Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Adv Sci (Weinh) ; : e2402327, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38981014

RESUMO

Dysregulation of the transforming growth factor-ß (TGF-ß) signaling pathway regulates cancer stem cells (CSCs) and drug sensitivity, whereas it remains largely unknown how feedback regulatory mechanisms are hijacked to fuel drug-resistant CSCs. Through a genome-wide CRISPR activation screen utilizing stem-like drug-resistant properties as a readout, the TGF-ß receptor-associated binding protein 1 (TGFBRAP1) is identified as a TGF-ß-inducible positive feedback regulator that governs sensitivity to tyrosine kinase inhibitors (TKIs) and promotes liver cancer stemness. By interacting with and stabilizing the TGF-ß receptor type 1 (TGFBR1), TGFBRAP1 plays an important role in potentiating TGF-ß signaling. Mechanistically, TGFBRAP1 competes with E3 ubiquitin ligases Smurf1/2 for binding to TGFΒR1, leading to impaired receptor poly-ubiquitination and proteasomal degradation. Moreover, hyperactive TGF-ß signaling in turn up-regulates TGFBRAP1 expression in drug-resistant CSC-like cells, thereby constituting a previously uncharacterized feedback mechanism to amplify TGF-ß signaling. As such, TGFBRAP1 expression is correlated with TGFΒR1 levels and TGF-ß signaling activity in hepatocellular carcinoma (HCC) tissues, as well as overall survival and disease recurrence in multiple HCC cohorts. Therapeutically, blocking TGFBRAP1-mediated stabilization of TGFBR1 by selective inhibitors alleviates Regorafenib resistance via reducing CSCs. Collectively, targeting feedback machinery of TGF-ß signaling pathway may be an actionable approach to mitigate drug resistance and liver cancer stemness.

2.
Int J Biol Sci ; 20(6): 2323-2338, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38617533

RESUMO

Chronic atrophic gastritis (CAG) is a complex disease characterized by atrophy and inflammation in gastric mucosal tissue, especially with high expression of interleukins. However, the interaction and mechanisms between interleukins and gastric mucosal epithelial cells in CAG remain largely elusive. Here, we elucidate that IL-33 stands out as the predominant inflammatory factor in CAG, and its expression is induced by H. pylori and MNNG through the ROS-STAT3 signaling pathway. Furthermore, our findings reveal that the IL-33/ST2 axis is intricately involved in the progression of CAG. Utilizing phosphoproteomics mass spectrometry, we demonstrate that IL-33 enhances autophagy in gastric epithelial cells through the phosphorylation of AMPK-ULK1 axis. Notably, inhibiting autophagy alleviates CAG severity, while augmentation of autophagy exacerbates the disease. Additionally, ROS scavenging emerges as a promising strategy to ameliorate CAG by reducing IL-33 expression and inhibiting autophagy. Intriguingly, IL-33 stimulation promotes GKN1 degradation through the autolysosomal pathway. Clinically, the combined measurement of IL-33 and GKN1 in serum shows potential as diagnostic markers. Our findings unveil an IL-33-AMPK-ULK1 regulatory mechanism governing GKN1 protein stability in CAG, presenting potential therapeutic targets for its treatment.


Assuntos
Gastrite Atrófica , Helicobacter pylori , Hormônios Peptídicos , Humanos , Proteínas Quinases Ativadas por AMP , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/genética , Mucosa Gástrica , Interleucina-33 , Peptídeos e Proteínas de Sinalização Intracelular , Espécies Reativas de Oxigênio
3.
Adv Sci (Weinh) ; 10(13): e2300288, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36866919

RESUMO

Lysosome-targeting chimeras (LYTACs) are an emerging therapeutic modality that effectively degrade cancer cell membranes and extracellular target proteins. In this study, a nanosphere-based LYTAC degradation system is developed. The amphiphilic peptide-modified N-acetylgalactosamine (GalNAc) can self-assemble into nanospheres with a strong affinity for asialoglycoprotein receptor targets. They can degrade different membranes and extracellular proteins by linking with the relevant antibodies. CD24, a heavily glycosylated glycosylphosphatidylinositol-anchored surface protein, interacts with Siglec-10 to modulate the tumor immune response. The novel Nanosphere-AntiCD24, synthesized by linking nanospheres with CD24 antibody, accurately regulates the degradation of CD24 protein and partially restores the phagocytic function of macrophages toward tumor cells by blocking the CD24/Siglec-10 signaling pathway. When Nanosphere-AntiCD24 is combined with glucose oxidase, an enzyme promoting the oxidative decomposition of glucose, the combination not only effectively restores the function of macrophages in vitro but also suppresses tumor growth in xenograft mouse models without detectable toxicity to normal tissues. The results indicate that GalNAc-modified nanospheres, as a part of LYTACs, can be successfully internalized and are an effective drug-loading platform and a modular degradation strategy for the lysosomal degradation of cell membrane and extracellular proteins, which can be broadly applied in the fields of biochemistry and tumor therapeutics.


Assuntos
Proteínas de Membrana , Neoplasias , Humanos , Animais , Camundongos , Proteínas de Membrana/metabolismo , Transdução de Sinais , Macrófagos/metabolismo , Anticorpos/metabolismo , Neoplasias/metabolismo , Lisossomos/metabolismo , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/metabolismo , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/farmacologia , Antígeno CD24/metabolismo
4.
Pharmaceutics ; 15(3)2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36986805

RESUMO

Colorectal cancer (CRC) is the leading cause of cancer-related deaths worldwide. Fibromodulin (FMOD) is the main proteoglycan that contributes to extracellular matrix (ECM) remodeling by binding to matrix molecules, thereby playing an essential role in tumor growth and metastasis. There are still no useful drugs that target FMOD for CRC treatment in clinics. Here, we first used public whole-genome expression datasets to analyze the expression level of FMOD in CRC and found that FMOD was upregulated in CRC and associated with poor patient prognosis. We then used the Ph.D.-12 phage display peptide library to obtain a novel FMOD antagonist peptide, named RP4, and tested its anti-cancer effects of RP4 in vitro and in vivo. These results showed that RP4 inhibited CRC cell growth and metastasis, and promoted apoptosis both in vitro and in vivo by binding to FMOD. In addition, RP4 treatment affected the CRC-associated immune microenvironment in a tumor model by promoting cytotoxic CD8+ T and NKT (natural killer T) cells and inhibiting CD25+ Foxp3+ Treg cells. Mechanistically, RP4 exerted anti-tumor effects by blocking the Akt and Wnt/ß-catenin signaling pathways. This study implies that FMOD is a potential target for CRC treatment, and the novel FMOD antagonist peptide RP4 can be developed as a clinical drug for CRC treatment.

5.
Cell Oncol (Dordr) ; 46(3): 545-570, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36745329

RESUMO

BACKGROUND: Human malignancies are composed of heterogeneous subpopulations of cancer cells with phenotypic and functional diversity. Among them, a unique subset of cancer stem cells (CSCs) has both the capacity for self-renewal and the potential to differentiate and contribute to multiple tumor properties. As such, CSCs are promising cellular targets for effective cancer therapy. At the molecular level, hyper-activation of multiple stemness regulatory signaling pathways and downstream transcription factors play critical roles in controlling CSCs establishment and maintenance. To regulate CSC properties, these stemness pathways are controlled by post-translational modifications including, but not limited to phosphorylation, acetylation, methylation, and ubiquitination. CONCLUSION: In this review, we focus on E3 ubiquitin ligases and their roles and mechanisms in regulating essential hallmarks of CSCs, such as self-renewal, invasion and metastasis, metabolic reprogramming, immune evasion, and therapeutic resistance. Moreover, we discuss emerging therapeutic approaches to eliminate CSCs through targeting E3 ubiquitin ligases by chemical inhibitors and proteolysis-targeting chimera (PROTACs) which are currently under development at the discovery, preclinical, and clinical stages. Several outstanding issues such as roles for E3 ubiquitin ligases in heterogeneity and phenotypical/functional evolution of CSCs remain to be studied under pathologically and clinically relevant conditions. With the rapid application of functional genomic and proteomic approaches at single cell, spatiotemporal, and even single molecule levels, we anticipate that more specific and precise functions of E3 ubiquitin ligases will be delineated in dictating CSC properties. Rational design and proper translation of these mechanistic understandings may lead to novel therapeutic modalities for cancer procession medicine.


Assuntos
Neoplasias , Ubiquitina-Proteína Ligases , Humanos , Ubiquitina-Proteína Ligases/genética , Proteômica , Neoplasias/metabolismo , Células-Tronco Neoplásicas/metabolismo , Ubiquitinas/farmacologia , Ubiquitinas/uso terapêutico
6.
Adv Healthc Mater ; 12(12): e2202424, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36640265

RESUMO

While calcium-overload-mediated therapy (COMT) is a promising but largely untapped therapeutic strategy, combinatory therapy greatly boosts treatment outcomes with integrated merits of different therapies. Herein, a BPQD@CaO2 -PEG-GPC3Ab nanoplatform is formulated by integrating calcium peroxide (CaO2 ) and black phosphorus quantum dot (BPQD, photosensitizer) with active-targeting glypican-3 antibody (GPC3Ab), for combinatory photodynamic therapy (PDT) and COMT in response to acidic pH and near-infrared (NIR) light, wherein CaO2 serves as the reservoir of calcium ions (Ca2+ ) and hydrogen peroxide (H2 O2 ). Navigated by GPC3Ab to tumor cells at acidic pH, the nanoparticle disassembles to CaO2 and BPQD; CaO2 produces COMT Ca2+ and H2 O2 , while H2 O2 makes oxygen (O2 ) to promote PDT; under NIR irradiation BPQD facilitates not only the conversion of O2 to singlet oxygen (1 O2 ) for PDT, but also moderate hyperthermia to accelerate NP dissociation to CaO2 and BPQD, and conversions of CaO2 to Ca2+ and H2 O2 , and H2 O2 to O2 , to enhance both COMT and PDT. After supplementary ionomycin treatment to induce intracellular Ca2+ bursts, the multimodal therapeutics strikingly induce hepatocellular carcinoma apoptosis, likely through the activation of the calpains and caspases 12, 9, and 3, up-regulation of Bax and down-regulation of Bcl-2 proteins. This nanoplatform enables a mutually-amplifying and self-reinforcing synergistic therapy.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Nanopartículas , Fotoquimioterapia , Humanos , Cálcio , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Oxigênio , Peróxido de Hidrogênio , Linhagem Celular Tumoral
7.
Adv Mater ; 35(9): e2211159, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36563409

RESUMO

Recording brain neural signals and optogenetic neuromodulations open frontiers in decoding brain neural information and neurodegenerative disease therapeutics. Conventional implantable probes suffer from modulus mismatch with biological tissues and an irreconcilable tradeoff between transparency and electron conductivity. Herein, a strategy is proposed to address these tradeoffs, which generates conductive and transparent hydrogels with polypyrrole-decorated microgels as cross-linkers. The optical transparency of the electrodes can be attributed to the special structures that allow light waves to bypass the microgel particles and minimize their interaction. Demonstrated by probing the hippocampus of rat brains, the biomimetic electrode shows a prolonged capacity for simultaneous optogenetic neuromodulation and recording of brain neural signals. More importantly, an intriguing brain-machine interaction is realized, which involves signal input to the brain, brain neural signal generation, and controlling limb behaviors. This breakthrough work represents a significant scientific advancement toward decoding brain neural information and developing neurodegenerative disease therapies.


Assuntos
Doenças Neurodegenerativas , Polímeros , Ratos , Animais , Polímeros/química , Hidrogéis/química , Elétrons , Pirróis , Encéfalo
8.
Int J Mol Sci ; 23(22)2022 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-36430694

RESUMO

Hepatocellular carcinoma (HCC) is a major subtype of primary liver cancer with a high mortality rate. Pyroptosis and autophagy are crucial processes in the pathophysiology of HCC. Searching for efficient drugs targeting pyroptosis and autophagy with lower toxicity is useful for HCC treatment. Mallotucin D (MLD), a clerodane diterpenoid from Croton crassifolius, has not been previously reported for its anticancer effects in HCC. This study aims to evaluate the inhibitory effects of MLD in HCC and explore the underlying mechanism. We found that the cell proliferation, DNA synthesis, and colony formation of HepG2 cells and the angiogenesis of HUVECs were all greatly inhibited by MLD. MLD caused mitochondrial damage and decreased the TOM20 expression and mitochondrial membrane potential, inducing ROS overproduction. Moreover, MLD promoted the cytochrome C from mitochondria into cytoplasm, leading to cleavage of caspase-9 and caspase-3 inducing GSDMD-related pyroptosis. In addition, we revealed that MLD activated mitophagy by inhibiting the PI3K/AKT/mTOR pathway. Using the ROS-scavenging reagent NAC, the activation effects of MLD on pyroptosis- and autophagy-related pathways were all inhibited. In the HepG2 xenograft model, MLD effectively inhibited tumor growth without detectable toxicities in normal tissue. In conclusion, MLD could be developed as a candidate drug for HCC treatment by inducing mitophagy and pyroptosis via promoting mitochondrial-related ROS production.


Assuntos
Morte Celular Autofágica , Carcinoma Hepatocelular , Croton , Diterpenos Clerodânicos , Neoplasias Hepáticas , Humanos , Morte Celular Autofágica/efeitos dos fármacos , Carcinoma Hepatocelular/metabolismo , Proliferação de Células/efeitos dos fármacos , Croton/química , Diterpenos Clerodânicos/farmacologia , Células Hep G2/efeitos dos fármacos , Células Hep G2/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Piroptose/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo
9.
J Exp Clin Cancer Res ; 41(1): 289, 2022 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-36171633

RESUMO

BACKGROUND: Peptide proteolysis-targeting chimeras (p-PROTACs) with advantages of high specificity and low toxicity have emerged as a powerful technology of targeted protein degradation for biomedical applications. FOXM1, a proliferation-associated transcription factor, is overexpressed in a variety of human tumors as a key driver of tumorigenesis and cancer progression, and is a potential anticancer therapeutic target. However, FOXM1-targeting p-PROTACs has not been researched. METHODS: Here, we first analyzed the expression of FOXM1, GLUT1 and PD-L1 in liver cancer through database and clinical samples of patients. FOXM1-targeting peptides, selected by screening phage display library, are verified its targeting effect by immunofluorescence and CCK-8 test. The novel p-PROTAC degrader of FOXM1 is chemically synthesis, named FOXM1-PROTAC, by linking a FOXM1-binding antagonistic peptide, with the E3 ubiquitin ligase recruitment ligand Pomalidomide and with the cell membrane penetrating peptide TAT. Its degradation effect on FOXM1 was detected by Western blotting, qPCR, and we verified its effect on the behavior of cancer cells by flow cytometry, scratch assay, and Transwell in vitro. The tumor xenografted mice model was used for evaluating FOXM1-PROTAC therapeutic response in vivo. Finally, we detected the expression of GLUT1 and PD-L1 after FOXM1-PROTAC degraded FOXM1 by using Western Blotting and hippocampal detectors and dual immunofluorescence. RESULTS: We found that the novel FOXM1-PROTAC efficiently entered cells and induced degradation of FOXM1 protein, which strongly inhibits viability as well as migration and invasion in various cancer cell lines, and suppressed tumor growth in HepG2 and MDA-MB-231 cells xenograft mouse models, without detected toxicity in normal tissues. Meanwhile, FOXM1-PROTAC decreased the cancer cells glucose metabolism via downregulating the protein expression levels of glucose transporter GLUT1 and the immune checkpoint PD-L1, which suggests involvement of FOXM1 in cancer cell metabolism and immune regulation. CONCLUSIONS: Our results indicate that biologically targeted degradation of FOXM1 is an attractive therapeutic strategy, and antagonist peptide-containing FOXM1-PROTACs as both degrader and inhibitor of FOXM1 could be developed as a safe and promising drug for FOXM1-overexpressed cancer therapy.


Assuntos
Peptídeos Penetradores de Células , Neoplasias , Animais , Humanos , Camundongos , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Proteína Forkhead Box M1/genética , Proteína Forkhead Box M1/metabolismo , Glucose , Transportador de Glucose Tipo 1/genética , Transportador de Glucose Tipo 1/metabolismo , Ligantes , Neoplasias/tratamento farmacológico , Proteólise , Ubiquitina-Proteína Ligases/metabolismo
10.
Oncologist ; 27(11): e856-e869, 2022 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-35857405

RESUMO

Our study aimed to explore the efficacy and safety of anlotinib-toripalimab combination therapy as a second-line treatment for advanced relapsed gastric or gastroesophageal junction carcinoma (GC/GEJC). In this single arm, single-center extension clinical trial, patients with advanced relapsed GC/GEJC received toripalimab (240 mg, intravenously over 60 minutes, once every 2 weeks) plus anlotinib (12 mg/day, orally, 2 weeks on and 1 week off, every 3 weeks) as second-line therapy. There were 29 patients who achieved partial response, and the ORR was 32.3% (95% CI, 26.6%-38.5%). Grade 3 treatment-related adverse events (TRAEs) were recorded in 7 participants (11.3%), all of which were manageable. The PFS and OS were 4.0 and 11.1 months, respectively. Patients with programmed death-ligand 1 (PD-L1) positive expression showed numerically longer OS than the negative ones although the difference was not significantly. The tumor mutational burden-high (TMB-H) group showed a significantly better OS (P = .05) than the TMB-Low (TMB-L) group. Next-generation sequencing (NGS) revealed that fibroblast growth factor receptor 2 (FGFR2) mutations positively correlated with target lesion reduction (odds ratio [OR] = 0.14; P = .02). The new regimen increased tumor-infiltration of CD8+ T and CD3+ T cells. Furthermore, a patient-derived organoid (PDO) study indicated that anlotinib could promote an immune-supportive tumor microenvironment. As conclusion, the anlotinib-toripalimab combination showed promising efficacy and favorable safety as a second-line treatment for advanced, relapsed GC/GEJC. The PD-L1 expression, TMB, and FGFR2 mutation are potential biomarkers for predicting the efficacy of this regimen (ClinicalTrials.gov registration number: NCT04713059).


Assuntos
Carcinoma , Neoplasias Gástricas , Humanos , Antígeno B7-H1 , Junção Esofagogástrica/patologia , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/patologia , Carcinoma/patologia , Microambiente Tumoral
11.
Front Immunol ; 13: 727220, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35663958

RESUMO

Objectives: In this study, we conducted a systematic review to determine tuberculosis (TB) incidence due to immunotherapy with programmed cell death protein-1 (PD-1)/PD ligand (PD-L1) blockade in cancer patients. Methods: We searched PubMed, Cochrance Library, Excerpt Medica Database (Embase), ClinicalTrials.gov, Chinese BioMedical Literature Database (CBM), China National Knowledge Infrastructure Database (CNKI), Wanfang and China Science and Technology Journal Database to identify studies between January 1, 2000 and April 30, 2021, on the reports of TB cases in patients treated with PD-1/PD-L1 blockade. Methodological quality of eligible studies was assessed, and random-effect model meta-analysis was performed to generate the pooled incidence estimate of TB cases in patients undergoing PD-1/PD-L1 therapy. Results: We initially identified 745 records, of which 27 studies ultimately met the inclusion criteria and were included in our meta-analysis. A total of 35 TB cases occurred among patients treated with PD-1/PD-L1 blockade. Nivolumab (51.4%) was the most frequently used PD-1/PD-L1 blockade for cancer treatment. In addition, pulmonary TB was the most common form of tuberculosis seen in 77.1% cases. Clinical outcomes were recorded in 18 patients, of whom 77.8% were cured or achieved remission, and 22.2% were died of TB. Pooled analysis determined that the TB rate in this population was 2,000 cases per 100,000 persons, and the estimated rate for TB associated with PD-1/PD-L1 blockade was 35 times higher than that in the general population. Conclusion: To conclude, our results demonstrate that the clinical use of PD-1/PD-L1 inhibitors significantly increases risk of TB reactivation. An extremely high mortality rate due to TB disease is noted in the patients with PD-1/PD-L1 blockade.


Assuntos
Receptor de Morte Celular Programada 1 , Tuberculose , Antígeno B7-H1 , Humanos , Fatores Imunológicos , Imunoterapia/efeitos adversos , Imunoterapia/métodos , Incidência , Ligantes , Tuberculose/epidemiologia , Tuberculose/etiologia
12.
Compr Rev Food Sci Food Saf ; 20(6): 5802-5828, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34668316

RESUMO

Rice quality deterioration will cause grievous waste of stored grain and various food safety problems. Gas detection of volatile organic compounds (VOCs) produced by deterioration is a nondestructive detection method to judge rice quality and alleviate rice spoilage. This review discussed the research advance of VOCs detection in terms of nondestructive detection methods of rice quality deterioration, applications of VOCs in grain detection, inspection of characteristic gas produced during rice spoilage, rice deterioration prevention and control, and detection of VOCs released by rice mildew and insect attack. According to the main causes of rice quality deterioration and major sources of VOCs with off-odor generated during rice storage, deterioration can be divided into mold and insect infection. The results of literature manifested that researches mainly focused on the infection of Aspergillus in the mildew process and the attack of certain pests in recent years, thus the research scope was limited. In this paper, the gas detection methods combined with the chemometrics to qualitatively analyze the VOCs, as well as the correlation with the number of colonies and insects were further studied based on the common dominant strains during rice mildew, that is, Aspergillus and Penicillium fungi, and the common pests during storage, that is, Sitophilus oryzae and Rhyzopertha dominica. Furthermore, this paper pointed out that the quantitative determination of characteristic VOCs, the numeration relationship between VOCs and the degree of mildew and insect infestation, the further expansion of detection range, and the application of degraded rice should be the spotlight of future research.


Assuntos
Besouros , Oryza , Compostos Orgânicos Voláteis , Animais , Grão Comestível/química , Insetos , Compostos Orgânicos Voláteis/análise
13.
Lung Cancer ; 160: 111-117, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34482102

RESUMO

OBJECTIVES: Combined therapy should be invested for those patients who are refractory to first-line therapy. Anti-angiogenic agents could enhance tumor immunity response. We designed a phase IB clinical trial and analyzed the effectiveness and safety of anlotinib combined with PD-1inhibitors Camrelizumab for multi-line pretreated and failed advanced NSCLC to explore the synergistic effect of anti-angiogenic agents and immunotherapy. METHODS: All enrolled patients should receive camrelizumab 200 mg every 3 weeks. Eligible patients were randomized successively to three dose cohorts of Anlotinib in a dose escalation clinical setting. Once maximal tolerable dose was established, the primary end point of this study was progression-free survival, overall survival and safety. Risk factor was an exploratory end point. RESULTS: The identified expansion dose for anlotinib was 12 mg. The median PFS of ITT patients was 8.2 months (95% CI, 4.3-12.1 months). And the mOS was 12.7 months (95% CI, 10.2-15.1 months). There was significant difference of mPFS between the 8 mg cohort and the 12 mg cohort (5.6 m vs.11.0 m, p = 0.04). Patients with brain metastasis had a significantly higher risk of death (HR 5.90; 95% CI 2.01-17.30; P = 0.001). Patients whose ECOG was 0 and 1 had a significantly lower risk of death (HR 0.36; 95% CI 0.14-0.91; P = 0.031). CONCLUSIONS: Anlotinib plus camrelizumab had shown promising efficacy and manageable toxicity as a second-line or later-line treatment for NSCLCs, especially in the 12 mg cohorts. Large-scale phase III clinical trials are needed to further explore the rational combination models and biomarkers.


Assuntos
Anticorpos Monoclonais Humanizados/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Neoplasias Pulmonares , Quinolinas , Humanos , Indóis , Neoplasias Pulmonares/tratamento farmacológico , Quinolinas/uso terapêutico
14.
Comput Biol Chem ; 94: 107556, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34384998

RESUMO

The biological activities of harmine have been a much clearer picture in recent years, which include anti-tumor, anti-inflammation and cytotoxic properties. Numerous in vitro and in vivo animal models have confirmed its activities, but its mode of action remains a relative unsolved issue. We therefore investigated harmine for its effects on MMP-3 and the molecular interaction was also simulated. The human glioma cancer cell line, U-87 MG cells, was subjected to different concentrations (1-10 µM) of harmine for 24 h. Methylthiazol tetrazolium (MTT) test, half maximal inhibitory concentration (IC50), western blot analysis, enzyme-linked immunosorbent assay and molecular docking through BIOVIA DiscoveryStudio™ were performed. These results showed that although harmine stimulation in vitro has very little or no effects on MMP-3 expression by U-87 MG cells, the treatment of harmine decreases MMP-3 activity in a dose dependent manner. It was further calculated that 7.9 µM is the IC50 towards MMP-3. Using a molecular dynamic simulation approach, we identified the N2, methyl of C1 and benzene ring of harmine interact with Zn2+ (2.4 Å), His205 (2.4 Å) and His211 (2.4 Å) as well as Val163 (2.7 Å) at the active site of MMP-3, respectively, and thus conferred a striking specific binding advantage. Taken altogether, the present study evidences that harmine acts as an MMP-3 inhibitor specially targeting the enzymatic active site and possibly efficiently ameliorates MMP-3-driven malignant and inflammatory diseases.


Assuntos
Antineoplásicos/farmacologia , Inibidores Enzimáticos/farmacologia , Harmina/farmacologia , Metaloproteinase 3 da Matriz/metabolismo , Simulação de Acoplamento Molecular , Antineoplásicos/química , Antineoplásicos/isolamento & purificação , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Inibidores Enzimáticos/química , Inibidores Enzimáticos/isolamento & purificação , Harmina/química , Harmina/isolamento & purificação , Humanos , Células Tumorais Cultivadas
15.
ACS Appl Mater Interfaces ; 13(34): 40502-40512, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34415140

RESUMO

Simply mixing several lithium salts in one electrolyte to obtain blended salt electrolytes has been demonstrated as a promising strategy to formulate advanced electrolytes for lithium metal batteries (LMBs) and lithium-ion batteries (LIBs). In this study, we report the use of dual-salt electrolytes containing lithium hexafluorophosphate (LiPF6) and lithium difluorophosphate (LiDFP) in ethylene carbonate/ethyl methyl carbonate (EC/EMC) mixture and tested them in layered high-nickel LIB cells. LiNi0.94Co0.06O2 was synthesized through a coprecipitation method and was used as a representative high-nickel cathode for the U.S. DOE realizing next-generation cathode (RNGC) deep dive program. The ionic conductivity of dual-salt electrolytes can be maintained by controlling the amount of LiDFP. Techniques including 1H Nuclear Magnetic Resonance (NMR), X-ray photoelectron spectroscopy (XPS), inductively coupled plasma-mass spectrometry (ICP-MS), and differential voltage analysis (DVA) were used to understand the improved performance. The multifaceted benefits of using the dual-salt electrolytes include (1) reduced transesterification, (2) formation of a stable cathode electrolyte interface, and (3) mitigation of cathode degradation at high voltages, especially stabilization of oxide particles during the H2 ↔ H3 transformation.

16.
J Gastroenterol Hepatol ; 36(12): 3429-3437, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34258777

RESUMO

BACKGROUND AND AIM: Regorafenib is a potent multikinase inhibitor for the second-line targeted therapy against hepatocellular carcinoma (HCC); however, drug resistance is emerging in clinical settings. Although cancer stem cells (CSCs) are considered as key determinate of drug sensitivity, it remains unclear how CSCs may communicate with the differentiated counterparts (non-CSC) to dictate therapeutic efficacy. Therefore, we sought to investigate the regorafenib resistance mechanism of CSCs in HCC. METHODS: We used sphere formation and soft agar colony formation assays to evaluate the stemness capacity of cancer cells. Cell viability assay was performed to detect the sensitivity of cancer cells to regorafenib. Real-time quantitative polymerase chain reaction and western blot were used to analyze gene expression. Mouse xenograft tumor model was performed to assess Regorafenib sensitivity in vivo. RESULTS: Exosomes are highly enriched in CSC supernatant compared with that of non-CSC, and RAB27A mediates exosome secretion from CSCs to maintain stem-like phenotype and regorafenib insensitivity. Moreover, exosomes released by CSCs upregulate the expression of Nanog in non-CSC, while depleting Nanog sensitizes non-CSC to regorafenib in the presence of CSC exosomes. Consistently, analysis of TCGA datasets reveals that RAB27A expression tightly correlates with Nanog in HCC tissues. More importantly, depletion of RAB27A downregulates Nanog expression and sensitizes cancer cells to regorafenib in nude mice. CONCLUSIONS: Our findings suggest that CSCs release exosomes in a RAB27A-dependent manner to induce Nanog expression and regorafenib resistance in differentiated cells, targeting this exosome signaling between distinct cellular subsets may be a potential therapeutic strategy for HCC patients.


Assuntos
Carcinoma Hepatocelular , Resistencia a Medicamentos Antineoplásicos , Neoplasias Hepáticas , Proteína Homeobox Nanog , Proteínas rab27 de Ligação ao GTP , Animais , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Exossomos/metabolismo , Expressão Gênica , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Camundongos , Camundongos Nus , Proteína Homeobox Nanog/genética , Células-Tronco Neoplásicas/metabolismo , Compostos de Fenilureia/farmacologia , Piridinas/farmacologia , Proteínas rab27 de Ligação ao GTP/genética
17.
Front Immunol ; 12: 683332, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34093586

RESUMO

Interleukin-35 (IL-35) is a heterodimeric cytokine composed of Epstein-Barr virus-induced gene 3 (EBI3) and IL-12p35 that has recently been shown to play diverse and important roles in the tumor microenvironment (TME). Owing to its immunosuppressive activity and ability to promote tumor growth and progression, IL-35 is widely recognized as a key mediator of TME status. Immune cells are key mediators of diverse tumor-related phenotypes, and immunosuppressive cytokines such as IL-35 can promote tumor growth and metastasis in TME. These influences should be considered together. Since tumor immunotherapy based on immune checkpoint blockade remains ineffective in many patients due to tumoral resistance, a new target or efficacy enhancing factor is urgently needed. Suppressing IL-35 production and activity has been demonstrated as an effective factor that inhibits tumor cells viability, and further investigation of this cytokine is warranted. However, the mechanistic basis for IL-35-mediated regulation of immune cells in the TME remains to be fully clarified. In the present review, we explore the roles of IL-35 in regulating immune cells within the TME. In addition, we highlight IL-35 as a specific immunological target and discuss its possible relevance in the context of immunotherapy. Lastly, we sought to summarize potential future research directions that may guide the advancement of current understanding regarding the role of this important cytokine as a regulator of oncogenesis.


Assuntos
Imunidade , Interleucinas/metabolismo , Neoplasias/imunologia , Neoplasias/metabolismo , Microambiente Tumoral/imunologia , Animais , Comunicação Celular , Citocinas/metabolismo , Gerenciamento Clínico , Progressão da Doença , Suscetibilidade a Doenças , Humanos , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Neoplasias/etiologia , Neoplasias/patologia , Macrófagos Associados a Tumor/imunologia , Macrófagos Associados a Tumor/metabolismo , Macrófagos Associados a Tumor/patologia
18.
Cell Oncol (Dordr) ; 44(5): 1019-1034, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34109546

RESUMO

BACKGROUND: ARID1A is an essential subunit of SWI/SNF chromatin remodeling complexes. ARID1A gene mutations and loss of ARID1A expression have been observed in a variety of cancers, and to be correlated with invasion, immune escape and synthetic lethality. As yet, however, the biological effect of ARID1A expression and its role in the prognosis of lung adenocarcinoma (LUAD) patients have remained unclear. In this study we aimed to further elucidate the role of ARID1A expression in LUAD in vitro and in vivo and to assess its effect on the clinical prognosis of LUAD patients. METHODS: ARID1A expression was detected by IHC in tissue samples from LUAD patients. After regular culturing of LUAD cell lines and constructing stable ARID1A knockdown lines, wound healing and Transwell assays were used to assess the role of ARID1A in cell migration and invasion. The effect of ARID1A knockdown on metastasis was verified in vivo. Western blotting was used to examine the expression of target proteins. Univariate and multivariate analyses were performed to assess survival and to provide variables for nomogram construction. In addition, we used the "rms" package to construct a prognostic nomogram based on a Cox regression model. RESULTS: We found that ARID1A expression serves as an effective prognostic marker for LUAD patients. Loss of ARID1A expression correlated with a poor prognosis, as verified with a nomogram based on a Cox regression model. In addition, we found that ARID1A knockdown promoted LUAD cell proliferation, migration and invasion in vitro and enhanced LUAD metastasis in vivo by activating the Akt signaling pathway. CONCLUSIONS: Our data indicate that loss of ARID1A expression promotes LUAD metastasis and predicts a poor prognosis in LUAD patients.


Assuntos
Adenocarcinoma de Pulmão/genética , Biomarcadores Tumorais/genética , Proteínas de Ligação a DNA/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares/genética , Mutação , Fatores de Transcrição/genética , Células A549 , Adenocarcinoma de Pulmão/metabolismo , Adenocarcinoma de Pulmão/patologia , Animais , Biomarcadores Tumorais/metabolismo , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Proteínas de Ligação a DNA/metabolismo , Feminino , Humanos , Imuno-Histoquímica , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Camundongos Endogâmicos BALB C , Camundongos Nus , Camundongos SCID , Metástase Neoplásica , Nomogramas , Prognóstico , Fatores de Transcrição/metabolismo , Transplante Heterólogo
19.
Opt Express ; 29(6): 8312-8322, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33820279

RESUMO

Pure quartic soliton (PQS) is a new class of solitons demonstrated in recent years and provides innovations in nonlinear optics and its applications. Generating PQSs in micro-cavities offers a novel way to achieve coherent microcombs, presenting a promising application potential. Here we numerically investigate the PQS generation in a dispersion-engineered aluminum nitride (AlN) micro-cavity. To support PQS, a well-designed shallow-trench waveguide structure is adopted, which is feasible to be fabricated. The structure exhibits a dominant fourth-order dispersion reaching up to -5.35×10-3 ps4/km. PQSs can be generated in this AlN micro-cavity in the presence of all-order-dispersion and stimulated Raman scattering. Spectral recoil and soliton self-frequency shift are observed in the PQS spectrum. Furthermore, we find that due to the narrow Raman gain spectrum of crystalline AlN, the PQS evolves directly to chaos rather than turning into a breather. The threshold pump power with which the PQS turns into chaos is also theoretically calculated, which squares with the simulation results.

20.
Mol Cell Biochem ; 476(3): 1455-1465, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33389496

RESUMO

Melanoma ranks second in aggressive tumors, and the occurrence of metastasis in melanoma results in a persistent drop in the survival rate of patients. Therefore, it is very necessary to find a novel therapeutic method for treating melanoma. It has been reported that lncRNA XIST could promote the tumorigenesis of melanoma. However, the mechanism by which lncRNA XIST regulates the progression of melanoma remains unclear. The proliferation of A375 cells was measured by clonal formation. Cell viability was detected by MTT assay. Flow cytometry was performed to detect cell apoptosis and cycle. The level of GINS2, miR-23a-3p, and lncRNA XIST was investigated by qRT-PCR. Protein level was detected by Western blot, and the correctness of prediction results was confirmed by Dual luciferase. In present study, GINS2 and lncRNA XIST were overexpressed in melanoma, while miR-23a-3p was downregulated. Silencing of GINS2 or overexpression of miR-23a-3p reversed cell growth and promoted apoptosis in A375 cells. Mechanically, miR-23a-3p directly targeted GINS2, and XIST regulated GINS2 level though mediated miR-23a-3p. Moreover, XIST exerted its function on cell proliferation, cell viability, and promoted the cell apoptosis of A375 cells though miR-23a-3p/GINS2 axis. LncRNA XIST significantly promoted the tumorigenesis of melanoma via sponging miR-23a-3p and indirectly targeting GINS2, which can be a potential new target for treating melanoma.


Assuntos
Apoptose , Proteínas Cromossômicas não Histona/biossíntese , Regulação Neoplásica da Expressão Gênica , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , Ciclo Celular , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Sobrevivência Celular , Regulação para Baixo , Regulação da Expressão Gênica , Inativação Gênica , Células HEK293 , Humanos , Melanócitos/metabolismo , Melanoma/metabolismo , MicroRNAs/genética , Transdução de Sinais , Sais de Tetrazólio/farmacologia , Tiazóis/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA