tumor, pathological differentiation, and pretreatment carcinoembryonic antigen (CEA), CRP, GPS, and CAR were independent prognostic factors for OS in stage I-III patients and that CRP, GPS, and CAR were independent prognostic factors for OS in CRLM patients. The predictors in the prediction nomograms included the pretreatment CRP, GPS, and CAR. Conclusions: CRP, GPS, and CAR have independent prognostic values in patients with CRC. Furthermore, the survival nomograms based on CRP, GPS, and CAR can provide more valuable clinical significance.

13.
Drug Resist Updat ; 58: 100777, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34481195

RESUMO

Chemotherapy remains a powerful tool to eliminate malignant cells. However, the efficacy of chemotherapy is compromised by the frequent emergence of intrinsic and acquired multidrug resistance (MDR). These chemoresistance modalities are based on a multiplicity of molecular mechanisms of drug resistance, including : 1) Impaired drug uptake into cancer cells; 2) Increased expression of ATP-binding cassette efflux transporters; 3) Loss of function of pro-apoptotic factors; 4) Enhanced DNA repair capacity; 5) Qualitative or quantitative alterations of specific cellular targets; 6) Alterations that allow cancer cells to tolerate adverse or stressful conditions; 7) Increased biotransformation or metabolism of anticancer drugs to less active or completely inactive metabolites; and 8) Intracellular and intercellular drug sequestration in well-defined organelles away from the cellular target. Hence, one of the major aims of cancer research is to develop novel strategies to overcome cancer drug resistance. Over the last decades, nanomedicine, which focuses on targeted delivery of therapeutic drugs into tumor tissues using nano-sized formulations, has emerged as a promising tool for cancer treatment. Therefore, nanomedicine has been introduced as a reliable approach to improve treatment efficacy and minimize detrimental adverse effects as well as overcome cancer drug resistance. With rationally designed strategies including passively targeted delivery, actively targeted delivery, delivery of multidrug combinations, as well as multimodal combination therapy, nanomedicine paves the way towards efficacious cancer treatment and hold great promise in overcoming cancer drug resistance. Herein, we review the recent progress of nanomaterials used in medicine, including liposomal nanoparticles, polymeric nanoparticles, inorganic nanoparticles and hybrid nanoparticles, to surmount cancer multidrug resistance. Finally, the future perspectives of the application of nanomedicine to reverse cancer drug resistance will be addressed.


Assuntos
Antineoplásicos , Nanopartículas , Neoplasias , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Resistência a Múltiplos Medicamentos , Resistencia a Medicamentos Antineoplásicos/genética , Humanos , Nanomedicina , Nanopartículas/química , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/metabolismo
14.
Front Cell Dev Biol ; 9: 639596, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34109171

RESUMO

AIM: We aimed to develop and validate a comprehensive nomogram containing pre-treatment plasma HSP90AA1 to predict the risk of breast cancer onset and metastasis. METHODS: We assessed the expression of HSP90s in breast cancer patients using an online database. To verify the results, 677 patients diagnosed with breast cancer and 146 patients with benign breast disease between 2014 and 2019 were selected from our hospital and were divided into cancer risk and metastasis risk cohorts. We focused on HSP90AA1 to elucidate the risks of onset and metastasis in the cohorts. RESULTS: Expression levels of HSP90AA1, HSP90AA2, HSP90AB1, HSP90B1, and TRAP1 were linked to disease progression. Survival analysis using the GEPIA and OncoLnc databases indicated that the upregulation of HSP90AA1 and HSP90AB1 was related to poor overall survival. In the cancer risk cohort, carcinoembryonic antigen (CEA), carbohydrate antigen 153 (CA153), HSP90AA1, T cells%, natural killer cells%, B cells%, neutrophil count, monocyte count, and d-dimer were incorporated into the nomogram. A high Harrell's concordance index (C-index) value of 0.771 [95% confidence interval (CI), 0.725-0.817] could still be reached in the interval validation. In the metastasis risk cohort, predictors contained in the prediction nomogram included the use of CEA, CA153, HSP90AA1, carbohydrate antigen 125 (CA125), natural killer cells%, B cells%, platelet count, monocyte count, and d-dimer. The C-index was 0.844 (95% CI, 0.801-0.887) and it was well-calibrated. HSP90AA1 raised net clinical benefit of breast cancer onset and metastasis risk prediction nomogram in a range of risk thresholds (5-92%) and (1-90%). CONCLUSION: Our study revealed that pretreatment plasma HSP90AA1 combined with other markers could conveniently predict the risk of breast cancer onset and metastasis.

15.
Exp Ther Med ; 21(3): 192, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33488801

RESUMO

Breast cancer, which commonly occurs in the epithelium of the mammary gland, is a malignant tumor. MicroRNAs are involved in various cancer-associated processes, and microRNA-615-5p has been identified to be decreased in the pathological tissues from patients with breast cancer. In the present study, the possible mechanism of microRNA-615-5p in the progression of breast cancer was investigated in order to identify potential novel targets for clinical treatment. Heat shock factor 1 (HSF1) was identified as a predictive target gene of microRNA-615-5p using TargetScan analysis. The expression levels of microRNA-615-5p and its target gene, HSF1, were measured in breast cancer tissues and normal adjacent tissues. Additionally, the effects of microRNA-615-5p on MCF-7 breast cancer cell growth and apoptosis were examined. Furthermore, the interaction between HSF1 and microRNA-615-5p was investigated by a dual luciferase gene reporter assay. The expression levels of HSF1 were measured following transfection with microRNA-615-5p or pcDNA3.1-HSF1. Finally, the expression levels of proliferation- and apoptosis-associated factors such as B-cell lymphoma 2 (Bcl-2), cyclin D1, proliferating cell nuclear antigen (PCNA) and bcl-2-like protein 4 (Bax) were determined. The results demonstrated that lower microRNA-615-5p expression and higher HSF1 mRNA expression were present in tumor tissues compared with adjacent tissues (P<0.01). HSF1 was verified as a direct target of microRNA-615-5p using the dual luciferase gene reporter assay. In comparison with untransfected control and mimic-transfected negative control (NC) cells, MCF-7 cells transfected with microRNA-615-5p mimics exhibited reduced cell proliferation and increased apoptosis (P<0.01). However, the overexpression of HSF1 using a vector reversed the suppression of HSF1 induced by microRNA-615-5p mimics (P<0.01). The mRNA and protein expression levels of Bax were significantly increased, whereas those of Bcl-2, cyclin D1 and PCNA were decreased in the cells transfected with microRNA-615-5p mimics compared with the control and NC cells (P<0.01). Collectively, the present study indicated that microRNA-615-5p may mediate the progression of breast cancer by targeting HSF1.

16.
Front Oncol ; 10: 571167, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33304845

RESUMO

Esophageal squamous cell carcinoma (ESCC) is one of the most aggressive malignant tumors and there is a lack of biomarkers for ESCC diagnosis and prognosis. Family subunits of cholinergic nicotinic receptor genes (CHRNs) are involved in smoking behavior and tumor cell proliferation. Previous researches have shown similar molecular features and pathogenic mechanisms among ESCC, head and neck squamous cell carcinoma (HNSC), and lung squamous cell carcinoma (LUSC). Using edgeR, three mutual differentially expressed genes of CHRNs were found to be significantly upregulated at the mRNA level in ESCC, LUSC, and HNSC compared to matched normal tissues. Kaplan-Meier survival analysis showed that high expression of CHRNB4 was associated with unfavorable prognosis in ESCC and HNSC. The specific expression analysis revealed that CHRNB4 is highly expressed selectively in squamous cell carcinomas compared to adenocarcinoma. Cox proportional hazards regression analysis was performed to find that just the single gene CHRNB4 has enough independent prognostic ability, with the area under curve surpassing the tumor-node-metastasis (TNM) staging-based model, the most commonly used model in clinical application in ESCC. In addition, an effective prognostic nomogram was established combining the TNM stage, gender of patients, and expression of CHRNB4 for ESCC patients, revealing an excellent prognostic ability when compared to the model of CHRNB4 alone or TNM. Gene Set Enrichment Analysis results suggested that the expression of CHRNB4 was associated with cancer-related pathways, such as the mTOR pathway. Cell Counting Kit-8, cloning formation assay, and western blot proved that CHRNB4 knockdown can inhibit the proliferation of ESCC cells via the Akt/mTOR and ERK1/2/mTOR pathways, which might facilitate the prolonged survival of patients. Furthermore, we conducted structure-based molecular docking, and potential modulators against CHRNB4 were screened from FDA approved drugs. These findings suggested that CHRNB4 specifically expressed in SCCs, and may serve as a promising biomarker for diagnosis and prognosis prediction, and it can even become a therapeutic target of ESCC patients.

17.
Mol Cancer ; 19(1): 147, 2020 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-33032611

RESUMO

BACKGROUND: The highly intra-tumoral heterogeneity and complex cell origination of prostate cancer greatly limits the utility of traditional bulk RNA sequencing in finding better biomarker for disease diagnosis and stratification. Tissue specimens based single-cell RNA sequencing holds great promise for identification of novel biomarkers. However, this technique has yet been used in the study of prostate cancer heterogeneity. METHODS: Cell types and the corresponding marker genes were identified by single-cell RNA sequencing. Malignant states of different clusters were evaluated by copy number variation analysis and differentially expressed genes of pseudo-bulks sequencing. Diagnosis and stratification of prostate cancer was estimated by receiver operating characteristic curves of marker genes. Expression characteristics of marker genes were verified by immunostaining. RESULTS: Fifteen cell groups including three luminal clusters with different expression profiles were identified in prostate cancer tissues. The luminal cluster with the highest copy number variation level and marker genes enriched in prostate cancer-related metabolic processes was considered the malignant cluster. This cluster contained a distinct subgroup with high expression level of prostate cancer biomarkers and a strong distinguishing ability of normal and cancerous prostates across different pathology grading. In addition, we identified another marker gene, Hepsin (HPN), with a 0.930 area under the curve score distinguishing normal tissue from prostate cancer lesion. This finding was further validated by immunostaining of HPN in prostate cancer tissue array. CONCLUSION: Our findings provide a valuable resource for interpreting tumor heterogeneity in prostate cancer, and a novel candidate marker for prostate cancer management.


Assuntos
Biomarcadores Tumorais/genética , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Neoplasias da Próstata/classificação , Neoplasias da Próstata/patologia , Análise de Célula Única/métodos , Humanos , Masculino , Prognóstico , Prostatectomia , Neoplasias da Próstata/genética , Neoplasias da Próstata/cirurgia , Curva ROC , Taxa de Sobrevida
18.
Oncol Rep ; 44(1): 29-42, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32627007

RESUMO

Matrix metalloproteinases (MMPs) are involved in the cleavage of several components of the extracellular matrix and serve important roles in tumor growth, metastasis and invasion. Previous studies have focused on the expression of one or several MMPs in esophageal squamous cell carcinoma (ESCC); however, in the present study, the transcriptomics of all 23 MMPs were systematically investigated with a focus on the prognostic value of the combination of MMPs. In this study, 8 overlapping differentially expressed genes of the MMP family were identified based on data obtained from Gene Expression Omnibus and The Cancer Genome Atlas. The prognostic value of these MMPs were investigated; the receiver operating characteristic curves, survival curves and nomograms showed that the combination of 6 selected MMPs possessed a good predictive ability, which was more accurate than the prediction model based on Tumor­Node­Metastasis stage. Gene set enrichment analysis and gene co­expression analysis were performed to investigate the potential mechanism of action of MMPs in ESCC. The MMP family was associated with several signaling pathways, such as epithelial­mesenchymal transition (EMT), Notch, TGF­ß, mTOR and P53. Cell Counting Kit­8, colony formation, wound healing assays and western blotting were used to determine the effect of BB­94, a pan­MMP inhibitor, on proliferation and migration of ESCC cells. BB­94 treatment decreased ESCC cell growth, migration and EMT. Therefore, MMPs may serve both as diagnostic and prognostic biomarkers of ESCC, and MMP inhibition may be a promising preventive and therapeutic strategy for patients with ESCC.


Assuntos
Neoplasias Esofágicas/mortalidade , Carcinoma de Células Escamosas do Esôfago/mortalidade , Metaloproteinases da Matriz/genética , Regulação para Cima , Linhagem Celular Tumoral , Proliferação de Células , Bases de Dados Genéticas , Transição Epitelial-Mesenquimal , Neoplasias Esofágicas/genética , Carcinoma de Células Escamosas do Esôfago/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Nomogramas , Prognóstico , Análise de Sobrevida
19.
Biomed Res Int ; 2020: 6107865, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32337262

RESUMO

Colon cancer is the third most common cancer, with a high incidence and mortality. Construction of a specific and sensitive prediction model for prognosis is urgently needed. In this study, profiles of patients with colon cancer with clinical and gene expression data were downloaded from Gene Expression Omnibus and The Cancer Genome Atlas (TCGA). CXC chemokines in patients with colon cancer were investigated by differential expression gene analysis, overall survival analysis, receiver operating characteristic analysis, gene set enrichment analysis (GSEA), and weighted gene coexpression network analysis. CXCL1, CXCL2, CXCL3, and CXCL11 were upregulated in patients with colon cancer and significantly correlated with prognosis. The area under curve (AUC) of the multigene forecast model of CXCL1, CXCL11, CXCL2, and CXCL3 was 0.705 in the GSE41258 dataset and 0.624 in TCGA. The prediction model was constructed using the risk score of the multigene model and three clinicopathological risk factors and exhibited 92.6% and 91.8% accuracy in predicting 3-year and 5-year overall survival of patients with colon cancer, respectively. In addition, by GSEA, expression of CXCL1, CXCL11, CXCL2, and CXCL3 was correlated with several signaling pathways, including NOD-like receptor, oxidative phosphorylation, mTORC1, interferon-gamma response, and IL6/JAK/STAT3 pathways. Patients with colon cancer will benefit from this prediction model for prognosis, and this will pave the way to improve the survival rate and optimize treatment for colon cancer.


Assuntos
Quimiocinas CXC/genética , Neoplasias do Colo/diagnóstico , Neoplasias do Colo/genética , Quimiocina CXCL1/genética , Quimiocina CXCL1/metabolismo , Quimiocina CXCL11/genética , Quimiocina CXCL11/metabolismo , Quimiocina CXCL2/genética , Quimiocina CXCL2/metabolismo , Quimiocinas CXC/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Interferon gama/genética , Interferon gama/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Pessoa de Meia-Idade , Análise Multivariada , Proteínas NLR/genética , Proteínas NLR/metabolismo , Fosforilação Oxidativa , Prognóstico , Modelos de Riscos Proporcionais , Análise de Sobrevida
20.
Mol Cancer ; 19(1): 54, 2020 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-32164712

RESUMO

Chemoresistance, whether intrinsic or acquired, is a major obstacle in the treatment of cancer. The resistance of cancer cells to chemotherapeutic drugs can result from various mechanisms. Over the last decade, it has been reported that 1ong noncoding RNAs (lncRNAs) can mediate carcinogenesis and drug resistance/sensitivity in cancer cells. This article reviews, in detail, recent studies regarding the roles of lncRNAs in mediating drug resistance.


Assuntos
Biomarcadores Tumorais/genética , Carcinogênese/patologia , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias/patologia , RNA Longo não Codificante/genética , Animais , Carcinogênese/efeitos dos fármacos , Carcinogênese/genética , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA