Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Immunol ; 209(2): 238-249, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35705251

RESUMO

Primary Sjögren's syndrome (pSS) is a chronic autoimmune disease that is estimated to affect 35 million people worldwide and is characterized by lymphocytic infiltration, elevated circulating autoantibodies, and proinflammatory cytokines. The key immune cell subset changes and the TCR/BCR repertoire alterations in pSS patients remain unclear. In this study, we sought to comprehensively characterize the transcriptional changes in PBMCs of pSS patients by single-cell RNA sequencing and single-cell V(D)J sequencing. Naive CD8+ T cells and mucosal-associated invariant T cells were markedly decreased but regulatory T cells were increased in pSS patients. There were a large number of differentially expressed genes shared by multiple subpopulations of T cells and B cells. Abnormal signaling pathways, including Ag processing and presentation, the BCR signaling pathway, the TCR signaling pathway, and Epstein-Barr virus infection, were highly enriched in pSS patients. Moreover, there were obvious differences in the CD30, FLT3, IFN-II, IL-1, IL-2, IL-6, IL-10, RESISTIN, TGF-ß, TNF, and VEGF signaling networks between pSS patients and healthy controls. Single-cell TCR and BCR repertoire analysis showed that there was a lower diversity of T cells in pSS patients than in healthy controls; however, there was no significant difference in the degree of clonal expansion, CDR3 length distribution, or degree of sequence sharing. Notably, our results further emphasize the functional importance of αß pairing in determining Ag specificity. In conclusion, our analysis provides a comprehensive single-cell map of gene expression and TCR/BCR profiles in pSS patients for a better understanding of the pathogenesis, diagnosis, and treatment of pSS.


Assuntos
Infecções por Vírus Epstein-Barr , Síndrome de Sjogren , Linfócitos T CD8-Positivos/metabolismo , Expressão Gênica , Perfilação da Expressão Gênica , Herpesvirus Humano 4/genética , Humanos , Receptores de Antígenos de Linfócitos B/genética , Receptores de Antígenos de Linfócitos T/genética
2.
Front Pharmacol ; 12: 782385, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34880764

RESUMO

Delanzomib is a novel proteasome inhibitor initially developed for treating multiple myeloma. It was found to inhibit the expression of tumor necrosis factor alpha (TNF-α). This study aimed to investigate the ameliorating effect of delanzomib on collagen-induced arthritis (CIA) and to explore the pharmacodynamics and pharmacokinetics (PK) interactions between delanzomib and adalimumab. Rats with CIA were randomly assigned to receive the treatment with delanzomib, adalimumab, delanzomib combined with adalimumab, or placebo. Visual inspection and biochemical examinations including TNF-α, interleukin 6, and C-reactive protein were performed to assess arthritis severity during the treatment. The adalimumab concentration in rats was determined to evaluate the PK interaction between delanzomib and adalimumab. Also, the levels of neonatal Fc receptor (FcRn) and FcRn mRNA were measured to explore the role of FcRn in the PK interaction between delanzomib and adalimumab. As a result, delanzomib combined with adalimumab exhibited stronger anti-arthritis activity than a single drug because both drugs synergistically reduced TNF-α level in vivo. Delanzomib also decreased adalimumab elimination in rats by increasing the level of FcRn. The slower elimination of adalimumab in rats further prolonged the anti-TNF-α effect of adalimumab. Moreover, FcRn level was increased by delanzomib via suppressing FcRn degradation rather than promoting FcRn production. In conclusion, delanzomib combined with adalimumab may be a potential therapeutic approach for treating rheumatoid arthritis. The initial finding that the PK interaction occurred between delanzomib and adalimumab may have clinical relevance for patients who simultaneously take proteasome inhibitors and anti-TNF-α therapeutic proteins.

3.
Front Immunol ; 12: 760381, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34880858

RESUMO

Objective: Genetic studies on ankylosing spondylitis (AS) have identified more than 100 pathogenic genes. Building a bridge between these genes and biologically targeted therapies is the current research hotspot. Methods: We integrated single-cell assaying transposase-accessible chromatin sequencing (scATAC-seq) and single-cell RNA sequencing (scRNA-seq) to explore the key genes and related mechanisms associated with AS pathogenesis. Results: We identified 18 cell types in peripheral mononuclear cells from patients with AS and normal controls and summarized the cell-type-specific abnormal genes by scRNA-seq. Interestingly, we found that the pathogenic gene NFKB involved in AS progression originated from CD8+ T cells. Moreover, we observed an abnormal tumor TNF pathway mediated by abnormal expression of TNF, NFKB, FOS, JUN, and JUNB, and scATAC-seq results confirmed the abnormal accessible binding sites of transcriptional factors FOS, JUN, and JUNB. The final magnetic bead sorting and quantitative real-time PCR(RT-qPCR) confirmed that NFKB, FOS, JUN, and JUNB in CD8+ T cells differed in the AS group. Conclusions: Our results revealed a possible mechanism by which NFKB abnormally regulates FOS, JUN, and JUNB and drives AS progression, providing a novel perspective from a single cell point of view in AS.


Assuntos
Espondilite Anquilosante/genética , Fatores de Transcrição/genética , Adulto , Sequenciamento de Cromatina por Imunoprecipitação , Feminino , Expressão Gênica , Humanos , Leucócitos Mononucleares/citologia , Masculino , RNA-Seq , Análise de Célula Única , Espondilite Anquilosante/imunologia , Adulto Jovem
4.
Clin Transl Immunology ; 10(4): e1277, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33968407

RESUMO

OBJECTIVES: This study aims to determine a role of interleukin-17A (IL-17) in salivary gland (SG) dysfunction and therapeutic effects of targeting IL-17 in SG for treating autoimmune sialadenitis in primary Sjögren's syndrome (pSS). METHODS: Salivary IL-17 levels and IL-17-secreting cells in labial glands of pSS patients were examined. Kinetic changes of IL-17-producing cells in SG from mice with experimental Sjögren's syndrome (ESS) were analysed. To determine a role of IL-17 in salivary secretion, IL-17-deficient mice and constructed chimeric mice with IL-17 receptor C (IL-17RC) deficiency in non-hematopoietic and hematopoietic cells were examined for saliva flow rates during ESS development. Both human and murine primary SG epithelial cells were treated with IL-17 for measuring cholinergic activation-induced calcium movement. Moreover, SG functions were assessed in ESS mice with salivary retrograde cannulation of IL-17 neutralisation antibodies. RESULTS: Increased salivary IL-17 levels were negatively correlated with saliva flow rates in pSS patients. Both IL-17-deficient mice and chimeric mice with non-hematopoietic cell-restricted IL-17RC deficiency exhibited no obvious salivary reduction while chimeric mice with hematopoietic cell-restricted IL-17RC deficiency showed significantly decreased saliva secretion during ESS development. In SG epithelial cells, IL-17 inhibited acetylcholine-induced calcium movement and downregulated the expression of transient receptor potential canonical 1 via promoting Nfkbiz mRNA stabilisation. Moreover, local IL-17 neutralisation in SG markedly attenuated hyposalivation and ameliorated tissue inflammation in ESS mice. CONCLUSION: These findings identify a novel function of IL-17 in driving salivary dysfunction during pSS development and may provide a new therapeutic strategy for targeting SG dysfunction in pSS patients.

5.
Front Med (Lausanne) ; 8: 792593, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35083248

RESUMO

Sjögren's syndrome (SS) is a chronic, systemic, inflammatory autoimmune disease characterized by lymphocyte proliferation and progressive damage to exocrine glands. The diagnosis of SS is challenging due to its complicated clinical manifestations and non-specific signs. Salivary gland biopsy plays an important role in the diagnosis of SS, especially with anti-Sjögren's syndrome antigen A (SSA) and anti-SSB antibody negativity. Histopathology based on biopsy has clinical significance for disease stratification and prognosis evaluation, such as risk assessment for the development of non-Hodgkin's lymphoma. Furthermore, histopathological changes of salivary gland may be implicated in evaluating the efficacy of biological agents in SS. In this review, we summarize the histopathological features of salivary gland, the mechanism of histopathological changes and their clinical significance, as well as non-invasive imaging techniques of salivary glands as a potential alternative to salivary gland biopsy in SS.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA