Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell ; 186(24): 5394-5410.e18, 2023 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-37922901

RESUMO

Parkinson's disease (PD) is a debilitating neurodegenerative disorder. Its symptoms are typically treated with levodopa or dopamine receptor agonists, but its action lacks specificity due to the wide distribution of dopamine receptors in the central nervous system and periphery. Here, we report the development of a gene therapy strategy to selectively manipulate PD-affected circuitry. Targeting striatal D1 medium spiny neurons (MSNs), whose activity is chronically suppressed in PD, we engineered a therapeutic strategy comprised of a highly efficient retrograde adeno-associated virus (AAV), promoter elements with strong D1-MSN activity, and a chemogenetic effector to enable precise D1-MSN activation after systemic ligand administration. Application of this therapeutic approach rescues locomotion, tremor, and motor skill defects in both mouse and primate models of PD, supporting the feasibility of targeted circuit modulation tools for the treatment of PD in humans.


Assuntos
Terapia Genética , Doença de Parkinson , Animais , Humanos , Camundongos , Corpo Estriado/metabolismo , Levodopa/uso terapêutico , Levodopa/genética , Neurônios/metabolismo , Doença de Parkinson/genética , Doença de Parkinson/terapia , Primatas , Receptores de Dopamina D1/metabolismo , Modelos Animais de Doenças
2.
J Ethnopharmacol ; 316: 116749, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37295575

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Fructus Tribuli (FT), a traditional Chinese medicinal herbal, has been used for the clinical treatment of cardiovascular diseases for many years and affects vascular endothelial dysfunction (ED) in patients with hypertension. AIM OF THE STUDY: This study aimed to demonstrate the pharmacodynamic basis and mechanisms of FT for the treatment of ED. MATERIALS AND METHODS: The present study used ultra-high-performance liquid chromatography coupled with quadruple-time-of-flight mass spectrometry (UHPLC-Q-TOF/MS) to analyze and identify the chemical components of FT. The active components in blood were determined after the oral administration of FT by comparative analysis to blank plasma. Then, based on the active components in vivo, network pharmacology was performed to predict the potential targets of FT in treating ED. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were also performed, and component-target-pathway networks were constructed. Interactions between the major active components and main targets were verified by molecular docking. Moreover, spontaneously hypertensive rats (SHRs) were divided into the normal, model, valsartan, low-dose FT, medium-dose FT, and high-dose FT experimental groups. In pharmacodynamic verification studies, treatment effects on blood pressure, serum markers (nitric oxide [NO], endothelin-1 [ET-1,], and angiotensin Ⅱ [Ang Ⅱ)]) of ED, and endothelial morphology of the thoracic aorta were evaluated and compared between groups. Finally, the PI3K/AKT/eNOS pathway was analyzed by quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot of the thoracic aorta of rats in each group to detect the mRNA expression of PI3K, AKT, and eNOS and the protein expression of PI3K, AKT, p-AKT, eNOS, and p-eNOS. RESULTS: A total of 51 chemical components were identified in FT, and 49 active components were identified in rat plasma. Thirteen major active components, 22 main targets, and the PI3K/AKT signaling pathway were screened by network pharmacology. The animal experiment results showed that FT reduced systolic blood pressure and ET-1 and Ang Ⅱ levels and increased NO levels in SHRs to varying degrees. The therapeutic effects were positively correlated with the oral dose of FT. Hematoxylin-eosin (HE) staining confirmed that FT could alleviate the pathological damage of the vascular endothelium. qRT-PCR and Western blot analysis confirmed that up-regulated expression of the PI3K/AKT/eNOS signaling pathway could improve ED. CONCLUSIONS: In this study, the material basis of FT was comprehensively identified, and the protective effect on ED was confirmed. FT had a treatment effect on ED through multi-component, multi-target, and multi-pathways. It also played a role by up-regulating the PI3K/AKT/eNOS signaling pathway.


Assuntos
Medicamentos de Ervas Chinesas , Hipertensão , Animais , Ratos , Simulação de Acoplamento Molecular , Farmacologia em Rede , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Hipertensão/tratamento farmacológico , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico
3.
Acta Pharm Sin B ; 13(4): 1686-1698, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37139408

RESUMO

Triple-negative breast cancer (TNBC) is a nasty disease with extremely high malignancy and poor prognosis. Annexin A3 (ANXA3) is a potential prognosis biomarker, displaying an excellent correlation of ANXA3 overexpression with patients' poor prognosis. Silencing the expression of ANXA3 effectively inhibits the proliferation and metastasis of TNBC, suggesting that ANXA3 can be a promising therapeutic target to treat TNBC. Herein, we report a first-in-class ANXA3-targeted small molecule (R)-SL18, which demonstrated excellent anti-proliferative and anti-invasive activities to TNBC cells. (R)-SL18 directly bound to ANXA3 and increased its ubiquitination, thereby inducing ANXA3 degradation with moderate family selectivity. Importantly, (R)-SL18 showed a safe and effective therapeutic potency in a high ANXA3-expressing TNBC patient-derived xenograft model. Furthermore, (R)-SL18 could reduce the ß-catenin level, and accordingly inhibit the Wnt/ß-catenin signaling pathway in TNBC cells. Collectively, our data suggested that targeting degradation of ANXA3 by (R)-SL18 possesses the potential to treat TNBC.

4.
Eur J Med Chem ; 235: 114271, 2022 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-35339837

RESUMO

A series of pyrimidine-bridged CA-4 derivatives (9a-u) targeting colchicine site were designed, synthesized and evaluated. Among them, the most potent compound 9j showed favorable anti-proliferative activities against a panel of cervical cancer cells (IC50 = 0.09-0.15 µM) and tubulin polymerization inhibitory activity (IC50 = 4.6 µM). Meanwhile, compound 9j exhibited superior anti-proliferative activity against cisplatin-resistant HeLa/DDP and SiHa/DDP cells than CA-4 and cisplatin. Particularly, the combination of 30 mg/kg 9j with 3 mg/kg cisplatin resulted in a 73% tumor suppression rate in HeLa xenograft model and reduced the renal dysfunction and injuries caused by high doses of cisplatin. Moreover, 9j was highly selective over the normal human proximal tubular cells (HK-2 cells, IC50 = 188 µM). Mechanism studies revealed that 9j could disrupt tubulin polymerization and vasculature, arrest the cell cycle at the G2/M phase, induce apoptosis, and suppress clonogenesis and migration in HeLa cells. Further druggability characterization in terms of pharmacokinetic profile, acute toxicity, and hERG inhibition confirmed 9j could serve as a promising and safe combination agent for cervical cancer therapy.


Assuntos
Antineoplásicos , Neoplasias do Colo do Útero , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células , Cisplatino/farmacologia , Desenho de Fármacos , Feminino , Células HeLa , Humanos , Estrutura Molecular , Pirimidinas , Relação Estrutura-Atividade , Tubulina (Proteína)/metabolismo , Moduladores de Tubulina/farmacologia , Neoplasias do Colo do Útero/tratamento farmacológico
5.
Bioorg Med Chem Lett ; 29(19): 126577, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31421967

RESUMO

Bromodomain-containing protein 4 (BRD4), a member of the bromodomain and extra-terminal (BET) family, has been recognized as an attractive candidate target for the treatment targeting gene transcription in several types of cancers. In this study, two types of novel compounds were designed, synthesized and evaluated as BRD4 inhibitors. Therein, pyridone derivatives were more effective against BRD4 protein and human leukemia cell lines MV4-11. Among them, compounds 11d, 11e and 11f were the most potential ones with IC50 values of 0.55 µM, 0.86 µM and 0.80 µM against BRD4, and exhibited remarkable antiproliferative activities against MV4-11 cells with IC50 values of 0.19 µM, 0.32 µM and 0.12 µM, respectively. Moreover, in western blot assay, compound 11e induced down-regulation of C-Myc, which is a significant downstream gene of BRD4. Cell cycle analysis assay also showed that compound 11e could block MV4-11 cells at G0/G1 phase. Taken together, our results suggested that compound 11e and its derivatives were a class of novel structural potential BRD4 inhibitors and could serve as lead compounds for further exploration.


Assuntos
Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Proteínas de Ciclo Celular/antagonistas & inibidores , Desenho de Fármacos , Isoxazóis/química , Leucemia/tratamento farmacológico , Piridonas/química , Fatores de Transcrição/antagonistas & inibidores , Ciclo Celular , Humanos , Proteínas Proto-Oncogênicas c-myc/antagonistas & inibidores , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA