Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Med ; 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38740994

RESUMO

Emotional distress (ED), commonly characterized by symptoms of depression and/or anxiety, is prevalent in patients with cancer. Preclinical studies suggest that ED can impair antitumor immune responses, but few clinical studies have explored its relationship with response to immune checkpoint inhibitors (ICIs). Here we report results from cohort 1 of the prospective observational STRESS-LUNG study, which investigated the association between ED and clinical efficacy of first-line treatment of ICIs in patients with advanced non-small-cell lung cancer. ED was assessed by Patient Health Questionnaire-9 and Generalized Anxiety Disorder 7-item scale. The study included 227 patients with 111 (48.9%) exhibiting ED who presented depression (Patient Health Questionnaire-9 score ≥5) and/or anxiety (Generalized Anxiety Disorder 7-item score ≥5) symptoms at baseline. On the primary endpoint analysis, patients with baseline ED exhibited a significantly shorter median progression-free survival compared with those without ED (7.9 months versus 15.5 months, hazard ratio 1.73, 95% confidence interval 1.23 to 2.43, P = 0.002). On the secondary endpoint analysis, ED was associated with lower objective response rate (46.8% versus 62.1%, odds ratio 0.54, P = 0.022), reduced 2-year overall survival rate of 46.5% versus 64.9% (hazard ratio for death 1.82, 95% confidence interval 1.12 to 2.97, P = 0.016) and detriments in quality of life. The exploratory analysis indicated that the ED group showed elevated blood cortisol levels, which was associated with adverse survival outcomes. This study suggests that there is an association between ED and worse clinical outcomes in patients with advanced non-small-cell lung cancer treated with ICIs, highlighting the potential significance of addressing ED in cancer management. ClinicalTrials.gov registration: NCT05477979 .

2.
Front Oncol ; 11: 665182, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34268112

RESUMO

PURPOSE: Cholangiocarcinoma (CCA) is a malignant tumor with a high incidence. The therapeutic effect of conventional chemotherapy and radiotherapy is not obvious. Photodynamic therapy (PDT) is an ideal modality to fight cancer, and the nature of photosensitizer limits its application in clinical therapy. The aim of this study was to explore a novel mode of drug delivery for the intervention of bile duct cancer. METHODS: Oxaliplatin and photosensitizer HCE6 were loaded with mesoporous silica nanoparticles (MSNs) to synthesize Oxaliplatin/HCE6-MSNs (OH-MSNs); the structure of OH-MSNs was characterized by transmission electron microscopy (TEM) and dynamic light scattering (DLS), the drug release rate was detected by high performance liquid chromatography; the cellular activity, apoptosis level, and the expression levels of intracellular apoptosis and autophagy-related factors of OH-MSNs on cholangiocarcinoma cells were observed by CCK-8, flow cytometry, colony formation assay, and Western blot; the effects of OH-MSNs on cholangioma growth were observed by mouse tumor formation, immunohistochemistry, and tissue Tunel staining. RESULTS: The release of OH-MSNs to Oxaliplatin was enhanced under acidic conditions; compared with Oxaliplatin or O-MSNs, OH-MSNs showed more potent killing effects against cholangiocarcinoma cells (P<0.05), and exerted notably inhibitory effects on the activity of cholangiocarcinoma cells (P<0.05), promoted their apoptosis (P<0.05), and greatly facilitated the expression of pro-apoptotic factors and autophagic factors in cholangiocarcinoma cells (P<0.05), and markedly inhibited the expression of anti-apoptotic factors and autophagic inhibitory factors (P<0.05); moreover, OH-MSNs could significantly suppress the growth of mouse cholangiocarcinoma (P<0.05) and induce apoptosis of tumor cells compared with Oxaliplatin or O-MSNs (P<0.05). CONCLUSION: MSNs loading greatly increases the killing effect of Oxaliplatin on cholangiocarcinoma cells and upgrades the autophagic level of cholangiocarcinoma cells, while OH-MSNs synthesized by further loading HCE6 have a more apparent killing effect on cholangiocarcinoma cells.

3.
Neurochem Int ; 112: 197-205, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28736242

RESUMO

Neuronal death after traumatic brain injury (TBI) is a complex process resulting from a combination of factors, many of which are still unknown. Transient receptor potential melastatin 7 (TRPM7) is a transient receptor potential channel that has been demonstrated to mediate ischemic and traumatic neuronal injury in vitro. In the present study, TRPM7 was suppressed in the rat cerebral cortex by intracortical injections of viral vectors bearing shRNA specific for TRPM7 to investigate its potential role in an in vivo TBI model. We found that TRPM7 suppression significantly reduced brain edema, brain contusion volume and motor functional deficits, which was sustained for at least 2 weeks after the insult. These protective effects were accompanied by inhibited apoptosis in injured cortex. Also, TRPM7 suppression attenuated lipid peroxidation, decreased the expression of protein carbonyl, and preserved the endogenous antioxidant enzyme activities. The results of western blot analysis showed that TRPM7 suppression markedly increased the phosphorylation of Akt and endothelial nitric oxide synthase (eNOS). In addition, blocking Akt/eNOS pathway activation by the specific inhibitor LY294002 (LY, 10 µL, 10 mmol/L) or L-NIO (0.5 mg/kg) partially reversed the protective effects of TRPM7 suppression and its anti-oxidative activities. Taken together, these findings demonstrated that regional inhibition of TRPM7 in cerebral cortex exerts neuroprotective effects against TBI through activation of Akt/eNOS pathway. Thus, TRPM7 might represent a potential drug development target for the treatment of TBI.


Assuntos
Lesões Encefálicas Traumáticas/metabolismo , Córtex Cerebral/metabolismo , Estresse Oxidativo/fisiologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Canais de Cátion TRPM/metabolismo , Animais , Lesões Encefálicas Traumáticas/patologia , Lesões Encefálicas Traumáticas/prevenção & controle , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/patologia , Masculino , Estresse Oxidativo/efeitos dos fármacos , RNA Interferente Pequeno/farmacologia , Ratos , Ratos Sprague-Dawley , Canais de Cátion TRPM/antagonistas & inibidores
4.
Acta Pharmacol Sin ; 37(5): 687-97, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27063218

RESUMO

AIM: A previous study has shown that physcion 8-O-ß-glucopyranoside (PG) derived from Rumex japonicusHoutt causes apoptosis and blocks cell cycle progression in human lung cancer cells. In the present study we investigated the molecular mechanisms underlying PG-induced cancer cell apoptosis. METHODS: Human OSCC-derived cell line KB was treated PG (10, 20, 50 µg/mL). Cell apoptosis was detected with flow cytometry. Mitochondrial membrane potential (MMP) and release of cytochome C from mitochondria were measured; the expression of relevant signaling proteins was analyzed using Western blotting or qRT-PCR. For evaluation of in vivo anticancer action, nude mice grafted with KB cells were treated with PG (10, 20, 40 mg·kg(-1)·d(-1), ip) for 24 days. RESULTS: PG dose-dependently suppressed cell proliferation and induced apoptosis in KB cells. PG-induced apoptosis was mediated via the intrinsic mitochondrial pathway, as evidenced by the decreased Bcl-2, increased Bax and Bax/Bcl-2 ratio, as well as the loss of MMP, caspase-9 activation, and increased cytosolic cytochrome c. Furthermore, PG suppressed the expression of survivin, whereas overexpression of survivin markedly attenuated PG-induced apoptosis. Meanwhile PG increased the expression of tumor suppressor PTEN, and decreased p-Akt, p-GSK3ß and miR-21 levels. Pharmacological activation of Akt/GSK3ß signaling or transfection with miR-21 mimic abolished PG-induced survivin reduction and cell apoptosis. Similar results were observed in PG-treated nude mice grafted with KB cells. CONCLUSION: Physcion 8-O-ß-glucopyranoside induces mitochondria-dependent apoptosis of human OSCC cells by suppressing survivin expression via miR-21/PTEN/Akt/GSK3ß signaling pathway.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , Carcinoma de Células Escamosas/tratamento farmacológico , Emodina/análogos & derivados , Glucosídeos/farmacologia , Proteínas Inibidoras de Apoptose/metabolismo , Mitocôndrias/fisiologia , Neoplasias Bucais/tratamento farmacológico , Proteínas Repressoras/metabolismo , Animais , Antineoplásicos Fitogênicos/uso terapêutico , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , Emodina/farmacologia , Emodina/uso terapêutico , Glucosídeos/uso terapêutico , Humanos , Potencial da Membrana Mitocondrial , Camundongos Endogâmicos BALB C , Camundongos Nus , Neoplasias Bucais/metabolismo , Neoplasias Bucais/patologia , Transdução de Sinais , Survivina
5.
Chin J Traumatol ; 17(6): 317-22, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25471424

RESUMO

OBJECTIVE: To determine the changes of serum Tau protein, glial fibrillary acidic protein (GFAP), tumor necrosis factor alpha (TNF-α), and malonaldehyde (MDA) in rats after blast-related traumatic brain injury (BTBI) and to provide relative information for further studies on BTBI mechanism and seek specific biomarkers for BTBI. METHODS: Ninety male Sprague-Dawley rats were randomly assigned into three groups: control group, moderate blast injury group, and severe blast injury group (n=30 for each). Rats in the moderate and severe blast injury groups were respectively exposed to corresponding levels of BTBI. After explosion, serum levels of Tau, GFAP, TNF-α, and MDA in each group were determined by Elisa assay at different time points after injury (8 h, 24 h, 3 d, and 6 d). The extent of brain damage was detected by Nissl staining and TUNEL assay. RESULTS: Serum levels of Tau and GFAP rapidly increased and reached the peak at 24 h after either moderate or severe blast injury. All the values were significantly higher than control group at all time points (P<0.05). Serum TNF-α level of both injury groups peaked at 8 h after BTBI and stayed significantly higher than control group at all time points (P<0.05). Serum MDA of two injury groups began to significantly increase at 3 d and the level stayed significantly higher than control group until 6 d (P<0.05). Moreover, unlike the other biomarkers, serum MDA of severe blast injury group was significantly higher than moderate blast injury group at 6 d (P<0.05). CONCLUSION: The changes of serum Tau, GFAP, and TNF-α showed a good sensitivity at the acute phase after BTBI (within 24 h). However, their specificity and correlation with the extent of injury were limited in this experiment. Moreover, although the change of serum MDA showed a poor sensitivity and specificity to the diagnosis of BTBI during the first few days, it can reflect the injury degree at 6 d after injury. Therefore, further studies are needed to improve the methods of detecting more serum markers and investigate the significance of multiple markers in diagnosing BTBI.


Assuntos
Traumatismos por Explosões/sangue , Lesões Encefálicas/sangue , Proteína Glial Fibrilar Ácida/sangue , Malondialdeído/sangue , Fator de Necrose Tumoral alfa/análise , Proteínas tau/sangue , Animais , Biomarcadores/sangue , Ensaio de Imunoadsorção Enzimática , Masculino , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA