Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
J Am Heart Assoc ; 13(9): e033700, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38700005

RESUMO

BACKGROUND: The only clinically approved drug that reduces doxorubicin cardiotoxicity is dexrazoxane, but its application is limited due to the risk of secondary malignancies. So, exploring alternative effective molecules to attenuate its cardiotoxicity is crucial. Colchicine is a safe and well-tolerated drug that helps reduce the production of reactive oxygen species. High doses of colchicine have been reported to block the fusion of autophagosomes and lysosomes in cancer cells. However, the impact of colchicine on the autophagy activity within cardiomyocytes remains inadequately elucidated. Recent studies have highlighted the beneficial effects of colchicine on patients with pericarditis, postprocedural atrial fibrillation, and coronary artery disease. It remains ambiguous how colchicine regulates autophagic flux in doxorubicin-induced heart failure. METHODS AND RESULTS: Doxorubicin was administered to establish models of heart failure both in vivo and in vitro. Prior studies have reported that doxorubicin impeded the breakdown of autophagic vacuoles, resulting in damaged mitochondria and the accumulation of reactive oxygen species. Following the administration of a low dose of colchicine (0.1 mg/kg, daily), significant improvements were observed in heart function (left ventricular ejection fraction: doxorubicin group versus treatment group=43.75%±3.614% versus 57.07%±2.968%, P=0.0373). In terms of mechanism, a low dose of colchicine facilitated the degradation of autolysosomes, thereby mitigating doxorubicin-induced cardiotoxicity. CONCLUSIONS: Our research has shown that a low dose of colchicine is pivotal in restoring the autophagy activity, thereby attenuating the cardiotoxicity induced by doxorubicin. Consequently, colchicine emerges as a promising therapeutic candidate to improve doxorubicin cardiotoxicity.


Assuntos
Autofagia , Cardiotoxicidade , Colchicina , Doxorrubicina , Lisossomos , Miócitos Cardíacos , Colchicina/toxicidade , Colchicina/farmacologia , Doxorrubicina/toxicidade , Cardiotoxicidade/prevenção & controle , Autofagia/efeitos dos fármacos , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Animais , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Modelos Animais de Doenças , Masculino , Insuficiência Cardíaca/induzido quimicamente , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/metabolismo , Antibióticos Antineoplásicos/toxicidade , Espécies Reativas de Oxigênio/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Função Ventricular Esquerda/efeitos dos fármacos
2.
Am J Cancer Res ; 11(6): 2670-2683, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34249421

RESUMO

Malignant melanoma has a high mutational rate. As a result, resistance to current therapies is common. Consequently, there is an unmet medical need to develop novel therapies. Recent data suggest that branched-chain amino acid transaminase 1 (BCAT1) is overexpressed in multiple cancers, and such overexpressed BCAT1 is necessary for individual cancer progression. Therefore, BCAT1 appears to be a good target in cancer treatment. Additionally, because its expression in healthy tissues is highly restricted in adults and is limited to the brain, ovary, and placenta, BCAT1 is especially an ideal target in cancer therapies. Currently, the function of BCAT1 in malignant melanoma has not been demonstrated. Therefore, we investigated the role of BCAT1 in the proliferation and migration of malignant melanomas using human samples and mouse malignant B16 melanoma cell line. Our data showed that BCAT1 was overexpressed in malignant melanoma tissues both in humans and mice. Besides, BCAT1 knockdown suppressed melanoma cell proliferation and migration, which was associated with reduced oxidative phosphorylation. Collectively, our data indicate that BCAT1 is a promising therapeutic target for the treatment of malignant melanomas.

3.
Front Genet ; 11: 572663, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33093847

RESUMO

Lysine acetylation is a vital post-translational modification (PTM) of proteins, which plays an important role in cancer development. In healthy human liver tissues, multiple non-histone proteins were identified with acetylation modification, however, the role of acetylated proteins in hepatocellular carcinoma (HCC) development remains largely unknown. Here we performed a quantitative acetylome study of tumor and normal liver tissues from HCC patients. Overall, 598 lysine acetylation sites in 325 proteins were quantified, and almost 59% of their acetylation levels were significantly changed. The differentially acetylated proteins mainly consisted of non-histone proteins located in mitochondria and cytoplasm, which accounted for 42% and 24%, respectively. Bioinformatics analysis showed that differentially acetylated proteins were enriched in metabolism, oxidative stress, and signal transduction processes. In tumor tissues, 278 lysine sites in 189 proteins showed decreased acetylation levels, which occupied 98% of differentially acetylated proteins. Moreover, we collected twenty pairs of tumor and normal liver tissues from HCC male patients, and found that expression levels of SIRT1 (p = 0.002), SIRT2 (p = 0.01), and SIRT4 (p = 0.045) were significantly up-regulated in tumor tissues. Over-expression of possibly accounted for the widespread deacetylation of non-histone proteins identified in HCC tumor tissues, which could serve as promising predictors of HCC. Taken together, our work illustrates abundant differentially acetylated proteins in HCC tumor tissues, and offered insights into the role of lysine acetylation in HCC development. It provided potential biomarker and drug target candidates for clinical HCC diagnosis and treatment.

4.
J Hematol Oncol ; 13(1): 120, 2020 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-32887634

RESUMO

BACKGROUND: Critically ill patients diagnosed with COVID-19 may develop a pro-thrombotic state that places them at a dramatically increased lethal risk. Although platelet activation is critical for thrombosis and is responsible for the thrombotic events and cardiovascular complications, the role of platelets in the pathogenesis of COVID-19 remains unclear. METHODS: Using platelets from healthy volunteers, non-COVID-19 and COVID-19 patients, as well as wild-type and hACE2 transgenic mice, we evaluated the changes in platelet and coagulation parameters in COVID-19 patients. We investigated ACE2 expression and direct effect of SARS-CoV-2 virus on platelets by RT-PCR, flow cytometry, Western blot, immunofluorescence, and platelet functional studies in vitro, FeCl3-induced thrombus formation in vivo, and thrombus formation under flow conditions ex vivo. RESULTS: We demonstrated that COVID-19 patients present with increased mean platelet volume (MPV) and platelet hyperactivity, which correlated with a decrease in overall platelet count. Detectable SARS-CoV-2 RNA in the blood stream was associated with platelet hyperactivity in critically ill patients. Platelets expressed ACE2, a host cell receptor for SARS-CoV-2, and TMPRSS2, a serine protease for Spike protein priming. SARS-CoV-2 and its Spike protein directly enhanced platelet activation such as platelet aggregation, PAC-1 binding, CD62P expression, α granule secretion, dense granule release, platelet spreading, and clot retraction in vitro, and thereby Spike protein enhanced thrombosis formation in wild-type mice transfused with hACE2 transgenic platelets, but this was not observed in animals transfused with wild-type platelets in vivo. Further, we provided evidence suggesting that the MAPK pathway, downstream of ACE2, mediates the potentiating role of SARS-CoV-2 on platelet activation, and that platelet ACE2 expression decreases following SARS-COV-2 stimulation. SARS-CoV-2 and its Spike protein directly stimulated platelets to facilitate the release of coagulation factors, the secretion of inflammatory factors, and the formation of leukocyte-platelet aggregates. Recombinant human ACE2 protein and anti-Spike monoclonal antibody could inhibit SARS-CoV-2 Spike protein-induced platelet activation. CONCLUSIONS: Our findings uncovered a novel function of SARS-CoV-2 on platelet activation via binding of Spike to ACE2. SARS-CoV-2-induced platelet activation may participate in thrombus formation and inflammatory responses in COVID-19 patients.


Assuntos
Betacoronavirus/metabolismo , Plaquetas/metabolismo , Infecções por Coronavirus/metabolismo , Peptidil Dipeptidase A/metabolismo , Pneumonia Viral/metabolismo , Trombose/metabolismo , Adulto , Idoso , Enzima de Conversão de Angiotensina 2 , Animais , Betacoronavirus/genética , COVID-19 , Células CACO-2 , Infecções por Coronavirus/virologia , Feminino , Células HeLa , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Pessoa de Meia-Idade , Células PC-3 , Pandemias , Peptidil Dipeptidase A/genética , Agregação Plaquetária/imunologia , Contagem de Plaquetas , Pneumonia Viral/virologia , RNA Viral/sangue , SARS-CoV-2 , Serina Endopeptidases/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo , Trombose/virologia
5.
Stem Cell Res ; 47: 101882, 2020 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-32592953

RESUMO

FLNA gene encodes an actin-binding protein filamin A and mutations in FLNA can causes X-Linked cardiac valvular dysplasia. In this study, we report the generation of ZZUNEUi008-A, a human induced pluripotent stem cell line from a 10-year-old male patient with c. 84G â†’ A in FLNA gene using non-integrative Sendai viral reprogramming technology. The ZZUNEUi008-A iPSC line expresses pluripotency markers, exhibits a normal male karyotype (46, XY) and can differentiate into three germ layers in vivo.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA