Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Cancer Res Commun ; 3(12): 2551-2559, 2023 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-38019116

RESUMO

PURPOSE: We describe the clinical pharmacology characterization of giredestrant in a first-in-human study. EXPERIMENTAL DESIGN: This phase Ia/Ib dose-escalation/-expansion study (NCT03332797) evaluated the safety, pharmacokinetics, pharmacodynamics, and preliminary antitumor activity of giredestrant in estrogen receptor-positive HER2-negative locally advanced/metastatic breast cancer. The single-agent dose-escalation stage evaluated giredestrant 10, 30, 90, or 250 mg once daily. The dose-expansion stage evaluated single-agent giredestrant at 30, 100, and 250 mg once daily. Dose-escalation and -expansion phases also evaluated giredestrant 100 mg combined with palbociclib 125 mg. RESULTS: Following single-dose oral administration, giredestrant was rapidly absorbed and generally showed a dose-proportional increase in exposure at doses ranging from 10 to 250 mg. At the 30 mg clinical dose, maximum plasma concentration was 266 ng/mL (50.1%) and area under the concentration-time curve from 0 to 24 hours at steady state was 4,320 ng·hour/mL (59.4%). Minimal giredestrant concentrations were detected in urine, indicating that renal excretion is unlikely to be a major elimination route for giredestrant. Mean concentration of 4beta-hydroxycholesterol showed no apparent increase over time at both the clinical dose (30 mg) and a supratherapeutic dose (90 mg), suggesting that giredestrant may have low CYP3A induction potential in humans. No clinically relevant drug-drug interaction was observed between giredestrant and palbociclib. Giredestrant exposure was not affected by food and was generally consistent between White and Asian patients. CONCLUSIONS: This study illustrates how the integration of clinical pharmacology considerations into early-phase clinical trials can inform the design of pivotal studies and accelerate oncology drug development. SIGNIFICANCE: This work illustrates how comprehensive clinical pharmacology characterization can be integrated into first-in-human studies in oncology. It also demonstrates the value of understanding clinical pharmacology attributes to inform eligibility, concomitant medications, and combination dosing and to directly influence late-stage trial design and accelerate development.


Assuntos
Neoplasias da Mama , Farmacologia Clínica , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Interações Medicamentosas
2.
Drug Metab Dispos ; 51(10): 1284-1294, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37349116

RESUMO

GDC-0810 is a small molecule therapeutic agent having potential to treat breast cancer. In plasma of the first-in-human study, metabolite M2, accounting for 20.7% of total drug-related materials, was identified as a discrete diglucuronide that was absent in rats. Acyl glucuronide M6 and N-glucuronide M4 were also identified as prominent metabolites in human plasma. Several in vitro studies were conducted in incubations of [14C]GDC-0810, synthetic M6 and M4 with liver microsomes, intestinal microsomes, and hepatocytes of different species as well as recombinant UDP-glucuronosyltransferase (UGT) enzymes to further understand the formation of M2. The results suggested that 1) M2 was more efficiently formed from M6 than from M4, and 2) acyl glucuronidation was mainly catalyzed by UGT1A8/7/1 that is highly expressed in the intestines whereas N-glucuronidation was mainly catalyzed by UGT1A4 that is expressed in the human liver. This complicated mechanism presented challenges in predicting M2 formation using human in vitro systems. The absence of M2 and M4 in rats can be explained by low to no expression of UGT1A4 in rodents. M2 could be the first discrete diglucuronide that was formed from both acyl- and N-glucuronidation on a molecule identified in human plasma. SIGNIFICANCE STATEMENT: A discrete diglucuronidation metabolite of GDC-0810, a breast cancer drug candidate, was characterized as a unique circulating metabolite in humans that was not observed in rats or little formed in human in vitro system.


Assuntos
Neoplasias da Mama , Glucuronídeos , Humanos , Ratos , Animais , Feminino , Glucuronídeos/metabolismo , Glucuronosiltransferase/metabolismo , Microssomos Hepáticos/metabolismo , UDP-Glucuronosiltransferase 1A , Administração Oral , Neoplasias da Mama/metabolismo
3.
ACS Med Chem Lett ; 11(8): 1588-1597, 2020 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-32832028

RESUMO

Bruton's tyrosine kinase (Btk) is thought to play a pathogenic role in chronic immune diseases such as rheumatoid arthritis and lupus. While covalent, irreversible Btk inhibitors are approved for treatment of hematologic malignancies, they are not approved for autoimmune indications. In efforts to develop additional series of reversible Btk inhibitors for chronic immune diseases, we sought to differentiate from our clinical stage inhibitor fenebrutinib using cyclopropyl amide isosteres of the 2-aminopyridyl group to occupy the flat, lipophilic H2 pocket. While drug-like properties were retained-and in some cases improved-a safety liability in the form of hERG inhibition was observed. When a fluorocyclopropyl amide was incorporated, Btk and off-target activity was found to be stereodependent and a lead compound was identified in the form of the (R,R)- stereoisomer.

4.
Clin Cancer Res ; 26(6): 1229-1236, 2020 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-31848189

RESUMO

PURPOSE: ERK1/2 signaling can be dysregulated in cancer. GDC-0994 is an oral inhibitor of ERK1/2. A first-in-human, phase I dose escalation study of GDC-0994 was conducted in patients with locally advanced or metastatic solid tumors. PATIENTS AND METHODS: GDC-0994 was administered once daily on a 21-day on/7-day off schedule to evaluate safety, pharmacokinetics, and preliminary signs of efficacy. Patients with pancreatic adenocarcinoma and BRAF-mutant colorectal cancer were enrolled in the expansion stage. RESULTS: Forty-seven patients were enrolled in six successive cohorts (50-800 mg). A single DLT of grade 3 rash occurred at 600 mg. The most common drug-related adverse events (AE) were diarrhea, rash, nausea, fatigue, and vomiting. Pharmacokinetic data showed dose-proportional increases in exposure, with a mean half-life of 23 hours, supportive of once daily dosing. In evaluable paired biopsies, MAPK pathway inhibition ranged from 19% to 51%. Partial metabolic responses by FDG-PET were observed in 11 of 20 patients across dose levels in multiple tumor types. Overall, 15 of 45 (33%) patients had a best overall response of stable disease and 2 patients with BRAF-mutant colorectal cancer had a confirmed partial response. CONCLUSIONS: GDC-0994 had an acceptable safety profile and pharmacodynamic effects were observed by FDG-PET and in serial tumor biopsies. Single-agent activity was observed in 2 patients with BRAF-mutant colorectal cancer.


Assuntos
Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Proteína Quinase 1 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 3 Ativada por Mitógeno/antagonistas & inibidores , Neoplasias/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacocinética , Inibidores de Proteínas Quinases/uso terapêutico , Piridonas/farmacocinética , Piridonas/uso terapêutico , Pirimidinas/farmacocinética , Pirimidinas/uso terapêutico , Adulto , Idoso , Relação Dose-Resposta a Droga , Fadiga/induzido quimicamente , Feminino , Humanos , Masculino , Dose Máxima Tolerável , Pessoa de Meia-Idade , Náusea/induzido quimicamente , Neoplasias/induzido quimicamente , Neoplasias/patologia , Segurança do Paciente , Distribuição Tecidual , Vômito/induzido quimicamente
5.
Drug Metab Dispos ; 47(9): 966-973, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31266752

RESUMO

GDC-0810 (Cheeti et al., 2018) is an orally bioavailable, selective estrogen receptor (ER) degrader developed to treat ER-positive breast cancer. A first-in-human (FIH) dose escalation phase I study (n = 41) was conducted to characterize the pharmacokinetics (PK) of GDC-0810 and its two major metabolites. GDC-0810 demonstrated linear PK from 100 to 600 mg given once daily. The mean terminal half-life following a single 600 mg dose was approximately 8 hours. Since GDC-0810 is a potent in vitro inhibitor of organic anion transporting polypeptide (OATP) 1B1/3, the kinetic profile of coproporphyrin I (CPI), a promising endogenous biomarker for OATP1B1/3, was analyzed retrospectively in a subset of the plasma samples collected in the same FIH study. CPI exhibited a GDC-0810 dose-dependent increase, suggesting in vivo inhibition of OATP1B transporters. To quantitatively predict the magnitude of OATP1B-mediated drug-drug interactions (DDIs) with pravastatin (a known OATP1B substrate), the in vivo unbound inhibition constant was first estimated using a one-compartment model, and then incorporated to a physiologically based pharmacokinetic model. The model showed some underestimation of the magnitude of the DDI when compared with a clinical DDI study result, while prediction had a relatively large uncertainty due to the small effect size, limited sample size, and variability in CPI kinetics. In conclusion, this study characterized the pharmacokinetic profiles of GDC-0810 in breast cancer patients and demonstrated the utility of CPI in detecting OATP1B-mediated DDIs of a new molecular entity as early as FIH study. SIGNIFICANCE STATEMENT: Endogenous biomarkers of transporters have recently been shown to be promising tools in evaluating the risk of clinical transporter-mediated DDIs. This is the first study to report a pharmacokinetic interaction between an investigational molecule and a transporter biomarker in a first-in-human study. The observed interaction and model-based analysis and the prediction provide important insights on the novel approach to quantitatively predict transporter-mediated DDIs as early as FIH studies in the clinical development.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Cinamatos/farmacocinética , Indazóis/farmacocinética , Transportador 1 de Ânion Orgânico Específico do Fígado/metabolismo , Membro 1B3 da Família de Transportadores de Ânion Orgânico Carreador de Soluto/metabolismo , Administração Oral , Adulto , Idoso , Antineoplásicos , Biomarcadores/análise , Neoplasias da Mama/sangue , Neoplasias da Mama/patologia , Cinamatos/administração & dosagem , Coproporfirinas/análise , Coproporfirinas/metabolismo , Relação Dose-Resposta a Droga , Interações Medicamentosas , Estudos de Viabilidade , Feminino , Meia-Vida , Humanos , Indazóis/administração & dosagem , Pessoa de Meia-Idade , Receptores de Estrogênio/antagonistas & inibidores , Receptores de Estrogênio/metabolismo
7.
Biopharm Drug Dispos ; 39(9): 420-430, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30335192

RESUMO

GDC-0810 was under development as an oral anti-cancer drug for the treatment of estrogen receptor-positive breast cancer as a single agent or in combination. In vitro data indicated that GDC-0810 is a potent inhibitor of OATP1B1/1B3. To assess clinical risk, a PBPK model was developed to predict the transporter drug-drug interaction (tDDI) between GDC-0810 and pravastatin in human. The PBPK model was constructed in Simcyp® by integrating in vitro and in vivo data for GDC-0810. The prediction of human pharmacokinetics (PK) was verified using GDC-0810 phase I clinical PK data. The Simcyp transporter DDI model was verified using known OATP1B1/1B3 inhibitors (rifampicin, cyclosporine and gemfibrozil) and substrate (pravastatin), prior to using the model to predict GDC-0810 tDDI. The effect of GDC-0810 on pravastatin PK was then predicted based on the proposed clinical scenarios. Sensitivity analysis was conducted on the parameters with uncertainty. The developed PBPK model described the PK profile of GDC-0810 reasonably well. In the tDDI verification, the model reasonably predicted pravastatin tDDI caused by rifampicin and gemfibrozil OATP1B1/3 inhibition but under-predicted tDDI caused by cyclosporine. The effect of GDC-0810 on pravastatin PK was predicted to be low to moderate (pravastatin Cmax ratios 1.01-2.05 and AUC ratio 1.04-2.23). The observed tDDI (Cmax ratio 1.20 and AUC ratio 1.41) was within the range of the predicted values. This work demonstrates an approach using a PBPK model to prospectively assess tDDI caused by a new chemical entity as an OATP1B1/3 uptake transporter inhibitor to assess clinical risk and to support development strategy.


Assuntos
Cinamatos/farmacologia , Indazóis/farmacologia , Transportador 1 de Ânion Orgânico Específico do Fígado/antagonistas & inibidores , Modelos Biológicos , Pravastatina/farmacocinética , Membro 1B3 da Família de Transportadores de Ânion Orgânico Carreador de Soluto/antagonistas & inibidores , Área Sob a Curva , Ciclosporina/farmacologia , Interações Medicamentosas , Genfibrozila/farmacologia , Humanos , Transportador 1 de Ânion Orgânico Específico do Fígado/metabolismo , Rifampina/farmacologia , Membro 1B3 da Família de Transportadores de Ânion Orgânico Carreador de Soluto/metabolismo
8.
Pharm Res ; 35(12): 233, 2018 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-30324422

RESUMO

PURPOSE: GDC-0810, administered orally, was used in Phase I and II clinical studies to treat estrogen receptor positive breast cancers. It contains N-methyl-D-glucamine (NMG) salt of GDC-0810 with 10% sodium lauryl sulfate (SLS) as a surfactant and 15% sodium bicarbonate (NaHCO3) as an alkalizing agent to aid dissolution. To improve the processability of the formulation and reduce potential mucosal irritation in future Phase III clinical studies, the salt form and the amount of excipient required further optimization. To achieve this, we employed a novel "Make and Test in Parallel" strategy that facilitated selecting formulation in a rapid timeframe. METHODS: RapidFACT®, a streamlined, data-driven drug product optimization platform was used to bridge Phase I/II and Phase III formulations of GDC-0810. Five prototype formulations, varying in either the form of active pharmaceutical ingredient and/or the levels of the excipients SLS and NaHCO3 were assessed. Uniquely, the specific compositions of formulations manufactured and dosed were selected in real-time from emerging clinical data. RESULTS: The study successfully identified a Phase III formulation with a reduced SLS content, which when administered following a low-fat meal, gave comparable pharmacokinetic exposure to the Phase I/II formulation administered under the same conditions. CONCLUSIONS: Our novel 'Make and Test in Parallel' approach enabled optimization of GDC-0810 formulation in a time- and cost-efficient fashion.


Assuntos
Antineoplásicos/farmacocinética , Cinamatos/farmacocinética , Composição de Medicamentos , Excipientes/química , Indazóis/farmacocinética , Administração Oral , Idoso , Antineoplásicos/administração & dosagem , Antineoplásicos/química , Disponibilidade Biológica , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Cinamatos/administração & dosagem , Cinamatos/química , Estudos Cross-Over , Feminino , Interações Alimento-Droga , Humanos , Indazóis/administração & dosagem , Indazóis/química , Meglumina/química , Pessoa de Meia-Idade , Receptores de Estrogênio/metabolismo , Dodecilsulfato de Sódio/química , Tensoativos/química
9.
Blood ; 132(10): 1039-1049, 2018 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-30018078

RESUMO

The clinical success of ibrutinib validates Bruton tyrosine kinase (BTK) inhibition as an effective strategy for treating hematologic malignancies, including chronic lymphocytic leukemia (CLL). Despite ibrutinib's ability to produce durable remissions in patients, acquired resistance can develop, mostly commonly by mutation of C481 of BTK in the ibrutinib binding site. Here, we characterize a novel BTK inhibitor, GDC-0853, to evaluate its preclinical efficacy in ibrutinib-naive and ibrutinib-resistant CLL. GDC-0853 is unique among reported BTK inhibitors in that it does not rely upon covalent reaction with C481 to stabilize its occupancy within BTK's adenosine triphosphate binding site. As with ibrutinib, GDC-0853 potently reduces B-cell receptor signaling, viability, NF-κB-dependent transcription, activation, and migration in treatment naïve CLL cells. We found that GDC-0853 also inhibits the most commonly reported ibrutinib-resistant BTK mutant (C481S) both in a biochemical enzyme activity assay and in a stably transfected 293T cell line and maintains cytotoxicity against patient CLL cells harboring C481S BTK mutations. Additionally, GDC-0853 does not inhibit endothelial growth factor receptor or ITK, 2 alternative targets of ibrutinib that are likely responsible for some adverse events and may reduce the efficacy of ibrutinib-antibody combinations, respectively. Our results using GDC-0853 indicate that noncovalent, selective BTK inhibition may be effective in CLL either as monotherapy or in combination with therapeutic antibodies, especially among the emerging population of patients with acquired resistance to ibrutinib therapy.


Assuntos
Tirosina Quinase da Agamaglobulinemia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Leucemia Linfocítica Crônica de Células B , Mutação de Sentido Incorreto , Piperazinas/farmacologia , Pirazóis , Piridonas/farmacologia , Pirimidinas , Adenina/análogos & derivados , Tirosina Quinase da Agamaglobulinemia/antagonistas & inibidores , Tirosina Quinase da Agamaglobulinemia/genética , Tirosina Quinase da Agamaglobulinemia/metabolismo , Substituição de Aminoácidos , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/genética , Humanos , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Leucemia Linfocítica Crônica de Células B/enzimologia , Leucemia Linfocítica Crônica de Células B/genética , Leucemia Linfocítica Crônica de Células B/patologia , Piperidinas
10.
J Clin Pharmacol ; 58(11): 1427-1435, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29786857

RESUMO

Developed as an oral anticancer drug to treat estrogen receptor-positive breast cancer, GDC-0810 was shown to be a potent inhibitor of organic anion-transporting polypeptide 1B1 and 1B3 (OATP1B1/1B3) from an in vitro assay. A clinical study was conducted to assess the drug-drug interaction potential between GDC-0810 and pravastatin, which is a relatively selective and sensitive OATP1B1/1B3 substrate. Fifteen healthy female subjects of non-childbearing potential were enrolled in the study. On day 1 in period 1, a single 10-mg dose of pravastatin was administered to all subjects. Following a 4-day washout period, 600 mg of GDC-0810 was administered once daily on days 5 through 8 in period 2 to achieve steady-state concentrations. On day 7, a single dose of 10-mg pravastatin was coadministered with the 600-mg GDC-0810 dose. Concentrations of pravastatin (periods 1 and 2) and GDC-0810 (period 2 only) were quantified in blood samples and subsequently used to calculate the pharmacokinetics (PK) parameters. The pravastatin mean maximal concentration and area under the curve values were approximately 20% and 41% higher, respectively, following pravastatin coadministration with GDC-0810 compared to pravastatin alone. Based on the magnitude of change in this drug-drug interaction study, dose adjustments for pravastatin (and other OATP1B1/1B3 substrates) were not considered necessary when administered with GDC-0810. Retrospectively, the endogenous biomarkers of OATP1B1/1B3, coproporphyrin I and III, were also measured and showed changes comparable to those of pravastatin, indicating their utility in detecting weak inhibition of OATP1B1/1B3 in the clinical setting.


Assuntos
Cinamatos/farmacologia , Coproporfirinas/farmacocinética , Indazóis/farmacologia , Transportador 1 de Ânion Orgânico Específico do Fígado/antagonistas & inibidores , Transportador 1 de Ânion Orgânico Específico do Fígado/farmacocinética , Pravastatina/farmacocinética , Adulto , Área Sob a Curva , Interações Medicamentosas , Feminino , Humanos
11.
Oncotarget ; 9(16): 13023-13035, 2018 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-29560128

RESUMO

GDC-0853 is a selective, reversible, and non-covalent inhibitor of Bruton's tyrosine kinase (BTK) that does not require interaction with the Cys481 residue for activity. In this first-in-human phase 1 study we evaluated safety, tolerability, pharmacokinetics, and activity of GDC-0853 in patients with relapsed or refractory non-Hodgkin lymphoma (NHL) or chronic lymphocytic leukemia (CLL). Twenty-four patients, enrolled into 3 cohorts, including 6 patients who were positive for the C481S mutation, received GDC-0853 at 100, 200, or 400 mg once daily, orally. There were no dose limiting toxicities. GDC-0853 was well tolerated and the maximum tolerated dose (MTD) was not reached due to premature study closure. Common adverse events (AEs) in ≥ 15% of patients regardless of causality included fatigue (37%), nausea (33%), diarrhea (29%), thrombocytopenia (25%), headache (20%), and abdominal pain, cough, and dizziness (16%, each). Nine serious AEs were reported in 5 patients of whom 2 had fatal outcomes (confirmed H1N1 influenza and influenza pneumonia). A third death was due to progressive disease. Eight of 24 patients responded to GDC-0853: 1 complete response, 4 partial responses, and 3 partial responses with lymphocytosis, including 1 patient with the C481S mutation. Two additional C481S mutation patients had a decrease in size of target tumors (-23% and -44%). These data demonstrate GDC-0853 was generally well-tolerated with antitumor activity.

12.
Pharm Res ; 35(2): 37, 2018 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-29380076

RESUMO

PURPOSE: The purpose of this work is to investigate the effect of microenvironmental pH modulation on the in vitro dissolution rate and oral absorption of GDC-0810, an oral anti-cancer drug, in human. METHODS: The pH-solubility profile of GDC-0810 free acid and pHmax of its N-Methyl-D-glucamine (NMG) salt were determined. Precipitation studies were conducted for GDC-0810 NMG salt at different pH values. GDC-0810 200-mg dose NMG salt tablet formulations containing different levels of sodium bicarbonate as the pH modifier were tested for dissolution under the dual pH-dilution scheme. Three tablet formulations were evaluated in human as a part of a relative bioavailability study. A 200-mg dose of GDC-0810 was administered QD with low fat food. RESULTS: Intrinsic solubility of GDC-0810 free acid was found to be extremely low. The pHmax of the NMG salt suggested a strong tendency for form conversion to the free acid under GI conditions. In vitro dissolution profiles showed that the dissolution rate and extent of GDC-0810 increased with increasing the level of sodium bicarbonate in the formulation. The human PK data showed a similar trend for the geometric mean of Cmax and AUC0-t for formulations containing 5%, 10%, and 15% sodium bicarbonate, but the difference is not statistically significant. CONCLUSION: Incorporation of a basic pH modifier, sodium bicarbonate, in GDC-0810 NMG salt tablet formulations enhanced in vitro dissolution rate of GDC-0810 via microenvironmental pH modulation. The human PK data showed no statistically significant difference in drug exposure from tablets containing 5%, 10%, and 15% sodium bicarbonate.


Assuntos
Antineoplásicos/farmacocinética , Cinamatos/farmacocinética , Liberação Controlada de Fármacos , Excipientes/química , Absorção Gastrointestinal , Indazóis/farmacocinética , Administração Oral , Antineoplásicos/administração & dosagem , Área Sob a Curva , Disponibilidade Biológica , Neoplasias da Mama/tratamento farmacológico , Cinamatos/administração & dosagem , Composição de Medicamentos/métodos , Ensaios de Seleção de Medicamentos Antitumorais , Jejum , Feminino , Voluntários Saudáveis , Humanos , Concentração de Íons de Hidrogênio , Indazóis/administração & dosagem , Meglumina/análogos & derivados , Meglumina/química , Receptores de Estrogênio/antagonistas & inibidores , Bicarbonato de Sódio/química , Solubilidade , Comprimidos
14.
ACS Med Chem Lett ; 8(6): 608-613, 2017 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-28626519

RESUMO

In our continued effort to discover and develop best-in-class Bruton's tyrosine kinase (Btk) inhibitors for the treatment of B-cell lymphomas, rheumatoid arthritis, and systemic lupus erythematosus, we devised a series of novel tricyclic compounds that improved upon the druglike properties of our previous chemical matter. Compounds exemplified by G-744 are highly potent, selective for Btk, metabolically stable, well tolerated, and efficacious in an animal model of arthritis.

15.
NPJ Syst Biol Appl ; 3: 14, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28649441

RESUMO

Approximately 10% of colorectal cancers harbor BRAFV600E mutations, which constitutively activate the MAPK signaling pathway. We sought to determine whether ERK inhibitor (GDC-0994)-containing regimens may be of clinical benefit to these patients based on data from in vitro (cell line) and in vivo (cell- and patient-derived xenograft) studies of cetuximab (EGFR), vemurafenib (BRAF), cobimetinib (MEK), and GDC-0994 (ERK) combinations. Preclinical data was used to develop a mechanism-based computational model linking cell surface receptor (EGFR) activation, the MAPK signaling pathway, and tumor growth. Clinical predictions of anti-tumor activity were enabled by the use of tumor response data from three Phase 1 clinical trials testing combinations of EGFR, BRAF, and MEK inhibitors. Simulated responses to GDC-0994 monotherapy (overall response rate = 17%) accurately predicted results from a Phase 1 clinical trial regarding the number of responding patients (2/18) and the distribution of tumor size changes ("waterfall plot"). Prospective simulations were then used to evaluate potential drug combinations and predictive biomarkers for increasing responsiveness to MEK/ERK inhibitors in these patients.

16.
J Pharmacol Exp Ther ; 360(1): 226-238, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27821712

RESUMO

Bruton's tyrosine kinase (BTK) is a member of the Tec family of cytoplasmic tyrosine kinases involved in B-cell and myeloid cell signaling. Small molecule inhibitors of BTK are being investigated for treatment of several hematologic cancers and autoimmune diseases. GDC-0853 ((S)-2-(3'-(hydroxymethyl)-1-methyl-5-((5-(2-methyl-4-(oxetan-3-yl)piperazin-1-yl)pyridin-2-yl)amino)-6-oxo-1,6-dihydro-[3,4'-bipyridin]-2'-yl)-7,7-dimethyl-3,4,7,8-tetrahydro-2H-cyclopenta[4,5]pyrrolo[1,2-a]pyrazin-1(6H)-one) is a selective and reversible oral small-molecule BTK inhibitor in development for the treatment of rheumatoid arthritis and systemic lupus erythematosus. In Sprague-Dawley (SD) rats, administration of GDC-0853 and other structurally diverse BTK inhibitors for 7 days or longer caused pancreatic lesions consisting of multifocal islet-centered hemorrhage, inflammation, fibrosis, and pigment-laden macrophages with adjacent lobular exocrine acinar cell atrophy, degeneration, and inflammation. Similar findings were not observed in mice or dogs at much higher exposures. Hemorrhage in the peri-islet vasculature emerged between four and seven daily doses of GDC-0853 and was histologically similar to spontaneously occurring changes in aging SD rats. This suggests that GDC-0853 could exacerbate a background finding in younger animals. Glucose homeostasis was dysregulated following a glucose challenge; however, this occurred only after 28 days of administration and was not directly associated with onset or severity of pancreatic lesions. There were no changes in other common serum biomarkers assessing endocrine and exocrine pancreatic function. Additionally, these lesions were not readily detectable via Doppler ultrasound, computed tomography, or magnetic resonance imaging. Our results indicate that pancreatic lesions in rats are likely a class effect of BTK inhibitors, which may exacerbate an islet-centered pathology that is unlikely to be relevant to humans.


Assuntos
Pâncreas/efeitos dos fármacos , Piperazinas/toxicidade , Inibidores de Proteínas Quinases/toxicidade , Proteínas Tirosina Quinases/antagonistas & inibidores , Piridonas/toxicidade , Pirróis/toxicidade , Tirosina Quinase da Agamaglobulinemia , Animais , Cães , Relação Dose-Resposta a Droga , Feminino , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Glucose/metabolismo , Humanos , Masculino , Camundongos , Pâncreas/metabolismo , Proteínas Tirosina Quinases/metabolismo , Ratos , Especificidade da Espécie
17.
J Med Chem ; 59(12): 5650-60, 2016 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-27227380

RESUMO

The extracellular signal-regulated kinases ERK1/2 represent an essential node within the RAS/RAF/MEK/ERK signaling cascade that is commonly activated by oncogenic mutations in BRAF or RAS or by upstream oncogenic signaling. While targeting upstream nodes with RAF and MEK inhibitors has proven effective clinically, resistance frequently develops through reactivation of the pathway. Simultaneous targeting of multiple nodes in the pathway, such as MEK and ERK, offers the prospect of enhanced efficacy as well as reduced potential for acquired resistance. Described herein is the discovery and characterization of GDC-0994 (22), an orally bioavailable small molecule inhibitor selective for ERK kinase activity.


Assuntos
Antineoplásicos/farmacologia , Descoberta de Drogas , Proteína Quinase 1 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 3 Ativada por Mitógeno/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Piridonas/farmacologia , Pirimidinas/farmacologia , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Cães , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Células HCT116 , Humanos , Camundongos , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Estrutura Molecular , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/patologia , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Piridonas/síntese química , Piridonas/química , Pirimidinas/síntese química , Pirimidinas/química , Ratos , Relação Estrutura-Atividade
18.
Drug Metab Dispos ; 42(3): 343-51, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24389420

RESUMO

Vismodegib (Erivedge, GDC-0449) is a first-in-class, orally administered small-molecule Hedgehog pathway inhibitor that is approved for the treatment of advanced basal cell carcinoma. Previously, we reported results from preclinical and clinical radiolabeled mass balance studies in which we determined that metabolism is the main route of vismodegib elimination. The metabolites of vismodegib are primarily the result of oxidation followed by glucuronidation. The focus of the current work is to probe the mechanisms of formation of three pyridine ring-cleaved metabolites of vismodegib, mainly M9, M13, and M18, using in vitro, ex vivo liver perfusion and in vivo rat studies. The use of stable-labeled ((13)C2,(15)N)vismodegib on the pyridine ring exhibited that the loss of carbon observed in both M9 and M13 was from the C-6 position of pyridine. Interestingly, the source of the nitrogen atom in the amide of M9 was from the pyridine. Evidence for the formation of aldehyde intermediates was observed using trapping agents as well as (18)O-water. Finally, we conclude that cytochrome P450 is involved in the formation of M9, M13, and M18 and that M3 (the major mono-oxidative metabolite) is not the precursor for the formation of these cleaved products; rather, M18 is the primary cleaved metabolite.


Assuntos
Anilidas/metabolismo , Piridinas/metabolismo , Anilidas/química , Animais , Biotransformação , Cromatografia Líquida de Alta Pressão , Cães , Proteínas Hedgehog/antagonistas & inibidores , Humanos , Técnicas In Vitro , Fígado/efeitos dos fármacos , Fígado/enzimologia , Macaca fascicularis , Masculino , Espectrometria de Massas , Microssomos Hepáticos/efeitos dos fármacos , Microssomos Hepáticos/metabolismo , Estrutura Molecular , Oxirredução , Perfusão , Piridinas/química , Ratos , Ratos Sprague-Dawley
19.
PLoS One ; 8(7): e69964, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23922875

RESUMO

Suberoylanilide hydroxamic acid (SAHA) is an inhibitor of histone deacetylases (HDACs) used for the treatment of cutaneous T cell lymphoma (CTCL) and under consideration for other indications. In vivo studies suggest reducing HDAC function can enhance synaptic function and memory, raising the possibility that SAHA treatment could have neurological benefits. We first examined the impacts of SAHA on synaptic function in vitro using rat organotypic hippocampal brain slices. Following several days of SAHA treatment, basal excitatory but not inhibitory synaptic function was enhanced. Presynaptic release probability and intrinsic neuronal excitability were unaffected suggesting SAHA treatment selectively enhanced postsynaptic excitatory function. In addition, long-term potentiation (LTP) of excitatory synapses was augmented, while long-term depression (LTD) was impaired in SAHA treated slices. Despite the in vitro synaptic enhancements, in vivo SAHA treatment did not rescue memory deficits in the Tg2576 mouse model of Alzheimer's disease (AD). Along with the lack of behavioral impact, pharmacokinetic analysis indicated poor brain availability of SAHA. Broader assessment of in vivo SAHA treatment using high-content phenotypic characterization of C57Bl6 mice failed to demonstrate significant behavioral effects of up to 150 mg/kg SAHA following either acute or chronic injections. Potentially explaining the low brain exposure and lack of behavioral impacts, SAHA was found to be a substrate of the blood brain barrier (BBB) efflux transporters Pgp and Bcrp1. Thus while our in vitro data show that HDAC inhibition can enhance excitatory synaptic strength and potentiation, our in vivo data suggests limited brain availability may contribute to the lack of behavioral impact of SAHA following peripheral delivery. These results do not predict CNS effects of SAHA during clinical use and also emphasize the importance of analyzing brain drug levels when interpreting preclinical behavioral pharmacology.


Assuntos
Encéfalo/metabolismo , Cognição/efeitos dos fármacos , Ácidos Hidroxâmicos/farmacologia , Ácidos Hidroxâmicos/farmacocinética , Plasticidade Neuronal/efeitos dos fármacos , Sinapses/fisiologia , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Comportamento Animal/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Encéfalo/enzimologia , Região CA1 Hipocampal/efeitos dos fármacos , Região CA1 Hipocampal/fisiologia , Condicionamento Psicológico/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Medo/efeitos dos fármacos , Histona Desacetilases/metabolismo , Humanos , Ácidos Hidroxâmicos/administração & dosagem , Concentração Inibidora 50 , Isoenzimas/metabolismo , Potenciação de Longa Duração/efeitos dos fármacos , Membranas/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fenótipo , Ratos , Ratos Sprague-Dawley , Sinapses/efeitos dos fármacos , Vorinostat
20.
ACS Med Chem Lett ; 4(1): 103-7, 2013 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-24900569

RESUMO

Aberrant activation of the PI3K-Akt-mTOR signaling pathway has been observed in human tumors and tumor cell lines, indicating that these protein kinases may be attractive therapeutic targets for treating cancer. Optimization of advanced lead 1 culminated in the discovery of clinical development candidate 8h, GDC-0349, a potent and selective ATP-competitive inhibitor of mTOR. GDC-0349 demonstrates pathway modulation and dose-dependent efficacy in mouse xenograft cancer models.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA