Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
1.
Food Chem Toxicol ; 132: 110693, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31336132

RESUMO

Thyroid hormone, L-thyroxine (T4), induces inflammatory genes expressions and promotes cancer growth. It also induces expression of the checkpoint programmed death-ligand 1 (PD-L1), which plays a vital role in cancer progression. On the other hand, resveratrol inhibits inflammatory genes expressions. Moreover, resveratrol increases nuclear inducible cyclooxygenase (COX)-2 accumulation, complexes with p53, and induces p53-dependent anti-proliferation. In this study, we investigated the effect of T4 on resveratrol-induced anti-proliferation in oral cancer. T4 increased the expression and cytoplasmic accumulation of PD-L1. Increased expressions of pro-inflammatory genes, interleukin (IL)-1ß and transforming growth factor (TGF)-ß1, were shown to stimulate PD-L1 expression. T4 stimulated pro-inflammatory and proliferative genes expressions, and oral cancer cells proliferation. In contrast, resveratrol inhibited those genes and activated anti-proliferative genes. T4 retained resveratrol-induced COX-2 in cytoplasm and prevented COX-2 nuclear accumulation when resveratrol treated cancer cells. A specific signal transducer and activator of transcription 3 (STAT3) inhibitor, S31-201, blocked T4-induced inhibition and restored resveratrol-induced nuclear COX-2 accumulation. By inhibiting the T4-activated STAT3 signal transduction axis with S31-201, resveratrol was able to sequentially reestablish COX-2/p53-dependent gene expressions and anti-proliferation. These findings provide a novel understanding of the inhibitory effects of T4 on resveratrol-induced anticancer properties via the sequential expression of PD-L1 and inflammatory genes.


Assuntos
Proliferação de Células/efeitos dos fármacos , Citocinas/genética , Expressão Gênica/efeitos dos fármacos , Mediadores da Inflamação/metabolismo , Neoplasias Bucais/patologia , Resveratrol/farmacologia , Tiroxina/farmacologia , Linhagem Celular Tumoral , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/enzimologia , Ciclo-Oxigenase 2/metabolismo , Humanos , Neoplasias Bucais/metabolismo , Fator de Transcrição STAT3/metabolismo
2.
Front Pharmacol ; 9: 807, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30116189

RESUMO

Traditional herb medicine, golden thread (Anoectochilus formosanus Hayata) has been used to treat various diseases. Hyperglycemia induces generation of reactive oxygen species (ROS) and enhancement of oxidative stress which are risk factors for cancer progression and metastasis. In this study, we evaluated hypoglycemic effect of A. formosanus extracts (AFEs) in an inducible hyperglycemia animal model and its capacity of free-radical scavenging to establish hyperglycemia-related carcinogenesis. AFE reduced blood glucose in hyperglycemic mice while there was no change in control group. The incremental area under blood glucose response curve was decreased significantly in hyperglycemic mice treated with AFE in a dose-dependent manner. AFE and metformin at the same administrated dose of 50 mg/kg showed similar effect on intraperitoneal glucose tolerance test in hyperglycemic mice. Free-radical scavenger capacity of AFE was concentration dependent and 200 µg/ml of AFE was able to reduce more than 41% of the free radical. Treatment of cancer cells with AFE inhibited constitutive PD-L1 expression and its protein accumulation. It also induced expression of pro-apoptotic genes but inhibited proliferative and metastatic genes. In addition, it induced anti-proliferation in cancer cells. The results suggested that AFE not only reduced blood glucose concentration as metformin but also showed its potential use in cancer immune chemoprevention/therapy via hypoglycemic effect, ROS scavenging and PD-L1 suppression.

3.
Horm Cancer ; 9(5): 349-360, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30027502

RESUMO

Cancer resistance to chemotherapeutic agents is a major issue in the management of cancer patients. Overexpression of the ribonucleotide reductase regulatory subunit M2 (RRM2) has been associated with aggressive cancer behavior and chemoresistance. Nano-diamino-tetrac (NDAT) is a nanoparticulate derivative of tetraiodothyroacetic acid (tetrac), which exerts anticancer properties via several mechanisms and downregulates RRM2 gene expression in cancer cells. Resveratrol is a stilbenoid phytoalexin which binds to a specific site on the cell surface integrin αvß3 to trigger cancer cell death via nuclear translocation of COX-2. Here we report that resveratrol paradoxically activates RRM2 gene expression and protein translation in colon cancer cells. This unanticipated effect inhibits resveratrol-induced COX-2 nuclear accumulation. RRM2 downregulation, whether achieved by RNA interference or treatment with NDAT, enhanced resveratrol-induced COX-2 gene expression and nuclear uptake which is essential to integrin αvß3-mediated-resveratrol-induced antiproliferation in cancer cells. Elsewhere, NDAT downregulated resveratrol-induced RRM2 expression in vivo but potentiated the anticancer effect of the stilbene. These findings suggest that RRM2 appears as a cancer cell defense mechanism which can hinder the anticancer effect of the stilbene via the integrin αvß3 axis. Furthermore, the antagonistic effect of RRM2 against resveratrol is counteracted by the administration of NDAT.


Assuntos
Anti-Inflamatórios não Esteroides/uso terapêutico , Neoplasias Colorretais/genética , Poliglactina 910/uso terapêutico , Resveratrol/uso terapêutico , Tiroxina/análogos & derivados , Animais , Anti-Inflamatórios não Esteroides/farmacologia , Linhagem Celular Tumoral , Neoplasias Colorretais/patologia , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Nus , Poliglactina 910/farmacologia , Resveratrol/farmacologia , Tiroxina/farmacologia , Tiroxina/uso terapêutico , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Endocr Relat Cancer ; 25(3): 279-293, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29255096

RESUMO

The molecular pathogenesis of colorectal cancer encompasses the activation of several oncogenic signaling pathways that include the Wnt/ß-catenin pathway and the overexpression of high mobility group protein A2 (HMGA2). Resveratrol - the polyphenolic phytoalexin - binds to integrin αvß3 to induce apoptosis in cancer cells via cyclooxygenase 2 (COX-2) nuclear accumulation and p53-dependent apoptosis. Tetraiodothyroacetic acid (tetrac) is a de-aminated derivative of l-thyroxine (T4), which - in contrast to the parental hormone - impairs cancer cell proliferation. In the current study, we found that tetrac promoted resveratrol-induced anti-proliferation in colon cancer cell lines, in primary cultures of colon cancer cells, and in vivo The mechanisms implicated in this action involved the downregulation of nuclear ß-catenin and HMGA2, which are capable of compromising resveratrol-induced COX-2 nuclear translocation. Silencing of either ß-catenin or HMGA2 promoted resveratrol-induced anti-proliferation and COX-2 nuclear accumulation which is essential for integrin αvß3-mediated-resveratrol-induced apoptosis in cancer cells. Concurrently, tetrac enhanced nuclear abundance of chibby family member 1, the nuclear ß-catenin antagonist, which may further compromise the nuclear ß-catenin-dependent gene expression and proliferation. Taken together, these results suggest that tetrac targets ß-catenin and HMGA2 to promote resveratrol-induced-anti-proliferation in colon cancers, highlighting its potential in anti-cancer combination therapy.


Assuntos
Antineoplásicos/farmacologia , Neoplasias do Colo/metabolismo , Proteína HMGA2/metabolismo , Resveratrol/farmacologia , Tiroxina/análogos & derivados , beta Catenina/metabolismo , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Sinergismo Farmacológico , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Proteína HMGA2/genética , Humanos , Camundongos Nus , Tiroxina/farmacologia , beta Catenina/genética
5.
Ann N Y Acad Sci ; 1403(1): 101-108, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28856691

RESUMO

Periodontitis is an inflammatory disease of the supporting tissues of the teeth induced by periodontopathic bacteria that results in the progressive destruction of periodontal tissues. Treatment of periodontitis is painful and time-consuming. Recently, herbal medicines have been considered for use in treating inflammation-related diseases, including periodontitis. Resveratrol and its derivative 2,3,5,4'-tetrahydroxystilbene-2-O-ß-glucoside (THSG), a polyphenol extracted from Polygonum multiflorum, have anti-inflammatory properties and other medical benefits. Here, we highlight the importance of resveratrol and its glycosylated derivative as possible complementary treatments for periodontitis and their potential for development as innovative therapeutic strategies. In addition, we present evidence and discuss the mechanisms of action of resveratrol and THSG on periodontitis, focusing on Porphyromonas gingivalis-induced inflammatory responses in human gingival fibroblasts and animal modeling of ligature-induced periodontitis. We also illuminate the signal transduction pathways and the cytokines involved.


Assuntos
Anti-Inflamatórios/uso terapêutico , Glucosídeos/uso terapêutico , Periodontite/tratamento farmacológico , Estilbenos/uso terapêutico , Fibroblastos/efeitos dos fármacos , Glucosídeos/farmacologia , Humanos , Porphyromonas gingivalis/efeitos dos fármacos , Resveratrol , Estilbenos/farmacologia , Resultado do Tratamento
7.
Oncotarget ; 8(15): 24237-24249, 2017 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-27458161

RESUMO

Ovarian cancer is the leading cause of death in gynecological diseases. Thyroid hormone promotes proliferation of ovarian cancer cells via cell surface receptor integrin αvß3 that activates extracellular regulated kinase (ERK1/2). However, the mechanisms are still not fully understood. Thyroxine (T4) at a physiologic total hormone concentration (10-7 M) significantly increased proliferating cell nuclear antigen (PCNA) abundance in these cell lines, as did 3, 5, 3'-triiodo-L-thyronine (T3) at a supraphysiologic concentration. Thyroid hormone (T4 and T3) treatment of human ovarian cancer cells resulted in enhanced activation of the Ras/MAPK(ERK1/2) signal transduction pathway. An MEK inhibitor (PD98059) blocked hormone-induced cell proliferation but not ER phosphorylation. Knock-down of either integrin αv or ß3 by RNAi blocked thyroid hormone-induced phosphorylation of ERK1/2. We also found that thyroid hormone causes elevated phosphorylation and nuclear enrichment of estrogen receptor α (ERα). Confocal microscopy indicated that both T4 and estradiol (E2) caused nuclear translocation of integrin αv and phosphorylation of ERα. The specific ERα antagonist (ICI 182,780; fulvestrant) blocked T4-induced ERK1/2 activation, ERα phosphorylation, PCNA expression and proliferation. The nuclear co-localization of integrin αv and phosphorylated ERα was inhibited by ICI. ICI time-course studies indicated that mechanisms involved in T4- and E2-induced nuclear co-localization of phosphorylated ERα and integrin αv are dissimilar. Chromatin immunoprecipitation results showed that T4-induced binding of integrin αv monomer to ERα promoter and this was reduced by ICI. In summary, thyroid hormone stimulates proliferation of ovarian cancer cells via crosstalk between integrin αv and ERα, mimicking functions of E2.


Assuntos
Receptor alfa de Estrogênio/metabolismo , Integrina alfaVbeta3/metabolismo , Neoplasias Ovarianas/metabolismo , Transdução de Sinais , Hormônios Tireóideos/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Feminino , Humanos , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Neoplasias Ovarianas/patologia , Ligação Proteica
8.
Mediators Inflamm ; 2016: 6953459, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27504055

RESUMO

Periodontitis, a chronic infection by periodontopathic bacteria, induces uncontrolled inflammation, which leads to periodontal tissue destruction. 2,3,5,4'-Tetrahydroxystilbene-2-O-beta-glucoside (THSG), a polyphenol extracted from Polygoni Multiflori, reportedly has anti-inflammatory properties. In this study, we investigated the mechanisms of THSG on the Porphyromonas gingivalis-induced inflammatory responses in human gingival fibroblasts and animal modeling of ligature-induced periodontitis. Human gingival fibroblast cells were treated with lipopolysaccharide (LPS) extracted from P. gingivalis in the presence of resveratrol or THSG to analyze the expression of TNF-α, IL-1ß, and IL-6 genes. Increased AMP-activated protein kinase (AMPK) activation and SirT1 expression were induced by THSG. Treatment of THSG decreased the expression of LPS-induced inflammatory cytokines, enhanced AMPK activation, and increased the expression of SirT1. In addition, it suppressed the activation of NF-κB when cells were stimulated with P. gingivalis LPS. The anti-inflammatory effect of THSG and P. Multiflori crude extracts was reproduced in ligature-induced periodontitis animal modeling. In conclusion, THSG inhibited the inflammatory responses of P. gingivalis-stimulated human gingival fibroblasts and ameliorated ligature-induced periodontitis in animal model.


Assuntos
Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Gengiva/citologia , Glucosídeos/farmacologia , Glucosídeos/uso terapêutico , Periodontite/tratamento farmacológico , Polygonaceae/química , Estilbenos/farmacologia , Estilbenos/uso terapêutico , Adulto , Animais , Células Cultivadas , Medicamentos de Ervas Chinesas/química , Feminino , Fibroblastos/efeitos dos fármacos , Gengiva/efeitos dos fármacos , Gengiva/patologia , Glucosídeos/química , Humanos , Masculino , Ratos , Ratos Sprague-Dawley , Estilbenos/química , Adulto Jovem
9.
Oncotarget ; 7(38): 61930-61944, 2016 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-27542280

RESUMO

Tn antigen (GalNAc-α-O-Ser/Thr), a mucin-type O-linked glycan, is a well-established cell surface marker for tumors and its elevated levels have been correlated with cancer progression and prognosis. There are also reports that Tn is elevated in inflammatory tissues. However, the molecular mechanism for its elevated levels in cancer and inflammation is unclear. In the current studies, we have explored the possibility that cytokines may be one of the common regulatory molecules for elevated Tn levels in both cancer and inflammation. We showed that the Tn level is elevated by the conditioned media of HrasG12V-transformed-BEAS-2B cells. Similarly, the conditioned media obtained from LPS-stimulated monocytes also elevated Tn levels in primary human gingival fibroblasts, suggesting the involvement of cytokines and/or other soluble factors. Indeed, purified inflammatory cytokines such as TNF-α and IL-6 up-regulated Tn levels in gingival fibroblasts. Furthermore, TNF-α was shown to down-regulate the COSMC gene as evidenced by reduced levels of the COSMC mRNA and protein, as well as hypermethylation of the CpG islands of the COSMC gene promoter. Since Cosmc, a chaperone for T-synthase, is known to negatively regulate Tn levels, our results suggest elevated Tn levels in cancer and inflammation may be commonly regulated by the cytokine-Cosmc signaling axis.


Assuntos
Antígenos Glicosídicos Associados a Tumores/metabolismo , Regulação Neoplásica da Expressão Gênica , Interleucina-6/metabolismo , Chaperonas Moleculares/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Neoplasias da Mama/imunologia , Neoplasias da Mama/metabolismo , Brônquios/metabolismo , Linhagem Celular , Ilhas de CpG , Meios de Cultivo Condicionados , Metilação de DNA , Progressão da Doença , Feminino , Fibroblastos/metabolismo , Genes ras , Gengiva/citologia , Humanos , Inflamação , Masculino , Prognóstico , Regiões Promotoras Genéticas , Neoplasias da Próstata/imunologia , Neoplasias da Próstata/metabolismo , Transdução de Sinais , Neoplasias do Colo do Útero/imunologia , Neoplasias do Colo do Útero/metabolismo
10.
Oncotarget ; 7(19): 27641-54, 2016 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-27050378

RESUMO

Obesity results in increased secretion of cytokines from adipose tissue and is a risk factor for various cancers. Leptin is largely produced by adipose tissue and cancer cells. It induces cell proliferation and may serve to induce various cancers. OB3-leptin peptide (OB3) is a new class of functional leptin peptide. However, its mitogenic effect has not been determined. In the present study, because of a close link between leptin and the hypothalamic-pituitary-thyroid axis, OB3 was compared with leptin in different thyroid cancer cells for gene expression, proliferation and invasion. Neither agent stimulated cell proliferation. Leptin stimulated cell invasion, but reduced adhesion in anaplastic thyroid cancer cells. Activated ERK1/2 and STAT3 contributed to leptin-induced invasion. In contrast, OB3 did not affect expression of genes involved in proliferation and invasion. In vivo studies in the mouse showed that leptin, but not OB3, significantly increased circulating levels of thyrotropin (TSH), a growth factor for thyroid cancer. In summary, OB3 is a derivative of leptin that importantly lacks the mitogenic effects of leptin on thyroid cancer cells.


Assuntos
Leptina/farmacologia , Fragmentos de Peptídeos/farmacologia , Neoplasias da Glândula Tireoide/metabolismo , Neoplasias da Glândula Tireoide/patologia , Animais , Metabolismo dos Carboidratos/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Progressão da Doença , Humanos , Leptina/metabolismo , Leptina/farmacocinética , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Fragmentos de Peptídeos/metabolismo , Distribuição Aleatória , Transdução de Sinais , Neoplasias da Glândula Tireoide/sangue , Neoplasias da Glândula Tireoide/genética , Tireotropina/sangue
11.
Steroids ; 111: 63-70, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26980146

RESUMO

Thyroid hormone induces cancer cell proliferation through its cell surface receptor integrin αvß3. Acting via integrin αvß3, the deaminated T4 analog tetraiodothyroacetic acid (tetrac), and its nanoparticle formulation nano-diamino-tetrac (NDAT) could inhibit cell proliferation and xenograft growth. In this study, we investigated the T4 effects on proliferation in colorectal cancer cell lines based on the proliferation marker expressions at both mRNA and protein levels. The effects of tetrac/NDAT, the monoclonal anti-EGFR antibody cetuximab, and their combinations on colorectal cancer cell proliferation were examined according to the relevant gene expression profiles and cell count analysis. The results showed that T4 significantly enhanced PCNA, Cyclin D1 and c-Myc levels in both K-ras wild type HT-29 and mutant HCT 116 cells. In HCT 116 cells, the combination of NDAT and cetuximab significantly suppressed the mRNA expressions of proliferative genes PCNA, Cyclin D1, c-Myc and RRM2 raised by T4 compared to cetuximab alone. In addition, T4-suppressed mRNA expressions of pro-apoptotic genes p53 and RRM2B could be significantly elevated by the combination of NDAT and cetuximab compared to cetuximab alone. In the K-ras mutant HCT 116 cells, but not in the K-ras wild type COLO 205 cells, the combinations of tetrac/NDAT and cetuximab significantly reduced cell proliferation compared to cetuximab alone. In conclusion, T4 promoted colorectal cancer cell proliferation which could be repressed by tetrac and NDAT. The combinations of tetrac/NDAT and cetuximab potentiated cetuximab actions in K-ras mutant colorectal cancer cells.


Assuntos
Cetuximab/farmacologia , Tiroxina/análogos & derivados , Antineoplásicos/farmacologia , Western Blotting , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/metabolismo , Ciclina D1/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/genética , Genes myc/genética , Células HCT116 , Células HT29 , Humanos , Antígeno Nuclear de Célula em Proliferação/genética , RNA Ribossômico 18S/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Hormônios Tireóideos/farmacologia , Tiroxina/farmacologia
12.
Am J Chin Med ; 44(1): 133-47, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26916919

RESUMO

The root of Polygonum multiflorum (also called He-Shou-Wu in Chinese) is a common herb and medicinal food in Asia used for its anti-aging properties. Our study investigated the therapeutic potential of an extract of the root of Polygonum multiflorum (PME) in allergic asthma by using a mouse model. Feeding of 0.5 and 1 mg/mouse PME inhibited ovalbumin (OVA)-induced allergic asthma symptoms, including airway inflammation, mucus production, and airway hyper-responsiveness (AHR), in a dose-dependent manner. To discern PME's mechanism of action, we examined the profile and cytokine production of inflammatory cells in bronchial alveolar lavage fluid (BALF). We found that eosinophils, the main inflammatory cell infiltrate in the lung of OVA-immunized mice, significantly decreased after PME treatment. Th2 cytokine levels, including interleukin (IL)-4, IL-5, IL-13, eotaxin, and the proinflammatory cytokine tumor necrosis factor (TNF)-[Formula: see text], decreased in PME-treated mice. Elevated mRNA expression of Th2 transcription factor GATA-3 in the lung tissue was also inhibited after oral feeding of PME in OVA-immunized mice. Thus, we conclude that PME produces anti-asthma activity through the inhibition of Th2 cell activation.


Assuntos
Antiasmáticos/farmacologia , Asma/tratamento farmacológico , Fallopia multiflora/química , Fitoterapia , Extratos Vegetais/administração & dosagem , Extratos Vegetais/farmacologia , Administração Oral , Animais , Asma/metabolismo , Asma/patologia , Citocinas/metabolismo , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Feminino , Fator de Transcrição GATA3/metabolismo , Mediadores da Inflamação/metabolismo , Pulmão/metabolismo , Camundongos Endogâmicos BALB C , Muco/metabolismo , Ovalbumina , Raízes de Plantas
13.
Oncotarget ; 6(34): 35866-79, 2015 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-26456774

RESUMO

Dihydrotestosterone (DHT) has been shown to promote breast cancer growth via different mechanisms. In addition to binding to ERα, the DHT membrane receptor exists on integrin αvß3. Resveratrol induces p53-dependent apoptosis via plasma membrane integrin αvß3. Resveratrol and DHT signals are both transduced by activated ERK1/2; however, DHT promotes cell proliferation in cancer cells, whereas resveratrol is pro-apoptotic. In this study, we examined the mechanism by which DHT inhibits resveratrol-induced apoptosis in human ERα positive (MCF-7) and negative (MDA-MB-231) breast cancer cells. DHT inhibited resveratrol-stimulated phosphorylation of Ser-15 of p53 in a concentration-dependent manner. These effects of DHT on resveratrol action were blocked by an ERα antagonist, ICI 182,780, in MCF-7 breast cancer cells. DHT inhibited resveratrol-induced nuclear complex of p53-COX-2 formation which is required p53-dependent apoptosis. ChIP studies of COX-2/p53 binding to DNA and expression of p53-responsive genes indicated that DHT inhibited resveratrol-induced p53-directed transcriptional activity. In addition, DHT did inhibit resveratrol-induced COX-2/p53-dependent gene expression. These results suggest that DHT inhibits p53-dependent apoptosis in breast cancer cells by interfering with nuclear COX-2 accumulation which is essential for stimulation of apoptotic pathways. Thus, the surface receptor sites for resveratrol and DHT are discrete and activate ERK1/2-dependent downstream effects on apoptosis that are distinctive. These studies provide new insights into the antagonizing effects of resveratrol versus DHT, an important step toward better understanding and eventually treating breast cancer. It also indicates the complex pathways by which apoptosis is induced by resveratrol in DHT-depleted and -repleted environments.


Assuntos
Neoplasias da Mama/patologia , Di-Hidrotestosterona/farmacologia , Receptor alfa de Estrogênio/metabolismo , Integrina alfaVbeta3/metabolismo , Estilbenos/antagonistas & inibidores , Estilbenos/farmacologia , Apoptose/efeitos dos fármacos , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Interações Medicamentosas , Feminino , Humanos , Células MCF-7 , Fosforilação , Resveratrol , Transdução de Sinais
14.
Oncotarget ; 5(24): 12891-907, 2014 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-25436977

RESUMO

We have used a perfusion bellows cell culture system to investigate resveratrolinduced anti-proliferation/apoptosis in a human estrogen receptor (ER)-negative breast cancer cell line (MDA-MB-231). Using an injection system to perfuse media with stilbene, we showed resveratrol (0.5 - 100 µM) to decrease cell proliferation in a concentration-dependent manner. Comparison of influx and medium efflux resveratrol concentrations revealed rapid disappearance of the stilbene, consistent with cell uptake and metabolism of the agent reported by others. Exposure of cells to 10 µM resveratrol for 4 h daily × 6 d inhibited cell proliferation by more than 60%. Variable extracellular acid-alkaline conditions (pH 6.8 - 8.6) affected basal cell proliferation rate, but did not alter anti-proliferation induced by resveratrol. Resveratrol-induced gene expression, including transcription of the most up-regulated genes and pro-apoptotic p53-dependent genes, was not affected by culture pH changes. The microarray findings in the context of induction of anti-proliferation with brief daily exposure of cells to resveratrol-and rapid disappearance of the compound in the perfusion system-are consistent with existence of an accessible initiation site for resveratrol actions on tumor cells, e.g., the cell surface receptor for resveratrol described on integrin αvß3.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Estilbenos/farmacologia , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Feminino , Expressão Gênica/efeitos dos fármacos , Humanos , Integrina alfaVbeta3/metabolismo , Resveratrol , Transdução de Sinais
15.
Mol Cell Biol ; 33(20): 4008-16, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23938298

RESUMO

Topoisomerase IIß (Top2ß)-DNA cleavage complexes are known to arrest elongating RNA polymerase II (RNAPII), triggering a proteasomal degradation of the RNAPII large subunit (RNAPII LS) and Top2ß itself as a prelude to DNA repair. Here, we demonstrate that the degradation of Top2ß occurs through a novel ubiquitin-independent mechanism that requires only 19S AAA ATPases and 20S proteasome. Our results suggest that 19S AAA ATPases play a dual role in sensing the Top2ß cleavage complex and coordinating its degradation by 20S proteasome when RNAPII is persistently stalled by the Top2ß protein roadblock. Clarification of this transcription-associated proteasome pathway could shed light on a general role of 19S AAA ATPases in processing tight protein-DNA complexes during transcription elongation.


Assuntos
Adenosina Trifosfatases/genética , Reparo do DNA , DNA Topoisomerases Tipo II/genética , Proteínas de Ligação a DNA/genética , DNA/genética , Complexo de Endopeptidases do Proteassoma/genética , RNA Polimerase II/genética , Elongação da Transcrição Genética , Adenosina Trifosfatases/metabolismo , Animais , DNA/metabolismo , DNA Topoisomerases Tipo II/metabolismo , Proteínas de Ligação a DNA/metabolismo , Embrião de Mamíferos , Fibroblastos/citologia , Fibroblastos/metabolismo , Células HeLa , Humanos , Camundongos , Complexo de Endopeptidases do Proteassoma/metabolismo , Ligação Proteica , RNA Polimerase II/metabolismo , Ubiquitina
16.
Bioorg Med Chem ; 21(15): 4511-20, 2013 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-23787291

RESUMO

A series of macrocyclic biphenyl tetraoxazoles was synthesized. The latter stages of the synthetic approach allowed for the addition of varied N-protected α-amino acids, which were subsequently deprotected and condensed to provide the desired macrocycles. Improved yields could be realized in the macrocyclization step of their synthesis relative to other macrocyclic G-quadruplex stabilizers. These 24-membered macrocycles were evaluated for their ability to stabilize G-quadruplex DNA and for their relative cytotoxicity against human tumor cells. These biphenyl tetraoxazoles were not strong ligands for G-quadruplex DNA relative to other macrocyclic polyoxazoles. This reduced stabilizing potential did correlate with their comparatively lower cytotoxic activity as observed in the human tumor cell lines, RPMI 8402 and KB3-1. These studies provide useful insights into the conformational requirements for the development of selective and more potent G-quadruplex ligands.


Assuntos
Quadruplex G/efeitos dos fármacos , Compostos Macrocíclicos/farmacologia , Oxazóis/química , Oxazóis/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/farmacologia , Compostos de Bifenilo/síntese química , Compostos de Bifenilo/química , Compostos de Bifenilo/farmacologia , Linhagem Celular Tumoral , Humanos , Compostos Macrocíclicos/síntese química , Modelos Moleculares , Estrutura Molecular , Oxazóis/síntese química
17.
J Cell Biochem ; 114(8): 1940-54, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23495037

RESUMO

Ceramide is a member of the sphingolipid family of bioactive molecules demonstrated to have profound, diverse biological activities. Ceramide is a potential chemotherapeutic agent via the induction of apoptosis. Exposure to ceramide activates extracellular-signal-regulated kinases (ERK)1/2- and p38 kinase-dependent apoptosis in human ovarian cancer OVCAR-3 cells, concomitant with an increase in the expression of COX-2 and p53 phosphorylation. Blockade of cyclooxygenase-2 (COX-2) activity by siRNA or NS398 correspondingly inhibited ceramide-induced p53 Ser-15 phosphorylation and apoptosis; thus COX-2 appears at the apex of the p38 kinase-mediated signaling cascade induced by ceramide. Induction of apoptosis by ceramide or resveratrol was inhibited by the endocytosis inhibitor, cytochalasin D (CytD); however, cells exposed to resveratrol showed greater sensitivity than ceramide-treated cells. Ceramide-treated cells underwent a dose-dependent reduction in trans-membrane potential. Although both ceramide and resveratrol induced the expressions of caspase-3 and -7, the effect of inducible COX-2 was different in caspase-7 expression induced by ceramide compared to resveratrol. In summary, resveratrol and ceramide converge on an endocytosis-requiring, ERK1/2-dependent signal transduction pathway and induction of COX-expression as an essential molecular antecedent for subsequent p53-dependent apoptosis. In addition, expressions of caspase-3 and -7 are observed. However, a p38 kinase-dependent signal transduction pathway and change in mitochondrial potential are also involved in ceramide-induced apoptosis.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Apoptose/efeitos dos fármacos , Ceramidas/farmacologia , Ciclo-Oxigenase 2/metabolismo , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Neoplasias Ovarianas/metabolismo , Estilbenos/farmacologia , Apoptose/genética , Caspase 3/genética , Caspase 3/metabolismo , Caspase 7/genética , Caspase 7/metabolismo , Linhagem Celular Tumoral , Ceramidas/genética , Ceramidas/metabolismo , Ciclo-Oxigenase 2/genética , Feminino , Regulação Enzimológica da Expressão Gênica/genética , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Potencial da Membrana Mitocondrial/genética , Nitrobenzenos/farmacologia , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Fosforilação/efeitos dos fármacos , Fosforilação/genética , RNA Interferente Pequeno , Resveratrol , Sulfonamidas/farmacologia , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
18.
J Biol Chem ; 288(10): 7182-92, 2013 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-23344961

RESUMO

Camptothecin (CPT), a topoisomerase (Top) I-targeting drug that stabilizes Top1-DNA covalent adducts, can induce S-phase-specific cytotoxicity due to the arrest of progressing replication forks. However, CPT-induced non-S-phase cytotoxicity is less well characterized. In this study, we have identified topoisomerase IIß (Top2ß) as a specific determinant for CPT sensitivity, but not for many other cytotoxic agents, in non-S-phase cells. First, quiescent mouse embryonic fibroblasts (MEFs) lacking Top2ß were shown to be hypersensitive to CPT with prominent induction of apoptosis. Second, ICRF-187, a Top2 catalytic inhibitor known to deplete Top2ß, specifically sensitized MEFs to CPT. To explore the molecular basis for CPT hypersensitivity in Top2ß-deficient cells, we found that upon CPT exposure, the RNA polymerase II large subunit (RNAP LS) became progressively depleted, followed by recovery to nearly the original level in wild-type MEFs, whereas RNAP LS remained depleted without recovery in Top2ß-deficient cells. Concomitant with the reduction of the RNAP LS level, the p53 protein level was greatly induced. Interestingly, RNAP LS depletion has been well documented to lead to p53-dependent apoptosis. Altogether, our findings support a model in which Top2ß deficiency promotes CPT-induced apoptosis in quiescent non-S-phase cells, possibly due to RNAP LS depletion and p53 accumulation.


Assuntos
Apoptose/efeitos dos fármacos , Camptotecina/farmacologia , DNA Topoisomerases Tipo II/deficiência , Proteínas de Ligação a DNA/deficiência , Fibroblastos/efeitos dos fármacos , Animais , Antineoplásicos/farmacologia , Western Blotting , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , DNA Topoisomerases Tipo II/genética , Proteínas de Ligação a DNA/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Relação Dose-Resposta a Droga , Embrião de Mamíferos/citologia , Embrião de Mamíferos/metabolismo , Fibroblastos/metabolismo , Camundongos , Camundongos Knockout , Subunidades Proteicas/metabolismo , Razoxano/farmacologia , Inibidores da Topoisomerase I/farmacologia , Transcrição Gênica/efeitos dos fármacos , Proteína Supressora de Tumor p53/metabolismo
19.
Vaccine ; 30(52): 7573-81, 2012 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-23099332

RESUMO

Development of successful vaccines against glycotopes remains a major challenge. In the current studies, we have successfully developed a novel carrier protein for glycotopes based on the concept of antigen clustering and specific stimulation of T helper cells to mount strong antibody response to glycotopes. The bipartite carrier protein consists of a tandem repeat of a cysteine-rich peptide for docking of clustered glycotopes to effectively activate B cells and an Fc domain for antigen delivery to antigen presenting cells (APCs). To demonstrate its utility, we conjugated the tumor-specific monosaccharide antigen Tn to this novel carrier protein and successfully developed a Tn vaccine against cancer in animal models. The Tn vaccine effectively elicited high-titer IgG1 antibodies against Tn in immunized mice, and effectively suppressed the development of prostate cancer in Transgenic Adenocarcinoma of the Mouse Prostate (TRAMP) mice. Our results suggest that this novel bipartite carrier protein could be effectively used for developing anti-glycotope vaccines such as the anticancer Tn vaccine.


Assuntos
Antígenos de Neoplasias/imunologia , Vacinas Anticâncer/imunologia , Carboidratos/imunologia , Proteínas de Transporte/imunologia , Adenocarcinoma/prevenção & controle , Animais , Células Apresentadoras de Antígenos/imunologia , Células Apresentadoras de Antígenos/metabolismo , Antígenos de Neoplasias/metabolismo , Linfócitos B/imunologia , Linfócitos B/metabolismo , Vacinas Anticâncer/administração & dosagem , Vacinas Anticâncer/metabolismo , Metabolismo dos Carboidratos , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Modelos Animais de Doenças , Feminino , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Neoplasias da Próstata/prevenção & controle , Ligação Proteica , Coelhos
20.
PLoS One ; 7(3): e32542, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22396773

RESUMO

Low doses of anticancer drugs have been shown to enhance antitumor immune response and increase the efficacy of immunotherapy. The molecular basis for such effects remains elusive, although selective depletion of T regulatory cells has been demonstrated. In the current studies, we demonstrate that topotecan (TPT), a topoisomerase I-targeting drug with a well-defined mechanism of action, stimulates major histocompatibility complex class I (MHC I) expression in breast cancer cells through elevated expression/secretion of interferon-ß (IFN-ß) and activation of type I IFN signaling. First, we show that TPT treatment elevates the expression of both total and cell-surface MHC I in breast cancer cells. Second, conditioned media from TPT-treated breast cancer ZR-75-1 cells induce elevated expression of cell-surface MHC I in drug-naïve recipient cells, suggesting the involvement of cytokines and/or other secreted molecules. Consistently, TPT-treated cells exhibit elevated expression of multiple cytokines such as IFN-ß, TNF-α, IL-6 and IL-8. Third, either knocking down the type I interferon receptor subunit 1 (IFNAR1) or addition of neutralizing antibody against IFN-ß results in reduced MHC I expression in TPT-treated cells. Together, these results suggest that TPT induces increased IFN-ß autocrine/paracrine signaling through type I IFN receptor, resulting in the elevated MHC I expression in tumor cells. Studies have also demonstrated that other chemotherapeutic agents (e.g. etoposide, cisplatin, paclitaxel and vinblastine) similarly induce increased IFN-ß secretion and elevated MHC I expression. In addition, conditioned media from γ-irradiated donor cells are shown to induce IFN-ß-dependent MHC I expression in unirradiated recipient cells. In the aggregate, our results suggest that many cancer therapeutics induce elevated tumor antigen presentation through MHC I, which could represent a common mechanism for enhanced antitumor immune response through T cell cytotoxicity during metronomic chemotherapy, as well as increased efficacy of combined chemo- (or radio-)/immuno-therapy.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Neoplasias da Mama/radioterapia , Regulação Neoplásica da Expressão Gênica , Genes MHC Classe I , Antígenos de Histocompatibilidade Classe I/biossíntese , Interferon beta/metabolismo , Transdução de Sinais , Antineoplásicos/uso terapêutico , Apoptose , Linhagem Celular Tumoral , Ensaio de Imunoadsorção Enzimática/métodos , Feminino , Humanos , Interferon beta/biossíntese , Interleucina-6/biossíntese , Interleucina-8/biossíntese , NF-kappa B/metabolismo , Topotecan/farmacologia , Fator de Necrose Tumoral alfa/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA