Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Adv Healthc Mater ; : e2402110, 2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39205543

RESUMO

Hypoxia can aggravate tumor occurrence, development, invasion, and metastasis, and greatly inhibit the photodynamic therapy (PDT) effect. Herein, carbon nitride (CNs)-based DNA and photosensitizer co-delivery systems (BPSCNs) with oxygen-producing functions are developed to address this problem. Selenide glucose (Seglu) is used as the dopant to prepare red/NIR-active CNs (SegluCNs). The tumor-targeting unit Bio-PEG2000 is utilized to construct BPSCNs nanoparticles through esterification reactions. Furthermore, DNA hydrophobization is realized via mixing P53 gene with a positively charged mitochondrial-targeted near-infrared (NIR) emitting photosensitizer (MTTPY), which is encapsulated in non-cationic BPSCNs for synergistic delivery. Ester bonds in BPSCNs@MTTPY-P53 complexes can be disrupted by lipase in the liver to facilitate P53 release, upregulated P53 expression, and promoted HIF-1α degradation in mitochondria. In addition, the oxygen produced by the complexes improved the hypoxic microenvironment of hepatocellular carcinoma (HCC), synergistically downregulated HIF-1α expression in mitochondria, promoted mitochondrial-derived ferroptosis and enhanced the PDT effect of the MTTPY unit. Both in vivo and in vitro experiments indicated that the transfected P53-DNA, produced O2 and ROS by these complexes synergistically led to mitochondrial-derived ferroptosis in hepatoma cells through the HIF-1α/SLC7A11 pathway, and completely avoiding PDT resistance caused by hypoxia, exerting a significant therapeutic role in HCC treatment.

2.
Bioeng Transl Med ; 8(5): e10558, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37693059

RESUMO

High positive charge-induced toxicity, easy lysosomal degradation of nucleic acid drugs, and poor lesion sites targeting are major problems faced in the development of gene carriers. Herein, we proposed the concept of self-escape non-cationic gene carriers for targeted delivery and treatment of photocontrolled hepatocellular carcinoma (HCC) with sufficient lysosome escape and multiple response capacities. Functional DNA was bound to the surface of biotin-PEG2000-modified graphitic carbon nitride (Bio-PEG-CN) nanosheets to form non-cationic nanocomplexes Bio-PEG-CN/DNA. These nanocomposites could actively target HCC tissue. Once these nanocomplexes were taken up by tumor cells, the accumulated reactive oxygen species (ROS) generated by Bio-PEG-CN under LED irradiation would disrupt the lysosome structure, thereby facilitating nanocomposites escape. Due to the acidic microenvironment and lipase in the HCC tissue, the reversible release of DNA could be promoted to complete the transfection process. Meanwhile, the fluorescence signal of Bio-PEG-CN could be monitored in real time by fluorescence imaging technology to investigate the transfection process and mechanism. In vitro and in vivo results further demonstrated that these nanocomplexes could remarkably upregulate the expression of tumor suppressor protein P53, increased tumor sensitivity to ROS generated by nanocarriers, and realized effective gene therapy for HCC via loading P53 gene.

3.
J Mater Chem B ; 10(28): 5430-5438, 2022 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-35775960

RESUMO

The construction of non-viral gene delivery faces two major challenges: cytotoxicity caused by high cationic charge units and easy degradation by lysosomes. Herein, highly water-dispersible polymeric carbon nitride (PCN) nanosheets were utilized as the core to construct a light-controlled non-cationic gene delivery system with sufficient lysosomal escape ability. In this system, these nanosheets exhibited efficient DNA condensation, outstanding biocompatibility, transfection tracking, light responsiveness and high transfection efficiency. Once PCN-DNA was taken up by the tumor cells, the accumulated ROS generated by photosensitizers (PSs) under light irradiation would destroy the structure of lysosomes, promote the escape of PCN-DNA and increase the efficiency of gene transfection. Simultaneously, the gene transfection process could be tracked in real time through fluorescence imaging technology, which was conducive to investigate the transfection mechanism. In vitro and in vivo experiments further confirmed that PCN nanosheets loaded with the P53 gene were beneficial to the regeneration of the P53 apoptotic pathway, increased tumor sensitivity to PSs, and further induced tumor cell apoptosis. In summary, the highly water-dispersible PCN nanosheets were applied to light-controlled self-escaping gene delivery for the first time, and tumor gene therapy was successfully realized.


Assuntos
Neoplasias , Humanos , Cátions/química , DNA/química , Lisossomos/metabolismo , Neoplasias/metabolismo , Neoplasias/terapia , Nitrilas , Polímeros/química , Água
4.
J Mater Chem B ; 8(17): 3869-3879, 2020 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-32222754

RESUMO

With the aim to develop a novel multifunctional gene delivery system that may overcome the common barriers of gene transfection, near-infrared fluorescent triphenylamine-pyrazine was modified with a DNA condensing triazole-[12]aneN3 moiety through different length alkyl ester linkages to afford three new non-viral gene vectors, TDM-A/B/C. All compounds showed prominent solvatochromic fluorescence (Stokes shift of up to 383 nm) and two-photon absorption properties (σ2P to 101 GM), and exhibited strong aggregation-induced emission (AIE). Gel electrophoresis demonstrated that plasmid DNA was completely condensed at a concentration of 10 µM (TDM-A), 14 µM (TDM-B) and 16 µM (TDM-C), and released in esterase and acidic environment. SEM demonstrated that the three compounds were able to self-assemble and co-aggregate with DNA to form regular nanoparticles. Experiments demonstrated that TDM-A/B/C was able to integrate with DNA through electrostatic interactions and supramolecular stacking, and the short alkyl linkage favored the strong interaction with DNA. Among the three compounds, TDM-B showed the best luciferase and GFP transfection activities in the presence of DOPE, which were 156% and 310% higher than those of Lipo2000, respectively. The transfection process of DNA was clearly traced through one- and two-photon fluorescence microscopy imaging. Cellular uptake inhibition assay indicated that the DNA complex entered the cell mainly via clathrin-independent endocytosis. Furthermore, the in vivo transfection experiments of TDM-B/DOPE were successfully implemented in zebra fish embryos, and the GFP gene expression level was superior to that of Lipo2000 (200%). Finally, this study clearly unraveled that the length of the alkyl linkage affected the DNA condensation and transfection activity, which can serve as a base for the future rational design of non-viral gene vectors.


Assuntos
Compostos de Anilina/química , Compostos Macrocíclicos/química , Imagem Óptica , Fótons , Poliaminas/química , Pirazinas/química , Compostos de Anilina/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Células HEK293 , Células HeLa , Humanos , Lipossomos/química , Compostos Macrocíclicos/farmacologia , Microscopia de Fluorescência , Estrutura Molecular , Tamanho da Partícula , Poliaminas/farmacologia , Pirazinas/farmacologia , Propriedades de Superfície , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA