Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
FASEB J ; 38(9): e23624, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38747001

RESUMO

The Retinitis pigmentosa GTPase regulator interacting protein 1-like (RPGRIP1L) gene encodes an important protein that performs various physiological functions. Variants of RPGRIP1L are related to a number of diseases. However, it is currently unknown whether RPGRIP1L is correlated with breast invasive carcinoma (BRCA). In BRCA tissue specimens, the expression of RPGRIP1L was found to be elevated in comparison to its levels in normal breast tissue. A notable decline in survival rates was associated with patients exhibiting heightened RPGRIP1L gene expression. Consistent with these findings, our data also show the above results. Furthermore, elevated expression of RPGRIP1L corresponded with a spectrum of unfavorable clinicopathological features, including the presence of human epidermal growth factor receptor 2 (HER2) positive, estrogen receptor (ER) positive, over 60 years old, T2, N0, and N3. At the same time, our research indicated that 50 genes and 15 proteins were positively related to RPGRIP1L, and that these proteins and genes were mostly involved in T cell proliferation, immune response, cytokine activity, and metabolic regulation. In addition, in the present study, there was a significant correlation between RPGRIP1L expression and immune cell infiltration. Finally, we found that four Chemicals could downregulate the expression of RPGRIP1L. Altogether, our results strongly indicated that RPGRIP1L might serve as a new prognostic biomarker for BRCA.


Assuntos
Biomarcadores Tumorais , Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/imunologia , Neoplasias da Mama/patologia , Biomarcadores Tumorais/metabolismo , Biomarcadores Tumorais/genética , Prognóstico , Pessoa de Meia-Idade , Regulação Neoplásica da Expressão Gênica , Idoso , Adulto
2.
World J Surg Oncol ; 22(1): 128, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38725005

RESUMO

BACKGROUND: N6-methyladenosine (m6A) modification plays an important role in lung cancer. However, methyltransferase-like 14 (METTL14), which serves as the main component of the m6A complex, has been less reported to be involved in the immune microenvironment of lung cancer. This study aimed to analyze the relationship between METTL14 and the immune checkpoint inhibitor programmed death receptor 1 (PD-1) in lung cancer. METHODS: CCK-8, colony formation, transwell, wound healing, and flow cytometry assays were performed to explore the role of METTL14 in lung cancer progression in vitro. Furthermore, syngeneic model mice were treated with sh-METTL14 andan anti-PD-1 antibody to observe the effect of METTL14 on immunotherapy. Flow cytometry and immunohistochemical (IHC) staining were used to detect CD8 expression. RIP and MeRIP were performed to assess the relationship between METTL14 and HSD17B6. LLC cells and activated mouse PBMCs were cocultured in vitro to mimic immune cell infiltration in the tumor microenvironment. ELISA was used to detect IFN-γ and TNF-α levels. RESULTS: The online database GEPIA showed that high METTL14 expression indicated a poor prognosis in patients with lung cancer. In vitro assays suggested that METTL14 knockdown suppressed lung cancer progression. In vivo assays revealed that METTL14 knockdown inhibited tumor growth and enhanced the response to PD-1 immunotherapy. Furthermore, METTL14 knockdown enhanced CD8+T-cell activation and infiltration. More importantly, METTL14 knockdown increased the stability of HSD17B6 mRNA by reducing its m6A methylation. In addition, HSD17B6 overexpression promoted the activation of CD8+ T cells. CONCLUSION: The disruption of METTL14 contributed to CD8+T-cell activation and the immunotherapy response to PD-1 via m6A modification of HSD17B6, thereby suppressing lung cancer progression.


Assuntos
Linfócitos T CD8-Positivos , Inibidores de Checkpoint Imunológico , Neoplasias Pulmonares , Metiltransferases , Receptor de Morte Celular Programada 1 , Microambiente Tumoral , Animais , Camundongos , Metiltransferases/metabolismo , Metiltransferases/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Microambiente Tumoral/imunologia , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/metabolismo , Humanos , Ativação Linfocitária , Camundongos Endogâmicos C57BL , Proliferação de Células , Células Tumorais Cultivadas , Prognóstico , Imunoterapia/métodos , Feminino
3.
Int Immunopharmacol ; 134: 112258, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38744178

RESUMO

Ferroptosis, a form of regulated cell death (RCD), exhibits distinct characteristics such as iron-dependence and lipid peroxidation accumulation (ROS), setting it apart from other types of cell death like apoptosis and necrosis. Its role in cancer biology is increasingly recognized, particularly its potential interaction with tumor microenvironment (TME) and CD8 T cells in cancer immunotherapy. However, the impact of ferroptosis on TME cell infiltration remains unclear. In this study, we conducted unsupervised clustering analysis on patient data from public databases, identifying three ferroptosis patterns with distinct TME cell infiltration characteristics: immune-inflamed, immune-excluded, and immune-desert phenotypes. We developed a ferroptosis score based on differentially expressed genes (DEGs) among these patterns, which correlated with various biological features including chemotherapy-resistance and immune cells infiltration. Despite patients with high ferroptosis scores exhibiting worse prognosis, they showed increased likelihood of benefiting from immunotherapy. Our findings highlight the importance of ferroptosis-related patterns in understanding TME cell infiltration and suggest novel strategies for drug combinations and immune-related therapies.

4.
ACS Nano ; 18(15): 10542-10556, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38561324

RESUMO

Immunotherapy has emerged as a potential approach for breast cancer treatment. However, the rigid stromal microenvironment and low immunogenicity of breast tumors strongly reduce sensitivity to immunotherapy. To sensitize patients to breast cancer immunotherapy, hyaluronic acid-modified zinc peroxide-iron nanocomposites (Fe-ZnO2@HA, abbreviated FZOH) were synthesized to remodel the stromal microenvironment and increase tumor immunogenicity. The constructed FZOH spontaneously generated highly oxidative hydroxyl radicals (·OH) that degrade hyaluronic acid (HA) in the tumor extracellular matrix (ECM), thereby reshaping the tumor stromal microenvironment and enhancing blood perfusion, drug penetration, and immune cell infiltration. Furthermore, FZOH not only triggers pyroptosis through the activation of the caspase-1/GSDMD-dependent pathway but also induces ferroptosis through various mechanisms, including increasing the levels of Fe2+ in the intracellular iron pool, downregulating the expression of FPN1 to inhibit iron efflux, and activating the p53 signaling pathway to cause the failure of the SLC7A11-GSH-GPX4 signaling axis. Upon treatment with FZOH, 4T1 cancer cells undergo both ferroptosis and pyroptosis, exhibiting a strong immunogenic response. The remodeling of the tumor stromal microenvironment and the immunogenic response of the cells induced by FZOH collectively compensate for the limitations of cancer immunotherapy and significantly enhance the antitumor immune response to the immune checkpoint inhibitor αPD-1. This study proposes a perspective for enhancing immune therapy for breast cancer.


Assuntos
Neoplasias da Mama , Neoplasias , Humanos , Feminino , Neoplasias da Mama/terapia , Ácido Hialurônico , Imunoterapia , Peróxidos , Zinco , Microambiente Tumoral , Linhagem Celular Tumoral
5.
Int J Gen Med ; 17: 1233-1251, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38562210

RESUMO

Background: Breast cancer (BC) continues to pose a substantial challenge to global health, necessitating an enhanced understanding of its fundamental mechanisms. Among its various pathological classifications, breast invasive carcinoma (BRCA) is the most prevalent. The role of the transcription factor forkhead box P3 (FOXP3), associated with regulatory T cells, in BRCA's diagnosis and prognosis remains insufficiently explored, despite its recognized importance. Methods: We examined the mRNA expression profile of FOXP3 in BRCA patients, assessing its correlation with disease detection, patient survival, immune checkpoint alterations, and response to anticancer drugs. Results: Our analysis revealed significantly elevated FOXP3 mRNA levels in BRCA patients, with a 95.7% accuracy for BRCA detection based on the area under the curve. High FOXP3 mRNA levels were positively correlated with overall survival and showed significant associations with CTLA4, CD274, PDCD1, TMB, and immune cell infiltration status. Furthermore, FOXP3 mRNA expression was linked to the efficacy of anticancer drugs and the tumor inflammation signature. Discussion: These findings suggest that FOXP3 serves as a promising biomarker for BRCA, offering valuable insights into its diagnosis and prognosis. The correlation between FOXP3 expression and immune checkpoint alterations, along with its predictive value for treatment response, underscores its potential in guiding therapeutic strategies. Conclusion: FOXP3 stands out as an influential factor in BRCA, highlighting its diagnostic accuracy and prognostic value. Its association with immune responses and treatment efficacy opens new avenues for research and clinical applications, positioning FOXP3 as a vital target for further investigation in BRCA management.

6.
Food Funct ; 15(8): 4292-4309, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38526853

RESUMO

Asthma is a chronic inflammatory disorder in airways with typical pathologic features of airway inflammation and mucus hypersecretion. α-Terpineol is a monocyclic terpene found in many natural plants and foods. It has been reported to possess a wide range of pharmacological activities including anti-inflammatory and expectorant effects. However, the role of α-terpineol in asthma and its potential protective mechanism have not been well elucidated. This study is designed to investigate the pharmacological effect and mechanism of α-terpineol on asthmatic mice using the metabolomics platform. A murine model of asthma was established using ovalbumin (OVA) sensitization and then challenged for one week. The leukocyte count and inflammatory cytokines in the bronchoalveolar lavage fluid (BALF), lung histopathology, inflammatory  infiltrate and mucus secretion were evaluated. An ultra-high performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS)-based metabolomics study was performed on lung tissues and serum to explore endogenous small molecule metabolites affected by α-terpineol in asthmatic mice. After α-terpineol treatment, leukocyte count, inflammatory cytokines in the BALF, and peribronchial inflammation infiltration were significantly downregulated. Goblet cell hyperplasia and mucus secretion were attenuated, with the level of Muc5ac in BALF decreased. These results proved the protective effect of α-terpineol against airway inflammation, mucus hypersecretion and Th1/Th2 immune imbalance. To further investigate the underlying mechanisms of α-terpineol in asthma treatment, UPLC-MS/MS-based metabolomics analysis was performed. 26 and 15 identified significant differential metabolites were found in the lung tissues and serum of the control, model and α-terpineol groups, respectively. Based on the above differential metabolites, enrichment analysis showed that arachidonic acid (AA) metabolism was reprogrammed in both mouse lung tissues and serum. 5-Lipoxygenase (5-LOX) and cysteinyl leukotrienes (CysLTs) are the key enzyme and the end product of AA metabolism, respectively. In-depth studies have shown that pretreatment with α-terpineol can alleviate asthma by decreasing the AA level, downregulating the expression of 5-LOX and reducing the accumulation of CysLTs in mouse lung tissues. In summary, this study demonstrates that α-terpineol is a potential agent that can prevent asthma via regulating disordered AA metabolism.


Assuntos
Ácido Araquidônico , Asma , Líquido da Lavagem Broncoalveolar , Monoterpenos Cicloexânicos , Pulmão , Metabolômica , Camundongos Endogâmicos BALB C , Animais , Asma/tratamento farmacológico , Asma/metabolismo , Camundongos , Monoterpenos Cicloexânicos/farmacologia , Ácido Araquidônico/metabolismo , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Feminino , Modelos Animais de Doenças , Citocinas/metabolismo , Ovalbumina , Espectrometria de Massas em Tandem , Mucina-5AC/metabolismo , Cromatografia Líquida de Alta Pressão
7.
Biomed Chromatogr ; 38(4): e5826, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38205667

RESUMO

Artemisia argyi H.Lév. & Vaniot essential oil (AAEO) has shown pharmacological effects such as anti-inflammation, antioxidant, and anti-tumor properties. However, the protective effect of AAEO on lipopolysaccharide (LPS)-induced liver injury and its potential protective mechanism are still unclear. In this study, we used ultra-performance liquid chromatography tandem mass spectrometry metabolomics techniques to investigate the changes in liver tissue metabolites in mice exposed to LPS with or without AAEO treatment for 14 days. The biochemical results showed that compared with the control group, AAEO significantly reduced the levels of liver functional enzymes, suggesting a significant improvement in liver injury. In addition, the 18 differential metabolites identified by metabolomics were mainly involved in the reprogramming of arachidonic acid metabolism, tryptophan metabolism, and purine metabolism. AAEO could significantly inhibit the expression of COX-2, IDO1, and NF-κB; enhance the body's anti-inflammatory ability; and alleviate liver injury. In summary, our study identified the protective mechanism of AAEO on LPS-induced liver injury at the level of small molecular metabolites, providing a potential liver protective agent for the treatment of LPS-induced liver injury.


Assuntos
Artemisia , Doença Hepática Crônica Induzida por Substâncias e Drogas , Óleos Voláteis , Camundongos , Animais , Artemisia/química , Óleos Voláteis/farmacologia , Lipopolissacarídeos/efeitos adversos , Espectrometria de Massas em Tandem , Espectrometria de Massa com Cromatografia Líquida , Metabolômica
8.
Comput Biol Med ; 169: 107975, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38199212

RESUMO

BACKGROUND: Liquid-liquid phase separation (LLPS) enhances oncogenic signaling pathways and advances cancer progression, and has been proposed as a promising cancer biomarker and intervention target. Nevertheless, doubts remain about the prognostic importance of LLPS-related long non-coding RNAs (lncRNAs) in hepatocellular carcinoma (HCC). METHODS: An LLPS-related lncRNA prognostic signature was generated by drivers and regulators of LLPS, and was validated in external datasets. The underlying genetic changes and functional enrichment of the signature were assessed. The drug sensitivity and response to immunotherapy were predicted in patients categorized as high-risk and low-risk. Clinical samples, phase separation agonist, and dispersant were used to identify lncRNAs with the most significant expression change. Cancer cells with ZNF32-AS2 expression regulation were subjected to colony formation assay, scratch test assay, migration and invasion assay, sorafenib resistance assay, and xenograft tumor model. RESULTS: The signature of LLPS-related hub lncRNAs identified through Weighted Gene Co-Expression Network Analysis showed outstanding performance in training and external validation cohorts consistently, and the molecular characteristics varied between different risk groups. Potential drugs for high-risk individuals were identified, and low-risk individuals demonstrated a more favorable reaction to immunotherapy. ZNF32-AS2 showed the most significant expression change in phase separation agonist and dispersant treatment. ZNF32-AS2 promoted the proliferation, mobility, and sorafenib resistance of liver cancer cells. CONCLUSIONS: The LLPS-related lncRNA signature may help assess prognosis and predict treatment efficacy in clinical settings. LLPS-related ZNF32-AS2 promoted the proliferation, mobility, and sorafenib resistance of liver cancer cells, and may be a novel potential biomarker in hepatocellular carcinoma.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , RNA Longo não Codificante , Humanos , Biomarcadores Tumorais/genética , Carcinoma Hepatocelular/patologia , Fatores de Transcrição Kruppel-Like , Neoplasias Hepáticas/patologia , Separação de Fases , Prognóstico , RNA Longo não Codificante/genética , Sorafenibe
9.
Anal Chim Acta ; 1288: 342158, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38220290

RESUMO

BACKGROUND: Cellular response to pharmacological action of drugs is significant for drug development. Traditional detection method for cellular response to drugs normally rely on cell proliferation assay and metabolomics examination. In principle, these analytical methods often required cell labeling, invasion analysis, and hours of co-culture with drugs, which are relatively complex and time-consuming. Moreover, these methods can only indicate the drug effectiveness on cell colony rather than single cells. Thus, to meet the requirements of personal precision medicine, the development of drug response analysis on the high resolution of single cell is demanded. RESULTS: To provide precise result for drug response on single-cell level, a microfluidic platform coupled with the label-free hyperspectral imaging was developed. With the help of horizontal single-cell trapping sieves, hundreds of single cells were trapped independently in microfluidic channels for the purposes of real-time drug delivery and single-cell hyperspectral image recording. To significantly identify the cellular hyperspectral change after drug stimulation, the differenced single-cell spectrum was proposed. Compared with the deep learning classification method based on hyperspectral images, an optimal performance can be achieved by the classification strategy based on differenced spectra. And the cellular response to different reagents, for example, K+, Epidermal Growth Factor (EGF), and Gefitinib at different concentrations can be accurately characterized by the differenced single-cell spectra analysis. SIGNIFICANCE AND NOVELTY: The high-throughput, rapid analysis of cellular response to drugs at the single-cell level can be accurately performed by our platform. After systematically analyzing the materials and the structures of the single-cell microfluidic chip, the optimal single-cell trapping method was proposed to contribute to the further application of hyperspectral imaging on microfluidic single-cell analysis. And the hyperspectral characterization of single-cell with cancer drug stimulation proved the application potential of our method in personal cancer medication.


Assuntos
Imageamento Hiperespectral , Microfluídica , Microfluídica/métodos , Preparações Farmacêuticas , Técnicas de Cocultura , Análise de Célula Única
10.
Cell Death Dis ; 15(1): 102, 2024 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-38291031

RESUMO

Early metastasis is the primary factor in the very poor prognosis of pancreatic ductal adenocarcinoma (PDAC), with liver metastasis being the most common form of distant metastasis in PDAC. To investigate the mechanism of PDAC liver metastasis, we found that PDAC cells can promote the formation of pre-metastatic niches (PMNs) through exosomes to facilitate liver metastasis in the early stage. In our study, hepatic stellate cells (HSCs) were treated with PDAC-derived exosomes (PDAC-exo), and the activation of HSCs was detected. A novel transfer RNA-derived fragment, the tRF-GluCTC-0005 was obtained by small RNA sequencing from serum exosomes of PDAC patients. Bioinformatics analysis and RNA pull-down assays revealed the interaction between WDR1 and tRF-GluCTC-0005. A KPC transgenic mouse model and an AAV-mediated sh-WDR1 mouse model were used to detect the mechanism of liver metastasis in vivo. Finally, the dual luciferase reporter assay, protein mutation truncation assay, Co-IP assay, and flow cytometry assay were used to explore the molecular mechanism in HSCs activation and PMNs formation. We found that the tRF-GluCTC-0005 in exosomes binds to the 3' untranslated region of the mRNA of the WDRl in HSCs and increases mRNA stability. The N-terminals of WDR1 bind to the YAP protein directly, inhibit YAP phosphorylation, and promote the expression of YAP transcription factors. The tRF-GluCTC-0005 in PDAC-exo significantly recruits myeloid-derived suppressor cells (MDSCs) in the liver, creating a PMNs immunosuppressive microenvironment and further advancing liver metastasis from PDAC. Our results suggest that the key of PDAC liver metastasis is the activation of HSCs through upregulation of WDR1 by tRF-GluCTC-0005 in exosomes, which mediates the infiltration of MDSCs to form PMNs.


Assuntos
Carcinoma Ductal Pancreático , Exossomos , Neoplasias Hepáticas , Neoplasias Pancreáticas , Humanos , Animais , Camundongos , Células Estreladas do Fígado/metabolismo , Exossomos/metabolismo , Linhagem Celular Tumoral , Neoplasias Pancreáticas/patologia , Carcinoma Ductal Pancreático/patologia , Neoplasias Hepáticas/patologia , RNA de Transferência/metabolismo , Microambiente Tumoral
11.
Talanta ; 271: 125637, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38237284

RESUMO

Neuronal activity can be modulated by mechanical stress in the central nervous system (CNS) in neurodegenerative diseases, for example Alzheimer's disease. However, the impact of mechanical stress on chemical signal transmission, especially the storage and release of neurotransmitter in neuron vesicles, has not been fully clarified. In this study, a nanotip conical carbon fiber microelectrode (CFME) and a disk CFME are placed in and on a cell, respectively. The nanotip conical CFME functions for both the mechanical stress and the quantification of transmitter storage in single vesicles, while the disk CFME is used to monitor the transmitter release during exocytosis induced by mechanical stress at the same cell. By comparing the vesicular transmitter storage with its release during mechanical stress-induced exocytosis at the same cell, we find the release ratio of transmitter in chromaffin cells varies from 27 % to 100 %, while for PC12 cells from 30 % to 100 %. Our results indicate that the exocytosis of cells responding to mechanical stress shows individual difference obviously, with a significant population exhibiting partial release mode. The variation of Ca2+ channels and mechanosensitive ion channels on cell membrane may both contribute to this variation. Our discovery not only shows mechanical stress can change the transmission of cellular chemical signals at the vesicle level, but also provides an important reference perspective for the study of nervous system regulation and nervous system diseases.


Assuntos
Catecolaminas , Células Cromafins , Ratos , Animais , Estresse Mecânico , Células Cromafins/metabolismo , Células PC12 , Exocitose/fisiologia
12.
Adv Sci (Weinh) ; 11(9): e2306955, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38084450

RESUMO

The lack of efficient biomarkers for the early detection of gastric cancer (GC) contributes to its high mortality rate, so it is crucial to discover novel diagnostic targets for GC. Recent studies have implicated the potential of site-specific glycans in cancer diagnosis, yet it is challenging to perform highly reproducible and sensitive glycoproteomics analysis on large cohorts of samples. Here, a highly robust N-glycoproteomics (HRN) platform comprising an automated enrichment method, a stable microflow LC-MS/MS system, and a sensitive glycopeptide-spectra-deciphering tool is developed for large-scale quantitative N-glycoproteome analysis. The HRN platform is applied to analyze serum N-glycoproteomes of 278 subjects from three cohorts to investigate glycosylation changes of GC. It identifies over 20 000 unique site-specific glycans from discovery and validation cohorts, and determines four site-specific glycans as biomarker candidates. One candidate has branched tetra-antennary structure capping with sialyl-Lewis antigen, and it significantly outperforms serum CEA with AUC values > 0.89 compared against < 0.67 for diagnosing early-stage GC. The four-marker panel can provide improved diagnostic performances. Besides, discrimination powers of four candidates are also testified with a verification cohort using PRM strategy. This findings highlight the value of this strong tool in analyzing aberrant site-specific glycans for cancer detection.


Assuntos
Neoplasias Gástricas , Espectrometria de Massas em Tandem , Humanos , Cromatografia Líquida/métodos , Espectrometria de Massas em Tandem/métodos , Neoplasias Gástricas/diagnóstico , Glicosilação , Biomarcadores , Polissacarídeos/química
13.
Int Immunopharmacol ; 126: 111200, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-37988913

RESUMO

Tumor-associated macrophages (TAMs) are a highly abundant cell population within the tumor microenvironment of oral squamous cell carcinomas (OSCC). Recent studies have identified an intricate cross-talk between cancer cells and macrophages in the tumor microenvironment. However, the underlying mechanism remains unclear. High-mobility group box 1 (HMGB1) was linked to metastasis and an unfavorable prognosis in head and neck squamous cell carcinoma. Furthermore, it was significantly upregulated in moderately differentiated OSCC tissues and the OSCC cell lines CAL27 and SCC9. HMGB1 knockdown impedes the ability of TAMs to induce invasion and migration of OSCC cells. Phenotypic changes in macrophages were measured after incubation of supernatant from OSCC cells transfected with HMGB1 siRNA or supplemented with recombinant HMGB1. HMGB1 induced M1 polarization of macrophages and the secretion of IL-6 via the NF-κB pathway, contributing to the OSCC malignant migration. HMGB1 originating from OSCC cells, along with its downstream signaling pathways, holds promise as a potential therapeutic target for mitigating metastasis and improving the survival rate of OSCC.


Assuntos
Carcinoma de Células Escamosas , Proteína HMGB1 , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço , Carcinoma de Células Escamosas/genética , NF-kappa B/metabolismo , Neoplasias Bucais/genética , Neoplasias Bucais/metabolismo , Neoplasias Bucais/patologia , Interleucina-6 , Macrófagos Associados a Tumor/metabolismo , Proteína HMGB1/genética , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Microambiente Tumoral
14.
Adv Clin Exp Med ; 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37747441

RESUMO

BACKGROUND: Human umbilical cord mesenchymal stem cell (hucMSC)-derived exosomes have been reported to be effective in the treatment of cancer. The miR-214-3p is a suppressor miRNA that has been extensively studied and has been proposed as a diagnostic and prognostic biomarker in some cancers. OBJECTIVES: The aim of this study was to investigate whether the regulatory mechanism of hucMSC-derived exosomal miR-214-3p with GLUT1 and ACLY affects the proliferation and apoptosis of gallbladder cancer (GBC) cells. MATERIAL AND METHODS: We found that the target genes of miR-214-3p on the TargetScan website contain GLUT1 and ACLY, and the targeting relationship was verified using luciferases. The GBC-SD cells overexpressing GLUT1 and ACLY were constructed to determine proliferation, apoptosis, migration, and other cellular activities. RESULTS: We identified hucMSCs and exosomes, and found that the exosomes contained miR-214-3p. Furthermore, TargetScan predicted that miR-214-3p had base interactions with ACLY. Dual luciferase assays showed that miR-214-3p could inhibit ACLY (p < 0.05). The results of quantitative reverse transcription polymerase chain reaction (RT-qPCR) and western blot showed that exosomal miR-214-3p could inhibit the expression of ACLY and GLUT1 (p < 0.05). Exosomal miR-214-3p can inhibit the proliferation, cloning and migration of GBC-SD cells (p < 0.05). The apoptosis of GBC-SD cells was increased (p < 0.05). The GBC-SD cells overexpressing ACLY and GLUT1 could reverse the efficacy of miR-214-3p. CONCLUSIONS: Exosomal miR-214-3p can inhibit the downstream expression of ACLY and GLUT1. The ACLY and GLUT1 could affect the proliferation and apoptosis of GBC-SD cells.

15.
Altern Ther Health Med ; 29(7): 394-399, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37535911

RESUMO

Objective: To evaluate the clinical value of serum miR-124 and miR-200C combined with ultrasound NT in screening Down syndrome (DS) in elderly puerperae during the second trimester. Methods: 84 elderly pregnant women at high risk of DS were included (DS group: 58, non-DS group: 26). Serum markers (uE3, ß-hCG, AFP, miR-124, and miR-200C) were measured. Differences in markers between groups were analyzed, and a prediction model was used for DS evaluation. Results: The DS group showed higher smoking, drinking, and radiation exposure rates (P < .05). MOM values of ß-hCG and AFP were higher, while MOM value of uE3 was lower in the DS group (P < .05). MiR-124 and miR-200C were up-regulated in the DS group (P < .05). The prediction model and ROC curve analysis indicated the diagnostic value of the markers for DS (AUC = 0.779, 0.817, 0.780, 0.884, 0.887, P < .05). MiR-124 had the highest diagnostic specificity. Conclusion: MiR-124 and miR-200C can serve as auxiliary serum markers for early screening of DS in elderly puerperae during the second trimester.


Assuntos
Síndrome de Down , MicroRNAs , Gravidez , Humanos , Feminino , Idoso , Segundo Trimestre da Gravidez , Síndrome de Down/diagnóstico , Gonadotropina Coriônica Humana Subunidade beta , alfa-Fetoproteínas/análise , Biomarcadores
16.
Anal Chem ; 95(19): 7448-7457, 2023 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-37146305

RESUMO

Both N-linked glycosylation and O-linked glycosylation play essential roles in the onset and progression of various diseases including cancer, and N-/O-linked site-specific glycans have been proven to be promising biomarkers for the discrimination of cancer. However, the micro-heterogeneity and low abundance nature of N-/O-linked glycosylation, as well as the time-consuming and tedious procedures for the enrichment of O-linked intact glycopeptides, pose great challenges for their efficient and accurate characterization. In this study, we developed an integrated platform for the simultaneous enrichment and characterization of N- and O-linked intact glycopeptides from the same serum sample. By fine-tuning the experimental conditions, we demonstrated that this platform allowed the selective separation of N- and O-linked intact glycopeptides into two fractions, with 85.1% O-linked intact glycopeptides presented in the first fraction and 93.4% N-linked intact glycopeptides presented in the second fraction. Determined with high reproducibility, this platform was further applied to the differential analysis of serum samples of gastric cancer and health control, which revealed 17 and 181 significantly changed O-linked and N-linked intact glycopeptides. Interestingly, five glycoproteins containing both significant regulation of N- and O-glycosylation were observed, hinting potential co-regulation of different types of glycosylation during tumor progress. In summary, this integrated platform opened a potentially useful avenue for the global analysis of protein glycosylation and can serve as a useful tool for the characterization of N-/O-linked intact glycopeptides at the proteomics scale.


Assuntos
Glicopeptídeos , Glicoproteínas , Glicopeptídeos/análise , Reprodutibilidade dos Testes , Glicoproteínas/química , Glicosilação , Proteômica/métodos
17.
J Clin Immunol ; 43(4): 756-768, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36662455

RESUMO

PURPOSE: Summarize the characteristics of a large cohort of BCG disease and compare differences in clinical characteristics and outcomes among different genotypes and between primary immunodeficiency disease (PID) and patients without identified genetic etiology. METHODS: We collected information on patients with BCG disease in our center from January 2015 to December 2020 and divided them into four groups: chronic granulomatous disease (CGD), Mendelian susceptibility to mycobacterial disease (MSMD), severe combined immunodeficiency disease (SCID), and gene negative group. RESULTS: A total of 134 patients were reviewed, and most of them had PID. A total of 111 (82.8%) patients had 18 different types of pathogenic gene mutations, most of whom (91.0%) were classified with CGD, MSMD, and SCID. CYBB was the most common gene mutation (52/111). BCG disease behaves differently in individuals with different PIDs. Significant differences in sex (P < 0.001), age at diagnosis (P = 0.013), frequency of recurrent fever (P = 0.007), and vaccination-homolateral axillary lymph node enlargement (P = 0.039) and infection severity (P = 0.006) were noted among the four groups. The CGD group had the highest rate of males and the oldest age at diagnosis. The MSMD group had the highest probability of disseminated infection (48.3%). The course of anti-tuberculosis treatment and the survival time between patients with PID and without identified genetic etiology were similar. CONCLUSION: Greater than 80% of BCG patients have PID; accordingly, gene sequencing should be performed in patients with BCG disease for early diagnosis. BCG disease behaves differently in patients with different types of PID. Patients without identified genetic etiology had similar outcomes to PID patients, which hints that they may have pathogenic gene mutations that need to be discovered.


Assuntos
Doença Granulomatosa Crônica , Infecções por Mycobacterium , Imunodeficiência Combinada Severa , Criança , Humanos , Masculino , População do Leste Asiático , Doença Granulomatosa Crônica/diagnóstico , Doença Granulomatosa Crônica/epidemiologia , Doença Granulomatosa Crônica/genética , Infecções por Mycobacterium/diagnóstico , Infecções por Mycobacterium/epidemiologia , Infecções por Mycobacterium/genética , Estudos Retrospectivos , Imunodeficiência Combinada Severa/diagnóstico , Imunodeficiência Combinada Severa/epidemiologia , Imunodeficiência Combinada Severa/genética , Feminino
18.
Int J Mol Sci ; 24(1)2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36614179

RESUMO

Oral squamous cell carcinoma (OSCC) has a five-year survival rate of less than 50% due to its susceptibility to invasion and metastasis. Crosstalk between tumor cells and macrophages has been proven to play a critical role in tumor cell migration and invasion. However, the specific mechanisms by which tumor cells interact with macrophages have not been fully elucidated. This study sought to investigate the regulatory mechanism of tumor cell-derived alpha-enolase (ENO1) in the interaction between tumor cells and macrophages during OSCC progression. Small interfering RNA (siRNA) transfection and recombinant human ENO1 (rhENO1) stimulation were used to interfere with the interaction between tumor cells and macrophages. Our results showed that ENO1 was expressed higher in CAL27 cells than in HaCaT cells and regulated lactic acid release in CAL27 cells. Conditioned medium of macrophages (Macro-CM) significantly up-regulated the ENO1 mRNA expression and protein secretion in CAL27 cells. ENO1 promoted the migration and invasion of tumor cells by facilitating the epithelial-mesenchymal transition (EMT) through macrophages. ENO1 orchestrated the IL-6 secretion of macrophages via tumor cell-derived lactic acid and the paracrine ENO1/Toll-like receptor (TLR4) signaling pathway. In turn, IL-6 promoted the migration and invasion of tumor cells. Collectively, ENO1 promotes tumor cell migration and invasion by orchestrating IL-6 secretion of macrophages via a dual mechanism, thus forming a positive feedback loop to promote OSCC progression. ENO1 might be a promising therapeutic target which is expected to control OSCC progression.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Humanos , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , Neoplasias Bucais/patologia , Interleucina-6/genética , Interleucina-6/metabolismo , Retroalimentação , Linhagem Celular Tumoral , Macrófagos/metabolismo , RNA Interferente Pequeno/metabolismo , Fosfopiruvato Hidratase/genética , Fosfopiruvato Hidratase/metabolismo , Neoplasias de Cabeça e Pescoço/metabolismo , Movimento Celular/fisiologia , Proliferação de Células , Transição Epitelial-Mesenquimal/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo
19.
Front Endocrinol (Lausanne) ; 13: 995972, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36246907

RESUMO

Glucose-6-phosphate isomerase (GPI) plays an important part in gluconeogenesis and glycolysis through the interconversion of d-glucose-6-phosphate and d-fructose-6-phosphate, and its clinical significance still remains unclear in breast cancer (BRCA). We analyzed the expressions of GPI in BRCA patients to determine prognostic values. Our results showed that the expression levels of GPI were upregulated in BRCA patients, and a high GPI expression is correlated with poor overall survival (OS) in BRCA. At the same time, a high GPI expression is correlated with poor clinicopathological characteristics, such as stage III, over 60 years old, N3, HER2 negative, and estrogen receptor (ER) positive. Further analysis of the influence of GPI on the prognosis of BRCA suggested that 50 genes and 10 proteins were positively correlated with GPI, and these genes and proteins were mainly involved in cell cycle signaling pathways. In addition, in this study, we observed that GPI was closely related to N 6-methyladenosine (m6A) RNA methylation modification and immune cell infiltration and ferroptosis-related gene expression in BRCA, and there was a difference in m6A RNA methylation alterations, immune cell infiltration, and ferroptosis-related gene expression between the high GPI expression group and the low GPI expression group. Finally, we found that GPI in BRCA had 2.6% gene alterations, and BRCA patients with gene alteration of GPI had a poor prognosis in disease-free survival (DFS). Altogether, our work strongly suggested that GPI may serve as a new prognostic biomarker for BRCA patients.


Assuntos
Neoplasias da Mama , Biomarcadores , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/genética , Feminino , Glucose-6-Fosfato , Glucose-6-Fosfato Isomerase/análise , Glucose-6-Fosfato Isomerase/genética , Glucose-6-Fosfato Isomerase/metabolismo , Humanos , Pessoa de Meia-Idade , Prognóstico , RNA , Receptores de Estrogênio
20.
J Pharm Biomed Anal ; 220: 114984, 2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-35994945

RESUMO

A simple, rapid, sensitive and specific LC-MS/MS method was developed and validated for the quantitative determination of doxylamine in human plasma, using isotope doxylamine-d5 as internal standard (IS). The detection was conducted on a QTRAP 5500 tandem mass spectrometer coupled with electrospray ionization (ESI) source in positive ion mode. Quantification was achieved by positive electrospray ionization containing multiple reaction monitoring (MRM) transitions of m/z 271.0→182.0 for doxylamine and m/z 276.2→187.3 for IS. The mobile phase A was methanol, and mobile phase B was 20 mM ammonium acetate (0.2 % formic acid) in water, using a gradient elution procedure at a flow rate of 0.6 mL/min. The method was validated with a sensitivity of 0.500 ng/mL and a linear concentration range of 0.500-200 ng/mL. The inter-batch precision (%CV) was less than 5.4 %, and the accuracy deviation (%RE) ranged from - 10.6 % to 3.7 %; the inter-batch precision (%CV) was less than 6.6 %, and the accuracy deviation (%RE) was ranged from - 2.7 % to 0.1 %. The selectivity, sensitivity, extraction recovery, matrix effect, carryover, dilution reliability, stability and other characteristics were within the acceptable range. This validated method was successfully applied to a bioequivalence study that orally administered 25 mg of doxylamine succinate tablets in 60 healthy Chinese volunteers.


Assuntos
Doxilamina/sangue , Doxilamina/farmacocinética , Antagonistas dos Receptores Histamínicos H1/sangue , Antagonistas dos Receptores Histamínicos H1/farmacocinética , Espectrometria de Massas em Tandem/métodos , Administração Oral , China , Cromatografia Líquida/métodos , Doxilamina/administração & dosagem , Voluntários Saudáveis , Antagonistas dos Receptores Histamínicos H1/administração & dosagem , Humanos , Metanol , Reprodutibilidade dos Testes , Espectrometria de Massas por Ionização por Electrospray , Comprimidos , Equivalência Terapêutica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA