Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Fitoterapia ; 175: 105916, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38527590

RESUMO

Six previously unreported solanidane steroidal alkaloids, namely lyrasolanosides A-F, were isolated from Solanum lyratum. In addition, five known steroidal alkaloids were also identified. The structures of these compounds were determined through the use of NMR, HRESIMS,UV, IR and ECD analysis. To assess their bioactivities, the cytotoxic effects of the six previously unreported compounds were evaluated on A549 cells. The results revealed that lyrasolanoside B (2) exhibited the highest potency among them. Lyrasolanoside B (2) exhibited significant inhibition of cell migration, invasion, and adhesion dramatically. Mechanistically, it was found to suppress the activity of JAK2/STAT3 signaling pathway by downregulating the expression of phosphorylated JAK2/STAT3 in an exosome-dependent manner. In addition, lyrasolanoside B (2) was found to significantly upregulate the expression of E-cadherin and downregulate the expression of N-cadherin and vimentin. These findings indicate that lyrasolanoside B (2) inhibits the metastasis of A549 cells by suppressing exosome-mediated EMT. These findings suggest that lyrasolanoside B (2) may inhibit the metastasis of lung cancer by regulating A549-derived exosomes.


Assuntos
Solanum , Humanos , Células A549 , Estrutura Molecular , Solanum/química , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/isolamento & purificação , Movimento Celular/efeitos dos fármacos , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/isolamento & purificação , Alcaloides de Solanáceas/farmacologia , Alcaloides de Solanáceas/isolamento & purificação , Transdução de Sinais/efeitos dos fármacos , Alcaloides/farmacologia , Alcaloides/isolamento & purificação , China
2.
Front Endocrinol (Lausanne) ; 14: 1259095, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37900139

RESUMO

Objective: The aim of this study was to investigate the biomechanical stress of sandwich vertebrae (SVs) and common adjacent vertebrae in different degrees of spinal mobility in daily life. Materials and methods: A finite element model of the spinal segment of T10-L2 was developed and validated. Simultaneously, T11 and L1 fractures were simulated, and a 6-ml bone cement was constructed in their center. Under the condition of applying a 500-N axial load to the upper surface of T10 and immobilizing the lower surface of L2, moments were applied to the upper surface of T10, T11, T12, L1, and L2 and divided into five groups: M-T10, M-T11, M-T12, M-L1, and M-L2. The maximum von Mises stress of T10, T12, and L2 in different groups was calculated and analyzed. Results: The maximum von Mises stress of T10 in the M-T10 group was 30.68 MPa, 36.13 MPa, 34.27 MPa, 33.43 MPa, 26.86 MPa, and 27.70 MPa greater than the maximum stress value of T10 in the other groups in six directions of load flexion, extension, left and right lateral bending, and left and right rotation, respectively. The T12 stress value in the M-T12 group was 29.62 MPa, 32.63 MPa, 30.03 MPa, 31.25 MPa, 26.38 MPa, and 26.25 MPa greater than the T12 stress value in the other groups in six directions. The maximum stress of L2 in M-T12 in the M-L2 group was 25.48 MPa, 36.38 MPa, 31.99 MPa, 31.07 MPa, 30.36 MPa, and 32.07 MPa, which was greater than the stress value of L2 in the other groups. When the load is on which vertebral body, it is subjected to the greatest stress. Conclusion: We found that SVs did not always experience the highest stress. The most stressed vertebrae vary with the degree of curvature of the spine. Patients should be encouraged to avoid the same spinal curvature posture for a long time in life and work or to wear a spinal brace for protection after surgery, which can avoid long-term overload on a specific spine and disrupt its blood supply, resulting in more severe loss of spinal quality and increasing the possibility of fractures.


Assuntos
Fraturas por Compressão , Fraturas da Coluna Vertebral , Humanos , Análise de Elementos Finitos , Coluna Vertebral , Fraturas por Compressão/cirurgia , Fenômenos Biomecânicos
3.
Nat Commun ; 14(1): 3295, 2023 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-37280209

RESUMO

Alkylnitriles play important roles in many fields because of their unique electronic properties and structural characteristics. Incorporating cyanoalkyl with characteristic spectroscopy and reactivity properties into amino acids and peptides is of special interest for potential imaging and therapeutic purposes. Here, we report a copper-catalyzed asymmetric cyanoalkylation of C(sp3)-H. In the reactions, glycine derivatives can effectively couple with various cycloalkanone oxime esters with high enantioselectivities, and the reaction can be applied to the late-stage modification of peptides with good yields and excellent stereoselectivities, which is useful for modern peptide synthesis and drug discovery. The mechanistic studies show that the in situ formed copper complex by the coordination of glycine derivatives and chiral phosphine Cu catalyst can not only mediate the single electronic reduction of cycloalkanone oxime ester but also control the stereoselectivity of the cyanoalkylation reaction.


Assuntos
Cobre , Glicina , Glicina/química , Cobre/química , Estrutura Molecular , Peptídeos , Ésteres , Catálise
4.
Zhongguo Zhong Yao Za Zhi ; 47(18): 4966-4971, 2022 Sep.
Artigo em Chinês | MEDLINE | ID: mdl-36164906

RESUMO

Two previously undescribed steroidal alkaloids, compounds 1-2, along with two known ones(3-4), were isolated from the 80% ethanol extract of ripe berries of Solanum nigrum by chromatographic methods, including silica gel, ODS, and HPLC. Based on spectroscopic and chemical evidence, including IR, NMR, and HR-ESI-MS data, the structures of the isolated compounds were identified as 12ß,27-dihydroxy solasodine-3-O-ß-D-glucopyranoside(1), 27-hydroxy solasodine-3-O-ß-D-glucopyranosyl-(1→4)-α-L-rhamnopyranosyl-(1→2)-[α-L-rhamnopyranosyl-(1→4)]-ß-D-glucopyranoside(2), solalyraine A(3), and 12ß,27-dihydroxy solasodine(4). Compounds 1-2 were tested for their potential effects against the proliferation of A549 cells, which revealed that compounds 1-2 had weak cytotoxic activity.


Assuntos
Alcaloides , Saponinas , Solanum nigrum , Solanum , Alcaloides/análise , Etanol , Frutas/química , Estrutura Molecular , Extratos Vegetais/química , Saponinas/análise , Sílica Gel/análise , Solanum/química , Solanum nigrum/química , Esteroides/farmacologia
5.
Phytochemistry ; 202: 113317, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35820506

RESUMO

Eight undescribed, along with five known steroidal alkaloids were isolated from Solanum nigrum L., a plant used in traditional Chinese medicine. Their structures were elucidated by NMR, HR-ESI-MS, and IR spectroscopy. Two compounds displayed an unusual structure in steroidal alkaloids with an open E-ring and without an F-ring present. To evaluate their bioactivities, nine compounds were selected to intervene five human cancer cell lines including H1299, HepG2, HeLa, HCT116, and MCF7 respectively. All compounds exhibited inhibitory effects for the five cell lines, revealing potential anti-tumor activities from Solanum nigrum.


Assuntos
Alcaloides , Antineoplásicos , Solanum nigrum , Solanum , Alcaloides/química , Alcaloides/farmacologia , Humanos , Extratos Vegetais/química , Solanum nigrum/química , Esteroides/química , Esteroides/farmacologia
6.
Angew Chem Int Ed Engl ; 61(24): e202200822, 2022 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-35315966

RESUMO

The glycosylative modification of peptides could improve the pharmacological properties of peptide drugs and deliver them efficiently to the target sites. Compared with O-/N-glycosides, C-glycosides exhibit more metabolic stability. We here disclose the first example of visible-light-promoted and Cu-catalyzed stereoselective C-glycosylation. The mild reaction conditions are compatible with various carbohydrate substrates, as demonstrated with a series of monosaccharides and a disaccharide, and are amenable to the synthesis of a wide variety of C-glycoamino acids and C-glycopeptidomimetics with good yields and excellent stereoselectivities. The dual-functional photocatalyst formed in situ via coordination of the glycine derivative and the chiral phosphine Cu complex could not only catalyze the photoredox process but also control the stereoselectivity of the glycosylation reaction.


Assuntos
Aminoácidos , Glicopeptídeos , Aminoácidos/química , Glicopeptídeos/química , Glicosídeos/química , Glicosilação , Peptídeos/química
7.
J Appl Toxicol ; 41(5): 736-744, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33058231

RESUMO

Ethanol has a complex effect on the cardiovascular system in humans, but the systemic effects of ethanol to endothelial cells were rarely investigated. In this study, we exposed human umbilical vein endothelial cells (HUVECs) to 5- or 50-mM ethanol and performed transcriptomics to investigate the systemic effects of ethanol. While these concentrations of ethanol did not significantly affect HUVEC viability, 5-mM ethanol significantly upregulated and downregulated 59 and 73 genes, respectively, whereas 50-mM ethanol significantly upregulated and downregulated 50 and 80 genes, respectively. Totally, 37 genes were shared by the two concentrations of ethanol. The most significantly altered gene ontology (GO) term and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway after 5-mM ethanol treatment were nucleic acid binding (GO:0003676) and Herpes simplex virus 1 infection (ko05168), respectively, whereas the most significantly altered GO term and KEGG pathway by 50-mM ethanol treatment were aryl sulfotransferase activity (GO:0004062) and chemical carcinogenesis (ko05204). We further verified that ethanol treatment downregulated the mRNA levels of CD38 molecule (CD38), ORAI calcium release-activated calcium modulator 2 (ORAI2), cysteinyl leukotriene receptor 2 (CYSLTR2), key genes involved in calcium signaling pathway (ko04020), as well as integrin subunit alpha 2 (ITGA2), and cAMP responsive element binding protein 3 like 2 (CREB3L2), key genes involved in PI3K-Akt signaling pathway (ko04151). The results from this study suggested that ethanol could induce systemic effects and alter signaling pathways in HUVECs.


Assuntos
Etanol/toxicidade , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Humanos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transcriptoma
8.
Fitoterapia ; 141: 104481, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31954179

RESUMO

In this study, seven previously undescribed steroidal glycoalkaloids, compounds 1-7, were isolated from Solanum lyratum, along with two known ones (8 and 9). Comprehensive spectroscopy techniques were used to determine their structures. Although 1-8 only showed a weak inhibitory effect on the proliferation of the tumor-derived vascular endothelial cells, however, in a former study we found both total steroidal glycoalkaloids from Solanum lyratum (TSGS) and 9 significantly inhibited tumor angiogenesis and its mechanism was linked to its ability to interfere with cell membrane lipid rafts. Lipid rafts are closely related to the functions of tumor-derived exosomes, a vital factor in cancer progression. Thus, we investigated the impacts of TSGS and 9 on the functions of A549-derived exosomes. Our results indicated that A549-derived exosomes can significantly enhance the angiogenesis abilities of human umbilical vein endothelial cells, whereas the intervention of TSGS or 9 significantly inhibited this activity of A549-derived exosomes. These findings suggest that TSGS and 9 exert anti-tumor angiogenesis by inhibiting the pro-angiogenic activity of A549-derived exosomes.


Assuntos
Alcaloides/química , Alcaloides/farmacologia , Exossomos/efeitos dos fármacos , Neovascularização Fisiológica/efeitos dos fármacos , Células A549 , Alcaloides/classificação , Humanos , Estrutura Molecular
9.
Int J Mol Sci ; 20(19)2019 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-31547165

RESUMO

Being a staple food, wheat (Triticum aestivum) nutritionally fulfills all requirements of human health and also serves as a significant link in the food chain for the ingestion of pollutants by humans and animals. Therefore, the presence of the heavy metals such as lead (Pb) and cadmium (Cd) in soil is not only responsible for the reduction of wheat crop yield but also the potential threat for human and animal health. However, the link between DNA methylation and heavy metal stress tolerance in wheat has not been investigated yet. In this study, eight high yielding wheat varieties were screened based on their phenotype in response to Pb stress. Out of these, Pirsabak 2004 and Fakhar-e-sarhad were identified as Pb resistant and sensitive varieties, respectively. In addition, Pirsabak 2004 and Fakhar-e-sarhad varieties were also found resistant and sensitive to Cd and Zinc (Zn) stress, respectively. Antioxidant activity was decreased in Fakhar-e-sarhad compared with control in response to Pb/Cd/Zn stresses, but Fakhar-e-sarhad and Pirsabak 2004 accumulated similar levels of Pb, Cd and Zn in their roots. The expression of Heavy Metal ATPase 2 (TaHMA2) and ATP-Binding Cassette (TaABCC2/3/4) metal detoxification transporters are significantly upregulated in Pirsabak 2004 compared with Fakhar-e-sarhad and non-treated controls in response to Pb, Cd and Zn metal stresses. Consistent with upregulation of metal detoxification transporters, CG DNA hypomethylation was also found at the promoter region of these transporters in Pirsabak 2004 compared with Fakhar-e-sarhad and non-treated control, which indicates that DNA methylation regulates the expression of metal detoxification transporters to confer resistance against metal toxicity in wheat. This study recommends the farmers to cultivate Pirsabak 2004 variety in metal contaminated soils and also highlights that DNA methylation is associated with metal stress tolerance in wheat.


Assuntos
Proteínas de Transporte , Metilação de DNA , DNA de Plantas/metabolismo , Bases de Dados Genéticas , Tolerância a Medicamentos , Metais Pesados/metabolismo , Proteínas de Plantas , Triticum , Proteínas de Transporte/biossíntese , Proteínas de Transporte/genética , Proteínas de Plantas/biossíntese , Proteínas de Plantas/genética , Triticum/genética , Triticum/metabolismo
10.
Chem Biol Interact ; 299: 27-36, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30472432

RESUMO

Lung cancer is the worldwide leading cause of cancer-related death. Here, we described the synthesis and the anticancer activity of a novel coptisine derivative 8-cetylcoptisine (CCOP) on lung carcinoma in vitro and in vivo. CCOP inhibited the cell viability of A549, BGC-823, MDA-MB-231, HCT-116 and HepG2 cell lines. In A549 cells, CCOP induced apoptosis, G0/G1 cell cycle arrest and decreased mitochondrial membrane potential (MMP) in a dose-dependent manner. Western blot analysis showed that CCOP increased the expression of Bcl-2-associated X protein (Bax), cleaved caspase 3 and 9, while decreased B-cell lymphoma 2 (Bcl-2), cyclins D and E, cyclin dependent kinases (CDKs) 2, 4 and 6, along with the inactivation of the upstream phosphoinositide 3-kinase (Pi3k)/protein kinase B (Akt) signaling. Further in vivo studies showed that CCOP (10 mg/kg) significantly delayed tumor growth in A549 xenograft nude mice, which is stronger than that of coptisine (100 mg/kg). These data suggested that CCOP could be a candidate for lung cancer therapy.


Assuntos
Apoptose/efeitos dos fármacos , Berberina/análogos & derivados , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Células A549 , Animais , Berberina/química , Berberina/farmacologia , Berberina/uso terapêutico , Peso Corporal/efeitos dos fármacos , Caspase 3/metabolismo , Linhagem Celular Tumoral , Ciclina D/metabolismo , Quinase 2 Dependente de Ciclina/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Mitocôndrias/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neoplasias/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transplante Heterólogo
11.
PLoS One ; 8(4): e62110, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23614021

RESUMO

The Saccharomyces cerevisiae Bdf1p associates with the basal transcription complexes TFIID and acts as a transcriptional regulator. Lack of Bdf1p is salt sensitive and displays abnormal mitochondrial function. The nucleotidase Hal2p detoxifies the toxic compound 3' -phosphoadenosine-5'-phosphate (pAp), which blocks the biosynthesis of methionine. Hal2p is also a target of high concentration of Na(+). Here, we reported that HAL2 overexpression recovered the salt stress sensitivity of bdf1Δ. Further evidence demonstrated that HAL2 expression was regulated indirectly by Bdf1p. The salt stress response mechanisms mediated by Bdf1p and Hal2p were different. Unlike hal2Δ, high Na(+) or Li(+) stress did not cause pAp accumulation in bdf1Δ and methionine supplementation did not recover its salt sensitivity. HAL2 overexpression in bdf1Δ reduced ROS level and improved mitochondrial function, but not respiration. Further analyses suggested that autophagy was apparently defective in bdf1Δ, and autophagy stimulated by Hal2p may play an important role in recovering mitochondrial functions and Na(+) sensitivity of bdf1Δ. Our findings shed new light towards our understanding about the molecular mechanism of Bdf1p-involved salt stress response in budding yeast.


Assuntos
Nucleotidases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiologia , Cloreto de Sódio/farmacologia , Estresse Fisiológico/efeitos dos fármacos , Fatores de Transcrição/metabolismo , Monofosfato de Adenosina/metabolismo , Autofagia/efeitos dos fármacos , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Espaço Intracelular/efeitos dos fármacos , Espaço Intracelular/metabolismo , Metionina/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mutação/genética , Nucleotidases/genética , Espécies Reativas de Oxigênio/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Sódio/metabolismo , Estresse Fisiológico/genética
12.
FEMS Yeast Res ; 9(2): 240-6, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19220868

RESUMO

The Saccharomyces cerevisiae BDF1 gene encodes a bromodomain-containing transcription factor. We previously reported that deletion of Bdf1p in yeast cells resulted in increased sensitivity to NaCl stress. In this paper, we show that the function of Bdf1p in salt tolerance is not directly linked with the Ena1p-mediated Na(+) extrusion system, and a number of other well-characterized stress-response pathways. Interestingly, however, our data demonstrate that, under the NaCl stress, the absence of Bdf1p leads to mitochondrial dysfunction, including decreasing of mitochondrial membrane potential (Delta Psi) and accumulation of reactive oxygen species, and chromatin fragmentation and condensation. These results indicate that the bromodomain-containing protein, Bdf1p, is involved in the regulation of apoptosis in yeast cells.


Assuntos
Antifúngicos/farmacologia , Apoptose , Proteínas de Saccharomyces cerevisiae/fisiologia , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/fisiologia , Sais/farmacologia , Fatores de Transcrição/fisiologia , Adenosina Trifosfatases/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Fragmentação do DNA , Deleção de Genes , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Viabilidade Microbiana/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , ATPase Trocadora de Sódio-Potássio , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA