Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biomed Pharmacother ; 175: 116613, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38657502

RESUMO

Diabetic cardiomyopathy (DCM) contributes significantly to the heightened mortality rate observed among diabetic patients, with myocardial fibrosis (MF) being a pivotal element in the disease's progression. Hydrogen sulfide (H2S) has been shown to mitigate MF, but the specific underlying mechanisms have yet to be thoroughly understood. A connection has been established between the evolution of DCM and the incidence of cardiomyocyte pyroptosis. Our research offers insights into H2S protective impact and its probable mode of action against DCM, analyzed through the lens of MF. In this study, a diabetic rat model was developed using intraperitoneal injections of streptozotocin (STZ), and hyperglycemia-stimulated cardiomyocytes were employed to replicate the cellular environment of DCM. There was a marked decline in the expression of cystathionine γ-lyase (CSE), a catalyst for H2S synthesis, in both the STZ-induced diabetic rats and hyperglycemia-stimulated cardiomyocytes. Experimental results in vivo indicated that H2S ameliorates MF and enhances cardiac functionality in diabetic rats by mitigating cardiomyocyte pyroptosis. In vitro assessments highlighted the induction of cardiomyocyte pyroptosis and the subsequent decline in cell viability under hyperglycemic conditions. However, the administration of sodium hydrosulfide (NaHS) curtailed cardiomyocyte pyroptosis and augmented cell viability. In contrast, propargylglycine (PAG), a CSE inhibitor, reversed the effects rendered by NaHS administration. Additional exploration indicated that the mitigating effect of H2S on cardiomyocyte pyroptosis is modulated through the ROS/NLRP3 pathway. In essence, our findings corroborate the potential of H2S in alleviating MF in diabetic subjects. This therapeutic effect is likely attributable to the regulation of cardiomyocyte pyroptosis via the ROS/NLRP3 pathway. This discovery furnishes a prospective therapeutic target for the amelioration and management of MF associated with diabetes.

2.
Viruses ; 14(6)2022 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-35746759

RESUMO

China is the country with the largest number of domestic small ruminants in the world. Recently, the intensive and large-scale sheep/goat raising industry has developed rapidly, especially in nonpastoral regions. Frequent trading, allocation, and transportation result in the introduction and prevalence of new pathogens. Several new viral pathogens (peste des petits ruminants virus, caprine parainfluenza virus type 3, border disease virus, enzootic nasal tumor virus, caprine herpesvirus 1, enterovirus) have been circulating and identified in China, which has attracted extensive attention from both farmers and researchers. During the last decade, studies examining the etiology, epidemiology, pathogenesis, diagnostic methods, and vaccines for these emerging viruses have been conducted. In this review, we focus on the latest findings and research progress related to these newly identified viral pathogens in China, discuss the current situation and problems, and propose research directions and prevention strategies for different diseases in the future. Our aim is to provide comprehensive and valuable information for the prevention and control of these emerging viruses and highlight the importance of surveillance of emerging or re-emerging viruses.


Assuntos
Doenças das Cabras , Peste dos Pequenos Ruminantes , Vírus da Peste dos Pequenos Ruminantes , Doenças dos Ovinos , Animais , China/epidemiologia , Cabras , Ovinos
3.
Viruses ; 13(7)2021 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-34372499

RESUMO

Caprine herpesvirus 1 (CpHV-1) is a member of the alpha subfamily of herpesviruses, which is responsible for genital lesions and latent infections in goat populations worldwide. In this study, for the first time, the transcriptome and proteomics of CpHV-1 infected Madin Darby bovine kidney (MDBK) cells were explored using RNA-Sequencing (RNA-Seq) and isobaric tags for relative and absolute quantitation-liquid chromatography tandem mass spectrometry (iTRAQ-LC-MS/MS) technology, respectively. RNA-Seq analysis revealed 81 up-regulated and 19 down-regulated differentially expressed genes (DEGs) between infected and mock-infected MDBK cells. Bioinformatics analysis revealed that most of these DEGs were mainly involved in the innate immune response, especially the interferon stimulated genes (ISGs). Gene Ontology (GO) enrichment analysis results indicated that the identified DEGs were significantly mainly enriched for response to virus, defense response to virus, response to biotic stimulus and regulation of innate immune response. Viral carcinogenesis, the RIG-I-like receptor signaling pathway, the cytosolic DNA-sensing pathway and pathways associated with several viral infections were found to be significantly enriched in the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway database. Eleven selected DEGs (Mx1, RSAD2, IFIT1, IFIT2, IFIT5, IFIH1, IFITM3, IRF7, IRF9, OAS1X and OAS1Y) associated with immune responses were selected, and they exhibited a concordant direction both in RNA-Seq and quantitative real-time RT-PCR analysis. Proteomic analysis also showed significant up-regulation of innate immunity-related proteins. GO analysis showed that the differentially expressed proteins were mostly enriched in defense response and response to virus, and the pathways associated with viral infection were enriched under KEGG analysis. Protein-protein interaction network analysis indicated most of the DEGs related to innate immune responses, as DDX58(RIG-I), IFIH1(MDA5), IRF7, Mx1, RSAD2, OAS1 and IFIT1, were located in the core of the network and highly connected with other DGEs. Our findings support the notion that CpHV-1 infection induced the transcription and protein expression alterations of a series of genes related to host innate immune response, which helps to elucidate the resistance of host cells to viral infection and to clarify the pathogenesis of CpHV-1.


Assuntos
Perfilação da Expressão Gênica , Hepatócitos/virologia , Imunidade Inata/genética , Proteômica , Regulação para Cima , Varicellovirus/genética , Animais , Bovinos , Linhagem Celular , Cromatografia Líquida , Biologia Computacional , Imunidade Inata/imunologia , Rim/citologia , Rim/virologia , Análise de Sequência de RNA , Espectrometria de Massas em Tandem , Transcriptoma , Varicellovirus/fisiologia , Replicação Viral/genética
4.
Res Vet Sci ; 138: 167-177, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34153557

RESUMO

Adhesion molecules play an important role in urinary calculus formation. The expressions of adhesion molecules in renal tubular has been reported in some animals. However, the role of adhesion molecules in the process of sheep urinary calculus formation is still unclear. The magnesium ammonium phosphate (MAP) is the main component of sheep urinary calculus. In this paper, the sheep renal tubular epithelial cells (RTECs) were isolated and treated with MAP, the expressions of osteopontin (OPN), intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1) and apoptosis-related indicators caspase-3, Bcl-2 and Bax in RTECs were observed, the viability of RTECs was detected by Cell Counting Kit-8 (CCK-8). The levels of superoxide dismutase (SOD) and malondialdehyde (MDA), and the expressions of inflammatory factors Interleukin-6 (IL-6), Interleukin-1 (IL-1), Interleukin-17 (IL-17) and tumor necrosis factor-α (TNF-α) were measured by enzyme-linked immunosorbent (ELISA). The histopathological observation of kidney in urolithiasis sheep was made. The results showed that MAP could reduce the viability and SOD activity, enhance the activity of MDA significantly and promote the expressions of IL-1, IL-6, IL-17 and TNF-α of RTECs. By western blot and qPCR methods, the expressions of ICAM-1, VCAM-1 and OPN increased in 48 h. In addition, the expression of caspase-3 increased significantly and the ratio of Bcl-2/Bax reduced with exposure to MAP. The renal tissue structure was seriously damaged, the RTECs in urolithiasis sheep were degenerative and necrotic.


Assuntos
Apoptose , Moléculas de Adesão Celular/metabolismo , Sobrevivência Celular , Citocinas/imunologia , Células Epiteliais/fisiologia , Estresse Oxidativo , Estruvita/metabolismo , Animais , Células Cultivadas , Molécula 1 de Adesão Intercelular/metabolismo , Rim/fisiologia , Osteopontina/metabolismo , Carneiro Doméstico/metabolismo , Carneiro Doméstico/urina , Cálculos Urinários/metabolismo , Molécula 1 de Adesão de Célula Vascular/metabolismo
5.
Vet Microbiol ; 259: 109129, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34087675

RESUMO

Caprine parainfluenza virus type 3 (CPIV3) is one of the most important viral respiratory pathogens of goat. Accumulating evidence demonstrates that apoptosis is a cellular mechanism for the host response to pathogens, and it participates in regulating viral replication. However, there is little study on CPIV3-induced host cells apoptosis. In this study, primary goat tracheal epithelial (GTE) cells were established as a cellular model that is permissive to CPIV3 infection. Then, we showed that CPIV3 infection induced apoptosis in GTE cells, as determined by morphological changes, flow cytometry and TUNEL assay. Moreover, Caspase activity and the expression of pro-apoptotic genes further suggested that CPIV3 induced apoptosis by activating both the intrinsic and extrinsic pathways. Mechanistically, the ability of CPIV3 to induce apoptosis was activated by N protein, and the viral protein increased CPIV3 replication through effecting apoptosis. Overall, our findings showed that GTE cells that will enable further analysis of CPIV3 infection and offers novel insights into the mechanisms of CPIV3-induced apoptosis in host cells.


Assuntos
Apoptose/genética , Proteínas do Nucleocapsídeo/genética , Vírus da Parainfluenza 3 Humana/química , Vírus da Parainfluenza 3 Humana/genética , Infecções por Respirovirus/genética , Infecções por Respirovirus/veterinária , Replicação Viral/genética , Animais , Células Cultivadas , Células Epiteliais/virologia , Doenças das Cabras/virologia , Cabras/virologia , Proteínas do Nucleocapsídeo/metabolismo , Vírus da Parainfluenza 3 Humana/patogenicidade , Infecções por Respirovirus/virologia , Traqueia/citologia
6.
Mol Med Rep ; 23(4)2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33649809

RESUMO

The present study aimed to determine the role and regulatory mechanism of hydrogen sulfide (H2S) in the amelioration of doxorubicin­induced myocardial fibrosis in rats. It is hypothesized that the PI3K/AKT/mTOR signaling pathway is regulated to inhibit endoplasmic reticulum stress (ERS) and autophagy to reduce myocardial fibrosis. A total of 40 adult male Sprague Dawley rats were randomly divided into 4 groups (n=10/group). The 4 groups included the normal control group (control group), model group [doxorubicin (Dox) group], H2S intervention model group (H2S+Dox group) and H2S control group (H2S group). The model used in the present study was constructed by administering intraperitoneal injections of doxorubicin (3.0 mg/kg every other day; total of 6 injections). In addition, the intervention factor, NaHS and the donor of H2S, was also administered by intraperitoneal injection (56 µmol/kg/day), which lasted a month. Pathological changes in the rats were observed using Masson staining and transmission electron microscopy, while the protein expression levels of MMPs/TIMPs, transforming growth factor­ß1, cystathionine lyase and PI3K/AKT/mTOR, which are autophagy­related and ERS­related proteins were detected in myocardial tissues using western blot analysis. The gene expression levels of collagen type I α­2 chain and collagen type III α­1 chain were detected using reverse transcription­quantitative PCR and the quantification of myocardial H2S content was performed using ELISA. In the Dox group compared with that in the control group, myocardial fibers were significantly disordered, while the protein expression levels of ERS­related and autophagy­related proteins were increased markedly, and the expression levels of PI3K/AKT/mTOR proteins were reduced markedly. The aforementioned changes were markedly reversed following H2S intervention, which indicated that H2S exerts a positive protective effect on doxorubicin­induced myocardial fibrosis. The protective mechanism of H2S intervention in myocardial fibrosis is hypothesized to be associated with the inhibition of overactivation of the ER and that of autophagy via upregulation of the PI3K/AKT/mTOR pathway.


Assuntos
Sulfeto de Hidrogênio/farmacologia , Miocárdio/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Animais , Autofagia/efeitos dos fármacos , Proteínas Relacionadas à Autofagia/metabolismo , Colágeno/genética , Doxorrubicina , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Fibrose/induzido quimicamente , Fibrose/metabolismo , Fibrose/prevenção & controle , Expressão Gênica/efeitos dos fármacos , Masculino , Microscopia Eletrônica de Transmissão , Miocárdio/patologia , Miocárdio/ultraestrutura , Ratos Sprague-Dawley , Fator de Crescimento Transformador beta1
7.
Vet Microbiol ; 254: 108980, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33445054

RESUMO

The Caprine parainfluenza virus 3 (CPIV3) is a novel Paramyxovirus that is isolated from goats suffering from respiratory diseases. Presently, the pathogenesis of CPIV3 infection has not yet been fully characterized. The Type I interferon (IFN) is a key mediator of innate antiviral responses, as many viruses have developed strategies to circumvent IFN response, whether or how CPIV3 antagonizes type I IFN antiviral effects have not yet been characterized. This study observed that CPIV3 was resistant to IFN-α treatment and antagonized IFN-α antiviral responses on MDBK and goat tracheal epithelial (GTE) cell models. Western blot analysis showed that CPIV3 infection reduced STAT1 expression and phosphorylation, which inhibited IFN-α signal transduction on GTE cells. By screening and utilizing specific monoclonal antibodies (mAbs), three CPIV3 accessory proteins C, V and D were identified during the virus infection process on the GTE cell models. Accessory proteins C and V, but not protein D, was identified to antagonize IFN-α antiviral signaling. Furthermore, accessory protein C, but not protein V, reduced the level of IFN-α driven phosphorylated STAT1 (pSTAT1), and then inhibit STAT1 signaling. Genetic variation analysis to the PIV3 accessory protein C has found two highly variable regions (VR), with VR2 (31-70th aa) being involved in for the CPIV3 accessory protein C to hijack the STAT1 signaling activation. The above data indicated that CPIV3 is capable of inhibiting IFN-α signal transduction by reducing STAT1 expression and activation, and that the accessory protein C, plays vital roles in the immune escape process.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Antivirais/farmacologia , Evasão da Resposta Imune , Interferon Tipo I/antagonistas & inibidores , Vírus da Parainfluenza 3 Humana/efeitos dos fármacos , Vírus da Parainfluenza 3 Humana/genética , Infecções por Paramyxoviridae/veterinária , Animais , Anticorpos Monoclonais/farmacologia , Linhagem Celular , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/virologia , Feminino , Doenças das Cabras/virologia , Cabras/virologia , Células HEK293 , Ensaios de Triagem em Larga Escala , Humanos , Interferon-alfa/farmacologia , Camundongos , Camundongos Endogâmicos BALB C , Vírus da Parainfluenza 3 Humana/imunologia , Infecções por Paramyxoviridae/tratamento farmacológico , Fosforilação , Fator de Transcrição STAT1/antagonistas & inibidores , Fator de Transcrição STAT1/genética , Transdução de Sinais/efeitos dos fármacos
8.
Acta Biochim Biophys Sin (Shanghai) ; 52(12): 1325-1336, 2020 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-33210714

RESUMO

During acute myocardial infarction, endoplasmic reticulum (ER) stress-induced autophagy and apoptosis have been shown as important pathogeneses of myocardial reconstruction. Importantly, hydrogen sulfide (H2S), as a third endogenous gas signaling molecule, exerts strong cytoprotective effect on anti-ER stress, autophagy regulation and antiapoptosis. Here, we showed that H2S treatment inhibits apoptosis by regulating ER stress-autophagy axis and improves myocardial reconstruction after acute myocardial infarction. We found that H2S intervention improved left ventricle function, reduced glycogen deposition in myocardial tissue mesenchyme, and inhibited apoptosis. Moreover, the expressions of fibrosis indicators (Col3a1 and Col1a2), ER stress-related proteins (CHOP and BIP/ERP78), autophagy-related proteins (Beclin and ATG5), apoptosis protein (Bax), as well as fibrosis protein Col4a3bp were all decreased after treatment with H2S. H2S administration also maintained MMP/TIMP balance. Mechanistically, H2S activated the PI3K/AKT signaling pathway. In addition, H2S treatment also reduced the expressions of ER stress-related proteins, autophagy-related proteins, and apoptins in in vitro experiments. Interestingly, activation of ER stress-autophagy axis could reverse the inhibitory effect of H2S on myocardial apoptosis. Altogether, these results suggested that exogenous H2S suppresses myocardial apoptosis by blocking ER stress-autophagy axis, which in turn reverses cardiac remodeling after myocardial infarction.


Assuntos
Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Sulfeto de Hidrogênio/farmacologia , Infarto do Miocárdio/tratamento farmacológico , Animais , Linhagem Celular , Cistationina gama-Liase/metabolismo , Modelos Animais de Doenças , Fibrose/metabolismo , Fibrose/patologia , Coração/efeitos dos fármacos , Masculino , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos
9.
Front Immunol ; 11: 1575, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32983081

RESUMO

Caprine parainfluenza virus type 3 (CPIV3) is an emerging respiratory pathogen that affects the sheep and goat industry in China and possibly other countries around the world. Accumulating evidence suggests that microRNAs play important roles in regulating virus-host interactions and can suppress or facilitate viral replication. In this study, we showed that CPIV3 infection induced apoptosis in Madin-Darby bovine kidney (MDBK) cells, as determined by morphological changes and flow cytometry. Caspase activity and the expression of pro-apoptotic genes further indicated that CPIV3 induced apoptosis by activating both the intrinsic and extrinsic pathways. We also demonstrated the involvement of bta-microRNA-98 (bta-miR-98) in regulating CPIV3-induced apoptosis. Bta-miR-98 was downregulated in MDBK cells infected with CPIV3. Overexpression of bta-miR-98 significantly decreased the activities of caspase-3, -8, and -9. Conversely, inhibition of bta-miR-98 had completely opposite effects. Furthermore, our data showed that bta-miR-98 markedly affected CPIV3 replication by regulating apoptosis. Importantly, we found that bta-miR-98 modulated CPIV3-induced apoptosis by targeting caspase-3, an effector of apoptosis. Collectively, our results may suggest that CPIV3 infection induced apoptosis and downregulated the levels of bta-miR-98, and this miRNA regulated viral replication through effected apoptosis. This study contributes to our understanding of the molecular mechanisms underlying CPIV3 pathogenesis.


Assuntos
Caspase 3/genética , MicroRNAs/genética , Vírus da Parainfluenza 3 Humana/fisiologia , Interferência de RNA , Infecções por Respirovirus/genética , Infecções por Respirovirus/virologia , Replicação Viral , Animais , Apoptose/genética , Biomarcadores , Caspase 3/metabolismo , Linhagem Celular , Células Cultivadas , Regulação da Expressão Gênica , Interações Hospedeiro-Patógeno/imunologia , Humanos , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Infecções por Respirovirus/metabolismo , Receptor fas/metabolismo
10.
Vet Microbiol ; 248: 108794, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32827922

RESUMO

Cholesterol-rich lipid rafts have been shown to play important roles in the life cycle of various non-enveloped and enveloped viruses. Deletion of cholesterol from lipid rafts could influence different steps of viral replication cycle including entry, infection, assembly and release. Caprine parainfluenza virus type3 (CPIV3) is a newly identified member of Paramyxoviridae family. CPIV3 is highly prevalence and threatened the goat industry in China. The infection mechanism of CPIV3 is under exploring and still not fully understood, the roles of cholesterol and lipid rafts for CPIV3 infection remains unclear. In this study, we investigated the association of cholesterol and lipid rafts with CPIV3 during the different viral replication stages (binding, entry and infection) in two cells [MDBK and goat bronchial epithelial (GBE) cells]. Methyl-ß- cyclodextrin (MßCD) was used to deplete cholesterol from cell and viral membranes. The results showed that MßCD treatment significantly inhibited CPIV3 entry and infection in these two cells with a dose-dependent manner, but didn't impair the binding of CPIV3. Addition of exogenous cholesterol to the cells after MßCD treatment restored the viral infection. In addition, treatment of MßCD only before virus-entry showed inhibitory effect in MDBK cells. Depletion of cholesterol from virion envelop also decreased the entry and infection of CPIV3 in the two cells. Furthermore, lipid rafts isolation test indicated that viral proteins (HN and N) co-localized with lipid rafts during infection in MDBK and GBE cells. Viral N protein co-localized with caveolin-1 (the marker of lipid rafts) in these two cells both at the entry and infection steps, as detected by con-focal laser scanning microscopy test. In conclusion, the results presented here demonstrated that cholesterol rich lipid rafts play an important role in CPIV3 life cycle. The findings give new insights on understanding of the mechanism of CPIV3 infection and provide a new anti-CPIV3 strategy.


Assuntos
Colesterol/metabolismo , Microdomínios da Membrana/química , Vírus da Parainfluenza 3 Humana/fisiologia , Internalização do Vírus , Replicação Viral , Animais , Brônquios/citologia , Brônquios/virologia , Bovinos , Linhagem Celular , Células Epiteliais/virologia , Deleção de Genes , Cabras , Rim/citologia , Vírus da Parainfluenza 3 Humana/efeitos dos fármacos , beta-Ciclodextrinas/farmacologia
11.
Vet Microbiol ; 241: 108573, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31928705

RESUMO

Caprine parainfluenza virus type 3 (CPIV3) is the one of most common causative agents of caprine respiratory infection, resulting in significant economic losses in the goat and sheep industries. However, the molecular mechanisms and host genes involved in the pathogenesis of and immunity against CPIV3 infection remain poorly understood. In this study, we used RNA-Seq to understand the responses of madin-darby bovine kidney (MDBK) cells to CPIV3 infection. A total of 261 differentially-expressed genes (DEGs) were identified in CPIV3-infected compared with mock-infected MDBK cells at 24 h post-infection (hpi). The DEGs were mainly involved in immune system processes, metabolic processes, and signal transduction. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis demonstrated that the most significantly enriched signaling pathways were MAPK, Wnt, PI3K-Akt, tumor necrosis factor, Toll-like receptor and ubiquitin-mediated proteolysis. STRING analysis revealed that seven interferon-stimulated genes (ISGs) were upregulated (IFI6, ISG15, OAS1Y, OAS1Z, MX1, MX2 and RSAD2) and may play a pivotal role during CPIV3 infection. Moreover, overexpression of these ISGs significantly reduced CPIV3 replication in vitro, while siRNA silencing markedly improved CPIV3 replication 24 and 48 hpi. Ours is the first study to profile the gene expression of CPIV3-infected MDBK cells. We identified seven ISGs that could be targeted in novel antiviral strategies against CPIV3.


Assuntos
Interferons/farmacologia , Vírus da Parainfluenza 3 Humana/fisiologia , Replicação Viral , Animais , Bovinos , Linhagem Celular , Cães , Técnica Indireta de Fluorescência para Anticorpo/veterinária , Regulação Viral da Expressão Gênica , Técnicas de Silenciamento de Genes/veterinária , Cabras , Microesferas , Vírus da Parainfluenza 3 Humana/efeitos dos fármacos , Vírus da Parainfluenza 3 Humana/genética , Vírus da Parainfluenza 3 Humana/imunologia , RNA Viral/química , RNA Viral/isolamento & purificação , Ensaio de Radioimunoprecipitação/veterinária , Reação em Cadeia da Polimerase em Tempo Real/veterinária , Transcriptoma , Replicação Viral/efeitos dos fármacos , Replicação Viral/imunologia
12.
Infect Genet Evol ; 79: 104168, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31899234

RESUMO

Caprine herpesvirus 1 (CpHV-1) is a member of the alpha subfamily of herpersviruses, and is responsible for genital lesions and latent infections in goat population worldwide. Here, we describe goats suffered severe respiratory diseases caused by alphaherpesvirus during 2013 to 2014 in Jiangsu province of China. CpHV-1 was detected out by PCR with a prevalence of 21.1% (40/190), among which three novel CpHV-1 strains were firstly identified and isolated in China. Phylogenetic analysis of glycoprotein B (gB) gene revealed that these new viruses were closely clustered with CpHV-1 strain E/CH. The isolate JSHA1405 was further studied by transmission electron microscopy, and displayed typical herpesvirus morphology. Then, for the first time, complete viral genome of JSHA1405 was sequenced by Illumina Hiseq and third-generation sequencing technology. The viral genome is 134,617 bp in length and the genome characteristics were deeply analyzed. 69 open reading frames were predicted and annotated, which was less than that of BoHV-1. Phylogenetic analysis of the complete genome revealed that JSHA1405 was classified into the same branch with previous CpHV-1 strains as well. Moreover, the pathogenicity test is further evidence that JSHA1405 strain induced obvious symptoms of high fever and nasal discharge in infected goats, consistent with clinical manifestations. This is the first report about isolation and identification of CpHV-1 in China and the first characterization of CpHV-1 genome structure. The research also provides a basis for understanding the characteristics, viral genome and pathogenicity of the virus.


Assuntos
Doenças das Cabras/virologia , Infecções por Herpesviridae/epidemiologia , Varicellovirus/classificação , Sequenciamento Completo do Genoma/métodos , Animais , China/epidemiologia , Evolução Molecular , Tamanho do Genoma , Genoma Viral , Doenças das Cabras/epidemiologia , Cabras , Infecções por Herpesviridae/veterinária , Sequenciamento de Nucleotídeos em Larga Escala , Filogenia , Prevalência , Varicellovirus/genética , Varicellovirus/isolamento & purificação , Proteínas do Envelope Viral/genética
13.
Technol Health Care ; 27(S1): 331-343, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31045551

RESUMO

OBJECTIVE: To explore the effect of gefitinib-coated balloon suppressive action on the excessive hyperplasia of intima after balloon injury of common carotid artery in rats and on the PI3K/AKT signal pathway. METHODS: MTT method and the expression of Bcl-2 and Caspase-3 proteins were detected in vitro; Adult SD rats were randomly split into 5 groups, namely sham group, model group, low-dosage gefitinib-coated balloon group, high-dosage gefitinib-coated balloon group, and paclitaxel-coated balloon group. The intimal proliferation of arteries, PCNA, P-AKT and PI3K protein expression, the cell apoptosis, expression of MMP9, TGFß and IL6 mRNA were measured by hematoxylin and eosin (H&E) staining, immunohistochemistry, TUNEL staining, and RT-qPCR. RESULTS: At the same time and concentration, Gefitinib suppressed the proliferation of smooth muscle cell more significantly than paclitaxel. Bcl-2 and Caspase-3 in vascular smooth muscle and endothelial cells (VSMC, EC) were significantly down-regulated and up-regulated after the cells were treated with gefitinib and paclitaxel. In gefitinib- and paclitaxel-coated balloon groups, significant up-regulations were found in the area of lumen. Furthermore, the expression of PCNA suggested that all coated balloons could suppress the excessive proliferation of smooth muscle cells in the hyperplastic intima compared with the control group. In gefitinib- and paclitaxel-coated balloon group, the expression of PI3K/AKT was significantly down-regulated. The use of drug-coated balloons mitigated the cell apoptosis in TUNEL. The expressions of MMP9, TGFß and IL6 mRNA in the model group were obviously up-regulated; and they were obviously down-regulated in the high-dose gefitinib-coated balloon group compared with the model group. CONCLUSIONS: Gefitinib-coated balloons were able to suppress the excessive proliferation in the common carotid arterial intima of rats more effectively than the paclitaxel-coated ones. The underlying mechanism may cover the PI3K/AKT signal pathway.


Assuntos
Angioplastia Coronária com Balão , Lesões das Artérias Carótidas , Materiais Revestidos Biocompatíveis , Gefitinibe/administração & dosagem , Hiperplasia/tratamento farmacológico , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Antineoplásicos Fitogênicos/administração & dosagem , Apoptose/efeitos dos fármacos , Lesões das Artérias Carótidas/cirurgia , Paclitaxel/administração & dosagem , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley , Transdução de Sinais , Lesões do Sistema Vascular
14.
J Cell Physiol ; 233(12): 9763-9776, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30078190

RESUMO

Primary porcine bronchial epithelial cells (PBECs) are an ideal model to study the molecular and pathogenic mechanisms of various porcine respiratory pathogens. However, the short lifespan of primary PBECs greatly limit their application. Here, we isolated and cultured primary PBECs and established immortalized PBECs by transfecting primary PBECs with the pEGFP-hTERT recombinant plasmid containing human telomerase reverse transcriptase (hTERT). Immortalized PBECs (hTERT-PBECs) retained the morphological and functional features of primary PBECs as indicated by cytokeratin 18 expression, telomerase activity assay, proliferation assays, karyotype analysis, and quantitative reverse-transcriptase polymerase chain reaction. Compared to primary PBECs, hTERT-PBECs had higher telomerase activity, extended replicative lifespan, and displayed enhanced proliferative activity. Moreover, this cell line is not transformed in vitro and does not exhibit a malignant phenotype in vivo, suggesting that it can be safely used in further studies. Besides, hTERT-PBECs were susceptible to swine influenza virus of H3N2 subtype and porcine circovirus type 2. In conclusion, the immortalized hTERT-PBECs represent a valuable in vitro model, which can be widely used in the study of porcine respiratory pathogenic infections.


Assuntos
Brônquios/citologia , Células Epiteliais/enzimologia , Cultura Primária de Células/métodos , Telomerase/genética , Animais , Brônquios/enzimologia , Proliferação de Células/genética , Circovirus/patogenicidade , Humanos , Cariótipo , Infecções por Orthomyxoviridae/genética , Infecções por Orthomyxoviridae/virologia , Suínos , Telomerase/biossíntese
15.
Endocr J ; 65(7): 769-781, 2018 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-29743447

RESUMO

This study aims to investigate the role and regulatory mechanism of the Hydrogen sulfide (H2S) in amelioration of rat myocardial fibrosis induced by thyroxine through interfering the autophagy via regulating the activity of PI3K/AKT1 signaling pathway and the expression of relative miRNA. 40 adult male SD rats were randomly divided into 4 groups (n = 10): the control group, the thyroxine model group (TH group), the model group with H2S intervention (TH + H2S group) and the normal group with H2S intervention (H2S group). Pathological changes were observed via H&E staining and Masson staining, Expressions of MMPs/TIMPs, PI3K/AKT, autophagy-related proteins in myocardial tissues were detected via Western blotting, and the expressions of miR-21, miR-34a, miR-214 and miR-221 were detected via RT-qPCR. Compared with the control group, in the TH group, myocardial fibrosis was more significant, the expressions of proteins in PI3K/AKT and autophagy-related proteins were significantly decreased, as well as the expression of miR-221; while the expressions of miR-21, miR-34a and miR-214 were significantly elevated. By contrast, all above-mentioned changes were obviously reversed with H2S treatment, which demonstrated the positive function of H2S in amelioration of rat myocardial fibrosis induced by thyroxine. The mechanism of such amelioration may be correlated with autophagy activated by the upregulation of expression of PI3K/AKT signaling pathway and downregulation of expressions of miR-21, miR-34a and miR-214.


Assuntos
Fibrose/metabolismo , Coração/efeitos dos fármacos , Sulfeto de Hidrogênio/farmacologia , Miocárdio/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Tiroxina , Animais , Autofagia/efeitos dos fármacos , Fibrose/induzido quimicamente , Fibrose/patologia , Masculino , Miocárdio/patologia , Ratos , Ratos Sprague-Dawley
16.
Int J Mol Med ; 41(4): 1867-1876, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29393353

RESUMO

The aim of the present study was to determine the role of hydrogen sulfide (H2S) in improving myocardial fibrosis and its effects on oxidative stress, endoplasmic reticulum (ER) stress and cell apoptosis in diabetic rats, by regulating the Janus kinase̸signal transducer and activator of transcription (JAK̸STAT) signaling pathway. A total of 40 male Sprague­Dawley rats were randomly divided into four groups (n=10) as follows: normal (control group), diabetes mellitus [streptozotocin (STZ) group], diabetes mellitus treated with H2S (STZ + H2S group), and normal rats treated with H2S (H2S group). Diabetes in rats was induced by intraperitoneal (i.p.) injection of STZ at a dose of 40 mg̸kg. NaHS (100 µmol̸kg, i.p.), which was used as an exogenous donor of H2S, was administered to rats in the STZ + H2S and H2S groups. After 8 weeks, the pathological morphological changes in myocardial fibers were observed following hematoxylin and eosin and Masson's trichrome staining. Apoptosis of myocardial tissue was analyzed by the terminal deoxynucleotidyl transferase dUTP nick end labeling assay. Oxidative stress was evaluated through detecting the content of malondialdehyde (MDA), 4-hydroxynonenal (4-HNE), glutathione (GSH) and superoxide dismutase (SOD) in the myocardial cells by ELISA. The expression of collagen III, matrix metalloproteinase (MMP)8, MMP14, tissue inhibitor of metalloproteinase (TIMP)2, transforming growth factor (TGF)-ß, cystathionine­Î³­lyase (CSE), eukaryotic initiation factor 2α (eIF2α), GRP94, Bcl-2, caspase-3, tumor necrosis factor (TNF)-α, nuclear factor­κB (NF­κB) and proteins related to the JAK̸STAT pathway, was detected by western blot analysis. The results indicated that the array of myocardial cells was markedly disordered in STZ group rats; compared with the control group, both myocardial interstitial fibrosis and the deposition of collagen III were increased. Furthermore, the expression ratio of MMPs̸TIMPs was dysregulated, while the expression levels of TGF-ß, eIF2α, GRP94, caspase-3, TNF-α, NF-κB, MDA and 4-HNE were significantly increased. Furthermore, the expressions of JAK-1̸2 and STAT1̸3̸5̸6 were also markedly upregulated, while those of CSE, SOD, GSH and Bcl-2 were downregulated. Compared with the STZ group, these changes were reversed in the STZ + H2S group. The results of the present study demonstrated that H2S can improve myocardial fibrosis in diabetic rats, and the underlying mechanism may be associated with the downregulation of the JAK̸STAT signaling pathway, thereby suppressing oxidative stress and ER stress, inflammatory reaction and cell apoptosis.


Assuntos
Diabetes Mellitus Experimental/complicações , Cardiomiopatias Diabéticas/tratamento farmacológico , Sulfeto de Hidrogênio/uso terapêutico , Janus Quinases/metabolismo , Miocárdio/patologia , Fatores de Transcrição STAT/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Cardiomiopatias Diabéticas/metabolismo , Cardiomiopatias Diabéticas/patologia , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Fibrose , Masculino , Miocárdio/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Ratos Sprague-Dawley
17.
Mol Med Rep ; 16(6): 8953-8963, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28990064

RESUMO

Recent studies have indicated the existence of an endogenous sulfur dioxide (SO2)­generating system in the cardiovascular system. The present study aimed to discuss the function and regulatory mechanism of gaseous signal molecule SO2 in inhibiting apoptosis and endoplasmic reticulum stress (ERS) via the Hippo­MST signaling pathway to improve myocardial fibrosis of diabetic rats. A total of 40 male Sprague­Dawley rats were randomly divided into four groups (10 rats per group): Normal control group (control group), diabetic rats group [streptozotocin (STZ) group], SO2 intervention group (STZ+SO2 group) and diabetes mellitus rats treated with L­Aspartic acid ß­hydroxamate (HDX) group (HDX group). Diabetic rats models were established by intra­peritoneal injection of STZ (40 mg/kg) Following model establishment, intra­peritoneal injection of Na2SO3/NaHSO3 solution (0.54 mmol/kg) was administered in the STZ+SO2 group, and HDX solution (25 mg/kg/week) was administered in the HDX group. A total of 4 weeks later, echocardiography was performed to evaluate rats' cardiac function; Masson staining, terminal deoxynucleotidyl transferase dUTP nick end labeling staining and transmission electron microscopy examinations were performed to observe myocardial morphological changes. ELISA was employed to determine the SO2 content. Western blot analysis was performed to detect the expression of proteins associated with apoptosis, ERS and the Hippo­MST signalling pathway. Compared with the control group, the STZ group and HDX group had a disordered arrangement of myocardial cells with apparent myocardial fibrosis, and echocardiography indicated that the cardiac function was lowered, there was an obvious increase of apoptosis in myocardial tissue, the expression levels of apoptosis­associated protein B­cell lymphoma associated protein X, caspase­3 and caspase­9 were upregulated, and Bcl­2 expression was downregulated. The expression of ERS and Hippo­MST pathway­associated proteins, including CHOP, GRP94, MST1 and MST2, were significantly upregulated. By contrast, these above­mentioned changes were reversed by SO2 treatment. Compared with STZ group, the HDX group had a further increase of myocardial fibrosis and apoptosis, while there were no statistically significant differences in the expression of Bax/Bcl­2, caspase­3, caspase­9 and ERS and Hippo­MST pathway­associated proteins. The results of the present study demonstrated that the gaseous signal molecule SO2 can effectively improve the myocardial fibrosis of diabetic rats, and its mechanism may be associated with reduced apoptosis and ERS by downregulated Hippo­MST pathway.


Assuntos
MAP Quinase Quinase Quinases/metabolismo , Miocárdio/metabolismo , Miocárdio/patologia , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Dióxido de Enxofre/metabolismo , Animais , Apoptose/efeitos dos fármacos , Diabetes Mellitus Experimental , Estresse do Retículo Endoplasmático , Fibrose , Masculino , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/metabolismo , Metaloproteinases da Matriz Associadas à Membrana/genética , Metaloproteinases da Matriz Associadas à Membrana/metabolismo , Miocárdio/ultraestrutura , Ratos , Dióxido de Enxofre/farmacologia , Inibidor Tecidual de Metaloproteinase-1/genética , Inibidor Tecidual de Metaloproteinase-1/metabolismo
18.
Sci Rep ; 7(1): 10596, 2017 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-28878274

RESUMO

Mycoplasma hyorhinis (M. hyorhinis) is an opportunistic pig pathogen, belonging to the class Mollicutes. It causes polyserositis, arthritis and cancers in vitro, increasing attention of the researchers. Currently, there is no available genetic tool to manipulate its genome. This study describes a development of oriC-plasmids harboring either large (pGEMT-LoriC) or minimum (pGEMT-MoriC) origin of replication (oriC) of M. hyorhinis along with tetracycline resistance marker.These plasmids were successfully transformed into M. hyorhinis with average transformation frequency of 1.5 × 10-4 and 2.0 × 10-5 transformants/CFU for pGEMT-LoriC and pGEMT-MoriC respectively, and were integrated at the chromosomal oriC as well as remained freely replicating. We also constructed a Mini-oriC-HT1 targeting plasmid by inclusion of hlyC arms and was used to inactivate hlyC at average frequency of 50%. The efficiency of hlyC inactivation was further improved (by 90%) when Mini-oriC-HT2 that contains E. coli recA was used. In both cases, hemolysin mutant bacteria diminished the ability to lyse mouse RBCs compared to wild-type (P < 0.001). OriC-plasmids described in this study may, therefore open the way for functional genomics in M. hyorhinis. Furthermore, this is a first study demonstrated the gene associated with a hemolytic phenotype in mycoplasmas.


Assuntos
Mycoplasma hyorhinis/genética , Plasmídeos/genética , Origem de Replicação , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sequência de Bases , Replicação do DNA , Regulação Bacteriana da Expressão Gênica , Ordem dos Genes , Hemólise , Recombinação Homóloga , Mutação , Mycoplasma hyorhinis/fisiologia , Fenótipo , Recombinação Genética , Análise de Sequência de DNA , Transformação Bacteriana
19.
Mol Med Rep ; 16(2): 1715-1722, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28656209

RESUMO

The present study aimed to explore the effect of hydrogen sulfide (H2S) on renal tissue fibrosis and its mechanism in diabetic rats. Rats were randomly divided into four groups (n=13/group): Control group; induced diabetes mellitus group (STZ); induced diabetes mellitus treated with H2S group (STZ + H2S); normal rats treated with H2S group (H2S). The diabetic model was induced by intraperitoneal (i.p.) injections of 40 mg/kg body weight streptozotocin (STZ); the control group was treated with saline every day (i.p); NaHS (100 µmol/kg i.p.) was administered to rats of STZ + H2S group and H2S group. After 8 weeks, rat body weight and 24 h proteinuria levels were determined in each group, renal pathological morphology was analyzed by Masson's trichrome staining, collagen IV content was detected by immunohistochemistry, and periodic acid­Schiff (PAS) staining was performed on renal glomerular and tubular basement membranes. The expression levels of matrix metalloproteinase 9 (MMP9), MMP7, tissue inhibitor of metalloproteinase 1 (TIMP1), superoxide dismutase (SOD), serine/threonine kinase AKT, transforming growth factor (TGF)­ß1, nuclear factor (NF)­κB and several autophagy related proteins were assessed by western blot analysis. Compared with the control group, renal tissue fibrosis was observed, collagen IV expression and the 24 h proteinuria quantity was markedly increased and the amount of PAS positive material in renal glomerular and tubular basement membranes was notably increased in STZ­treated rats. Furthermore, the expression levels of MMP9, MMP7, TIMP1, autophagy­associated proteins, AKT, TGF­ß1 and NF­κB protein were significantly increased, and SOD expression levels were significantly decreased in the STZ group compared with the control (P<0.05). In the H2S+STZ group, renal tissue fibrosis and the expression of collagen IV were improved, 24 h proteinuria was decreased, the amount of PAS positive material in renal glomerular and tubular basement membranes was decreased, the expression levels MMP9, MMP7, TIMP1, autophagy­associated proteins, AKT, TGF­ß1 and NF­κB protein were significantly decreased, and the expression levels of SOD were significantly increased compared with the STZ group (P<0.05). In conclusion, H2S may improve renal tissue fibrosis by inhibiting autophagy, upregulating SOD and downregulating AKT, TGF­ß1 and NF-κB.


Assuntos
Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/patologia , Sulfeto de Hidrogênio/farmacologia , Nefropatias/tratamento farmacológico , Nefropatias/patologia , Animais , Autofagia/efeitos dos fármacos , Proteínas Relacionadas à Autofagia/metabolismo , Colágeno Tipo IV/metabolismo , Diabetes Mellitus Experimental/metabolismo , Fibrose , Imuno-Histoquímica , Masculino , Metaloproteinase 7 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , NF-kappa B/metabolismo , Proteinúria/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Sulfetos/administração & dosagem , Superóxido Dismutase/metabolismo , Inibidor Tecidual de Metaloproteinase-1/metabolismo , Fator de Crescimento Transformador beta1/metabolismo
20.
Vet Microbiol ; 197: 39-46, 2016 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-27938681

RESUMO

Mycoplasma hyorhinis (M. hyorhinis) is an important pathogen of pigs. In previous studies, the variable lipoprotein (Vlp) family has been shown to play a role in mediating M. hyorhinis cytoadhesion. Herein, we performed several experiments to study the function of each Vlp family member in detail, especially examining the cytoadhesion functional domain and how the repeat unit copy number impacts on function. Recombinant proteins rVlpII, composed of region II from all seven Vlp members; rVlpIII, composed of repeat peptides from region III of all of Vlp members; as well as a series of recombinant rVlp proteins for each member containing different repeat unit copy numbers were constructed. All of the proteins were expressed in Escherichia coli and purified by affinity chromatography. The recombinant proteins, as well as seven keyhole limpet hemocyanin-conjugated Vlp peptides containing two copies of the repeat unit, were analyzed for their adherence to swine tracheal epithelial cells using a microtiter plate adherence assay. Both rVlpII and rVlpIII proteins were able to bind to cell membrane proteins. Among the repeat unit peptides, only PepVlpB and PepVlpG were able to bind to cell membrane proteins. All of the Vlp members had cytoadhesion capability. The adhesion abilities of the proteins containing 0 or 3 copies of the repeat unit were stronger than those of the proteins containing 12 copies. For rVlpA, rVlpB, rVlpD, rVlpF and rVlpG, the proteins containing no copies bound stronger than the proteins containing 3 copies. In contrast, the adherence of rVlpC3 was stronger than that of rVlpC0. There was no significant difference between the adherence of rVlpE3 and that of rVlpE0. Our results suggest that the major cytoadhesion sites of Vlps are mainly contained in region II, the function of which would be blocked by region III when region III is longer.


Assuntos
Aderência Bacteriana/fisiologia , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Lipoproteínas/metabolismo , Mycoplasma hyorhinis/fisiologia , Animais , Proteínas de Bactérias/genética , Células Cultivadas , Células Epiteliais/fisiologia , Domínios Proteicos , Proteínas Recombinantes/genética , Mucosa Respiratória/citologia , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA