Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Pancreatology ; 24(5): 677-689, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38763786

RESUMO

BACKGROUND & AIMS: Mutations in genes, including serine protease inhibitor Kazal-type 1 (SPINK1), influence disease progression following sentinel acute pancreatitis event (SAPE) attacks. SPINK1 c.194+2T > C intron mutation is one of the main mutants of SPINK1,which leads to the impairment of SPINK1 function by causing skipping of exon 3. Research on the pathogenesis of SAPE attacks would contribute to the understanding of the outcomes of acute pancreatitis. Therefore, the aim of the study was to clarify the role of SPINK1 c.194+2T > C mutation in the CP progression after an AP attack. METHODS: SAPE attacks were induced in wildtype and SPINK mutant (Spink1 c.194+2T > C) mice by cerulein injection. The mice were sacrificed at 24 h, 14 d, 28 d, and 42 d post-SAPE. Data-independent acquisition (DIA) proteomic analysis was performed for the identification of differentially expressed protein in the pancreatic tissues. Functional analyses were performed using THP-1 and HPSCs. RESULTS: Following SAPE attack, the Spink1 c.194+2T > C mutant mice exhibited a more severe acute pancreatitis phenotype within 24 h. In the chronic phase, the chronic pancreatitis phenotype was more severe in the Spink1 c.194+2T > C mutant mice after SAPE. Proteomic analysis revealed elevated IL-33 level in Spink1 c.194+2T > C mutant mice. Further in vitro analyses revealed that IL-33 induced M2 polarization of macrophages and activation of pancreatic stellate cells. CONCLUSION: Spink1 c.194+2T > C mutation plays an important role in the prognosis of patients following SAPE. Heterozygous Spink1 c.194+2T > C mutation promotes the development of chronic pancreatitis after an acute attack in mice through elevated IL-33 level and the induction of M2 polarization in coordination with pancreatic stellate cell activation.


Assuntos
Mutação , Pancreatite Crônica , Inibidor da Tripsina Pancreática de Kazal , Animais , Inibidor da Tripsina Pancreática de Kazal/genética , Camundongos , Pancreatite Crônica/genética , Pancreatite Crônica/patologia , Masculino , Camundongos Endogâmicos C57BL , Heterozigoto , Humanos , Doença Aguda , Progressão da Doença , Glicoproteínas , Proteínas Secretadas pela Próstata
2.
Stem Cell Res Ther ; 15(1): 131, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38702793

RESUMO

BACKGROUND: Wharton's jelly-derived mesenchymal stem cells (WJ-MSCs) hold great therapeutic potential in regenerative medicine. Therefore, it is crucial to establish a Good Manufacturing Practice (GMP)-compliant methodology for the isolation and culture of WJ-MSCs. Through comprehensive research, encompassing laboratory-scale experiments to pilot-scale studies, we aimed to develop standardized protocols ensuring the high yield and quality of WJ-MSCs manufacturing. METHODS: Firstly, optimization of parameters for the enzymatic digestion method used to isolate WJ-MSCs was conducted. These parameters included enzyme concentrations, digestion times, seeding densities, and culture media. Additionally, a comparative analysis between the explant method and the enzymatic digestion method was performed. Subsequently, the consecutive passaging of WJ-MSCs, specifically up to passage 9, was evaluated using the optimized method. Finally, manufacturing processes were developed and scaled up, starting from laboratory-scale flask-based production and progressing to pilot-scale cell factory-based production. Furthermore, a stability study was carried out to assess the storage and use of drug products (DPs). RESULTS: The optimal parameters for the enzymatic digestion method were a concentration of 0.4 PZ U/mL Collagenase NB6 and a digestion time of 3 h, resulting in a higher yield of P0 WJ-MSCs. In addition, a positive correlation between the weight of umbilical cord tissue and the quantities of P0 WJ-MSCs has been observed. Evaluation of different concentrations of human platelet lysate revealed that 2% and 5% concentrations resulted in similar levels of cell expansion. Comparative analysis revealed that the enzymatic digestion method exhibited faster outgrowth of WJ-MSCs compared to the explant method during the initial passage. Passages 2 to 5 exhibited higher viability and proliferation ability throughout consecutive passaging. Moreover, scalable manufacturing processes from the laboratory scale to the pilot scale were successfully developed, ensuring the production of high-quality WJ-MSCs. Multiple freeze-thaw cycles of the DPs led to reduced cell viability and viable cell concentration. Subsequent thawing and dilution of the DPs resulted in a significant decrease in both metrics, especially when stored at 20-27 °C. CONCLUSION: This study offers valuable insights into optimizing the isolation and culture of WJ-MSCs. Our scalable manufacturing processes facilitate the large-scale production of high-quality WJ-MSCs. These findings contribute to the advancement of WJ-MSCs-based therapies in regenerative medicine.


Assuntos
Células-Tronco Mesenquimais , Geleia de Wharton , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Humanos , Geleia de Wharton/citologia , Técnicas de Cultura de Células/métodos , Diferenciação Celular , Células Cultivadas , Proliferação de Células , Separação Celular/métodos , Separação Celular/normas
3.
Gut ; 73(7): 1142-1155, 2024 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-38553043

RESUMO

OBJECTIVE: Currently, there is no cure for chronic pancreatitis (CP). Germline loss-of-function variants in SPINK1 (encoding trypsin inhibitor) are common in patients with CP and are associated with acute attacks and progression of the disease. This preclinical study was conducted to explore the potential of adeno-associated virus type 8 (AAV8)-mediated overexpression of human SPINK1 (hSPINK1) for pancreatitis therapy in mice. DESIGN: A capsid-optimised AAV8-mediated hSPINK1 expression vector (AAV8-hSPINK1) to target the pancreas was constructed. Mice were treated with AAV8-hSPINK1 by intraperitoneal injection. Pancreatic transduction efficiency and safety of AAV8-hSPINK1 were dynamically evaluated in infected mice. The effectiveness of AAV8-hSPINK1 on pancreatitis prevention and treatment was studied in three mouse models (caerulein-induced pancreatitis, pancreatic duct ligation and Spink1 c.194+2T>C mouse models). RESULTS: The constructed AAV8-hSPINK1 vector specifically and safely targeted the pancreas, had low organ tropism for the heart, lungs, spleen, liver and kidneys and had a high transduction efficiency (the optimal expression dose was 2×1011 vg/animal). The expression and efficacy of hSPINK1 peaked at 4 weeks after injection and remained at significant level for up to at least 8 weeks. In all three mouse models, a single dose of AAV8-hSPINK1 before disease onset significantly alleviated the severity of pancreatitis, reduced the progression of fibrosis, decreased the levels of apoptosis and autophagy in the pancreas and accelerated the pancreatitis recovery process. CONCLUSION: One-time injection of AAV8-hSPINK1 safely targets the pancreas with high transduction efficiency and effectively ameliorates pancreatitis phenotypes in mice. This approach is promising for the prevention and treatment of CP.


Assuntos
Dependovirus , Modelos Animais de Doenças , Terapia Genética , Vetores Genéticos , Animais , Camundongos , Terapia Genética/métodos , Dependovirus/genética , Inibidor da Tripsina Pancreática de Kazal/genética , Pâncreas/patologia , Pâncreas/metabolismo , Humanos , Pancreatite Crônica/genética , Pancreatite Crônica/terapia , Masculino , Pancreatite/terapia , Pancreatite/prevenção & controle , Pancreatite/genética
4.
Cell Death Dis ; 14(1): 66, 2023 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-36707501

RESUMO

Coronavirus disease 2019 (COVID-19) treatments are still urgently needed for critically and severely ill patients. Human umbilical cord-mesenchymal stem cells (hUC-MSCs) infusion has therapeutic benefits in COVID-19 patients; however, uncertain therapeutic efficacy has been reported in severe patients. In this study, we selected an appropriate cytokine, IL-18, based on the special cytokine expression profile in severe pneumonia of mice induced by H1N1virus to prime hUC-MSCs in vitro and improve the therapeutic effect of hUC-MSCs in vivo. In vitro, we demonstrated that IL-18-primed hUC-MSCs (IL18-hUCMSC) have higher proliferative ability than non-primed hUC-MSCs (hUCMSCcon). In addition, VCAM-1, MMP-1, TGF-ß1, and some chemokines (CCL2 and CXCL12 cytokines) are more highly expressed in IL18-hUCMSCs. We found that IL18-hUCMSC significantly enhanced the immunosuppressive effect on CD3+ T-cells. In vivo, we demonstrated that IL18-hUCMSC infusion could reduce the body weight loss caused by a viral infection and significantly improve the survival rate. Of note, IL18-hUCMSC can also significantly attenuate certain clinical symptoms, including reduced activity, ruffled fur, hunched backs, and lung injuries. Pathologically, IL18-hUCMSC transplantation significantly enhanced the inhibition of inflammation, viral load, fibrosis, and cell apoptosis in acute lung injuries. Notably, IL18-hUCMSC treatment has a superior inhibitory effect on T-cell exudation and proinflammatory cytokine secretion in bronchoalveolar lavage fluid (BALF). Altogether, IL-18 is a promising cytokine that can prime hUC-MSCs to improve the efficacy of precision therapy against viral-induced pneumonia, such as COVID-19.


Assuntos
COVID-19 , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Pneumonia Viral , Humanos , Camundongos , Animais , Interleucina-18/metabolismo , Cordão Umbilical/metabolismo , Linfócitos T/metabolismo , COVID-19/metabolismo , Citocinas/metabolismo , Pneumonia Viral/terapia , Pneumonia Viral/metabolismo , Terapia de Imunossupressão , Células-Tronco Mesenquimais/metabolismo
5.
J Gene Med ; 25(1): e3456, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36219542

RESUMO

BACKGROUND: The c.194+2 T>C variant of serine protease inhibitor Kazal type 1 (SPINK1) is a known genetic risk factor found in Chinese patients with idiopathic chronic pancreatitis (ICP), but the early-onset mechanisms of ICP are still unclear. METHODS: Complementary experimental approaches were used to pursue other potential pathologies in the present study. The serum level of SPINK1 of ICP patients in the Han population in China was detected and verified by an enzyme-linked immunosorbent assay. Next, differentially expressed proteins and microRNAs from plasma samples of early-onset and late-onset ICP patients were screened by proteomic analysis and microarray, respectively. RESULTS: Combined with these advanced methods, the data strongly suggest that the regulatory effects of microRNAs were involved in the early-onset mechanism of the ICP by in vitro experiments. There was no significant difference in the plasma SPINK1 expression between the early-onset ICP and the late-onset patients. However, the expression of plasma glutathione peroxidase (GPx3) in early-onset ICP patients was markedly lower than that in late-onset ICP patients, although the level of hsa-miR-323b-5p was lower in late-onset patients compared to the early-onset ICP group. In vitro experiments confirmed that hsa-miR-323b-5p could increase apoptosis in caerulein-treated pancreatic acinar cells and inhibit the expression of GPx3. CONCLUSIONS: The up-regulated hsa-miR-323b-5p might play a crucial role in the early-onset mechanisms of ICP by diminishing the antioxidant activity through the down-regulation of GPx3.


Assuntos
MicroRNAs , Pancreatite Crônica , Humanos , MicroRNAs/metabolismo , Pancreatite Crônica/genética , Proteômica , Fatores de Risco , Inibidor da Tripsina Pancreática de Kazal/genética
6.
Cancers (Basel) ; 14(11)2022 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-35681705

RESUMO

KRAS mutations are prevalent in patients with pancreatic ductal adenocarcinoma (PDAC) and are critical to fostering tumor growth in part by aberrantly rewiring glucose, amino acid, and lipid metabolism. Obesity is a modifiable risk factor for pancreatic cancer. Corroborating this epidemiological observation, mice harboring mutant KRAS are highly vulnerable to obesogenic high-fat diet (HFD) challenges leading to the development of PDAC with high penetrance. However, the contributions of other macronutrient diets, such as diets rich in carbohydrates that are regarded as a more direct source to fuel glycolysis for cancer cell survival and proliferation than HFD, to pancreatic tumorigenesis remain unclear. In this study, we compared the differential effects of a high-carbohydrate diet (HCD), an HFD, and a high-protein diet (HPD) in PDAC development using a mouse model expressing an endogenous level of mutant KRASG12D specifically in pancreatic acinar cells. Our study showed that although with a lower tumorigenic capacity than chronic HFD, chronic HCD promoted acinar-to-ductal metaplasia (ADM) and pancreatic intraepithelial neoplasia (PanIN) lesions with increased inflammation, fibrosis, and cell proliferation compared to the normal diet (ND) in KrasG12D/+ mice. By contrast, chronic HPD showed no significant adverse effects compared to the ND. Furthermore, ablation of pancreatic acinar cell cyclooxygenase 2 (Cox-2) in KrasG12D/+ mice abrogated the adverse effects induced by HCD, suggesting that diet-induced pancreatic inflammation is critical for promoting oncogenic KRAS-mediated neoplasia. These results indicate that diets rich in different macronutrients have differential effects on pancreatic tumorigenesis in which the ensuing inflammation exacerbates the process. Management of macronutrient intake aimed at thwarting inflammation is thus an important preventive strategy for patients harboring oncogenic KRAS.

7.
Front Cell Dev Biol ; 9: 722953, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34858970

RESUMO

Mesenchymal stromal cells (MSCs) show potential for treating preclinical models of newborn bronchopulmonary dysplasia (BPD), but studies of their therapeutic effectiveness have had mixed results, in part due to the use of different media supplements for MSCs expansion in vitro. The current study sought to identify an optimal culture supplement of umbilical cord-derived MSCs (UC-MSCs) for BPD therapy. In this study, we found that UC-MSCs cultured with human platelet lysate (hPL-UCMSCs) were maintained a small size from Passage 1 (P1) to P10, while UC-MSCs cultured with fetal bovine serum (FBS-UCMSCs) became wide and flat. Furthermore, hPL was associated with lower levels of senescence in UC-MSCs during in vitro expansion compared with FBS, as indicated by the results of ß-galactosidase staining and measures of senescence-related genes (CDKN2A, CDKN1A, and mTOR). In addition, hPL enhanced the proliferation and cell viability of the UC-MSCs and reduced their doubling time in vitro. Compared with FBS-UCMSCs, hPL-UCMSCs have a greater potential to differentiate into osteocytes and chondrocytes. Moreover, using hPL resulted in greater expression of Nestin and specific paracrine factors (VEGF, TGF-ß1, FGF2, IL-8, and IL-6) in UC-MSCs compared to using FBS. Critically, we also found that hPL-UCMSCs are more effective than FBS-UCMSCs for the treatment of BPD in a rat model, with hPL leading to improvements in survival rate, lung architecture and fibrosis, and lung capillary density. Finally, qPCR of rat lung mRNA demonstrated that hPL-UCMSCs had lower expression levels of inflammatory factors (TNF-α and IL-1ß) and a key chemokine (MCP-1) at postnatal day 10, and there was significant reduction of CD68+ macrophages in lung tissue after hPL-UCMSCs transplantation. Altogether, our findings suggest that hPL is an optimal culture supplement for UC-MSCs expansion in vitro, and that hPL-UCMSCs promote lung repair in rat BPD disease.

8.
Stem Cell Res Ther ; 12(1): 397, 2021 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-34256845

RESUMO

BACKGROUND: Pulmonary fibrosis (PF) is a growing clinical problem with limited therapeutic options. Human umbilical cord mesenchymal stromal cell (hucMSC) therapy is being investigated in clinical trials for the treatment of PF patients. However, little is known about the underlying molecular and cellular mechanisms of hucMSC therapy on PF. In this study, the molecular and cellular behavior of hucMSC was investigated in a bleomycin-induced mouse PF model. METHODS: The effect of hucMSCs on mouse lung regeneration was determined by detecting Ki67 expression and EdU incorporation in alveolar type 2 (AT2) and lung fibroblast cells. hucMSCs were transfected to express the membrane localized GFP before transplant into the mouse lung. The cellular behavior of hucMSCs in mouse lung was tracked by GFP staining. Single cell RNA sequencing was performed to investigate the effects of hucMSCs on gene expression profiles of macrophages after bleomycin treatment. RESULTS: hucMSCs could alleviate collagen accumulation in lung and decrease the mortality of mouse induced by bleomycin. hucMSC transplantation promoted AT2 cell proliferation and inhibited lung fibroblast cell proliferation. By using single cell RNA sequencing, a subcluster of interferon-sensitive macrophages (IFNSMs) were identified after hucMSC infusion. These IFNSMs elevate the secretion of CXCL9 and CXCL10 following hucMSC infusion and recruit more Treg cells to the injured lung. CONCLUSIONS: Our study establishes a link between hucMSCs, macrophage, Treg, and PF. It provides new insights into how hucMSCs interact with macrophage during the repair process of bleomycin-induced PF and play its immunoregulation function.


Assuntos
Células-Tronco Mesenquimais , Fibrose Pulmonar , Animais , Humanos , Macrófagos , Camundongos , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/genética , Fibrose Pulmonar/terapia , Linfócitos T Reguladores , Cordão Umbilical
9.
Cell Death Dis ; 12(2): 189, 2021 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-33594044

RESUMO

Oncogenic RAS is a critical driver for the initiation and progression of several types of cancers. However, effective therapeutic strategies by targeting RAS, in particular RASG12D and RASG12V, and associated downstream pathways have been so far unsuccessful. Treatment of oncogenic RAS-ravaged cancer patients remains a currently unmet clinical need. Consistent with a major role in cancer metabolism, oncogenic RAS activation elevates both reactive oxygen species (ROS)-generating NADPH oxidase (NOX) activity and ROS-scavenging glutathione biosynthesis. At a certain threshold, the heightened oxidative stress and antioxidant capability achieve a higher level of redox balance, on which cancer cells depend to gain a selective advantage on survival and proliferation. However, this prominent metabolic feature may irrevocably render cancer cells vulnerable to concurrent inhibition of both NOX activity and glutathione biosynthesis, which may be exploited as a novel therapeutic strategy. In this report, we test this hypothesis by treating the HRASG12V-transformed ovarian epithelial cells, mutant KRAS-harboring pancreatic and colon cancer cells of mouse and human origins, as well as cancer xenografts, with diphenyleneiodonium (DPI) and buthionine sulfoximine (BSO) combination, which inhibit NOX activity and glutathione biosynthesis, respectively. Our results demonstrate that concomitant targeting of NOX and glutathione biosynthesis induces a highly potent lethality to cancer cells harboring oncogenic RAS. Therefore, our studies provide a novel strategy against RAS-bearing cancers that warrants further mechanistic and translational investigation.


Assuntos
Carcinoma Ductal Pancreático/tratamento farmacológico , Neoplasias do Colo/tratamento farmacológico , Inibidores Enzimáticos/farmacologia , Genes ras , Glutationa/biossíntese , Metionina/análogos & derivados , Mutação , NADPH Oxidases/antagonistas & inibidores , Oniocompostos/farmacologia , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Pancreáticas/tratamento farmacológico , Sulfóxidos/farmacologia , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Carcinoma Ductal Pancreático/enzimologia , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Morte Celular/efeitos dos fármacos , Neoplasias do Colo/enzimologia , Neoplasias do Colo/genética , Neoplasias do Colo/patologia , Feminino , Genes p53 , Glutamato-Cisteína Ligase/antagonistas & inibidores , Glutamato-Cisteína Ligase/metabolismo , Células HCT116 , Humanos , Metionina/farmacologia , Camundongos Nus , Camundongos Transgênicos , NADPH Oxidases/metabolismo , Neoplasias Ovarianas/enzimologia , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Estresse Oxidativo , Neoplasias Pancreáticas/enzimologia , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Transdução de Sinais , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Am J Cancer Res ; 10(9): 2977-2992, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33042630

RESUMO

Endoscopic submucosal dissection (ESD) is a minimally invasive alternative to esophagectomy for early esophageal squamous cell carcinoma (EESCC). The aim of this study was to compare the efficacy and safety of ESD and esophagectomy in EESCC with different depth of invasion. The data of EESCC patients who received ESD or esophagectomy between Jan 2011 to Dec 2018 at our center were retrospectively analyzed. Overall survival (OS), disease-specific survival (DSS), recurrence-free survival (RFS), and procedure-related variables were compared between ESD and esophagectomy patients. 222 EESCC patients underwent ESD, while 184 underwent esophagectomy. No significant differences were found between the two groups in OS (P=0.417), DSS (P=0.423), and RFS (P=0.726). Procedure duration, post-procedure hospital stay, and hospitalization cost were all lower in ESD patients. Oncologic outcomes were similar between the two groups in propensity score-matched analysis. The R0 resection rate was comparable between ESD and esophagectomy groups in the T1a-M1/M2 and M3/SM1 EESCC subgroups; no significant differences were found in OS, DSS and RFS. In the SM2/SM3 EESCC subgroup, although the prognosis of the two treatment groups was similar, the R0 resection rate was significantly lower in ESD patients than in esophagectomy patients. Thus, we concluded ESD could be a first-line treatment for T1a-M1/M2 and M3/SM1 EESCC as oncologic outcome is comparable to that achieved with esophagectomy with minimal invasion, lower cost and lower incidence of serious adverse events. However, in SM2/SM3 EESCC patients, esophagectomy may be preferable.

11.
Cell Tissue Bank ; 21(4): 631-641, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32809089

RESUMO

Peripheral blood mononuclear cells are widely used as source material for anticancer immunotherapies. The conventional cryopreservation method for peripheral blood mononuclear cells is time-consuming and expansive, which involves controlled rate freezing followed by storage in liquid nitrogen. Instead, the convenient uncontrolled rate freezing cryopreservation method had been reported successfully in peripheral blood hematopoietic stem cells and peripheral blood progenitor cells. Therefore, we hypothesized that uncontrolled rate freezing cooling method maybe also applied to peripheral blood mononuclear cells cryopreservation. In this study, we evaluated the performance of uncontrolled rate freezing and controlled rate freezing cooling methods through cell recovery rate, viability, differentiation potential into cytokine-induced killer cells and the cellular properties of the cultured cytokine-induced killer cells. The results showed similar post-thaw viability and recovery rate in both controlled rate freezing and uncontrolled rate freezing cryopreserved peripheral blood mononuclear cells. Importantly, the uncontrolled rate freezing cryopreserved peripheral blood mononuclear cells exhibited higher growth ratio and earlier cell clustering during ex-vivo cytokine-induced killer cell culture than the controlled rate freezing ones. These two groups of expanded cytokine-induced killer cells also exhibited similar effector cell subset ratio and tumoricidal activity. In general, the performance of cryopreserved peripheral blood mononuclear cells using uncontrolled rate freezing cooling method, with the commercial cryoprotective agent CellBanker 2, was equal or better than the controlled rate freezing method. Our study implied that the combined use of cryoprotective agent CellBanker 2 and uncontrolled rate freezing could be a convenient cryopreservation method for peripheral blood mononuclear cells.


Assuntos
Criopreservação , Congelamento , Leucócitos Mononucleares/citologia , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Crioprotetores/farmacologia , Células Matadoras Induzidas por Citocinas/efeitos dos fármacos , Humanos , Imunofenotipagem , Leucócitos Mononucleares/efeitos dos fármacos , Neoplasias/patologia
13.
Gastroenterology ; 157(5): 1413-1428.e11, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31352001

RESUMO

BACKGROUND & AIMS: Obesity is a risk factor for pancreatic cancer. In mice, a high-fat diet (HFD) and expression of oncogenic KRAS lead to development of invasive pancreatic ductal adenocarcinoma (PDAC) by unknown mechanisms. We investigated how oncogenic KRAS regulates the expression of fibroblast growth factor 21, FGF21, a metabolic regulator that prevents obesity, and the effects of recombinant human FGF21 (rhFGF21) on pancreatic tumorigenesis. METHODS: We performed immunohistochemical analyses of FGF21 levels in human pancreatic tissue arrays, comprising 59 PDAC specimens and 45 nontumor tissues. We also studied mice with tamoxifen-inducible expression of oncogenic KRAS in acinar cells (KrasG12D/+ mice) and fElasCreERT mice (controls). KrasG12D/+ mice were placed on an HFD or regular chow diet (control) and given injections of rhFGF21 or vehicle; pancreata were collected and analyzed by histology, immunoblots, quantitative polymerase chain reaction, and immunohistochemistry. We measured markers of inflammation in the pancreas, liver, and adipose tissue. Activity of RAS was measured based on the amount of bound guanosine triphosphate. RESULTS: Pancreatic tissues of mice expressed high levels of FGF21 compared with liver tissues. FGF21 and its receptor proteins were expressed by acinar cells. Acinar cells that expressed KrasG12D/+ had significantly lower expression of Fgf21 messenger RNA compared with acinar cells from control mice, partly due to down-regulation of PPARG expression-a transcription factor that activates Fgf21 transcription. Pancreata from KrasG12D/+ mice on a control diet and given injections of rhFGF21 had reduced pancreatic inflammation, infiltration by immune cells, and acinar-to-ductal metaplasia compared with mice given injections of vehicle. HFD-fed KrasG12D/+ mice given injections of vehicle accumulated abdominal fat, developed extensive inflammation, pancreatic cysts, and high-grade pancreatic intraepithelial neoplasias (PanINs); half the mice developed PDAC with liver metastases. HFD-fed KrasG12D/+ mice given injections of rhFGF21 had reduced accumulation of abdominal fat and pancreatic triglycerides, fewer pancreatic cysts, reduced systemic and pancreatic markers of inflammation, fewer PanINs, and longer survival-only approximately 12% of the mice developed PDACs, and none of the mice had metastases. Pancreata from HFD-fed KrasG12D/+ mice given injections of rhFGF21 had lower levels of active RAS than from mice given vehicle. CONCLUSIONS: Normal acinar cells from mice and humans express high levels of FGF21. In mice, acinar expression of oncogenic KRAS significantly reduces FGF21 expression. When these mice are placed on an HFD, they develop extensive inflammation, pancreatic cysts, PanINs, and PDACs, which are reduced by injection of FGF21. FGF21 also reduces the guanosine triphosphate binding capacity of RAS. FGF21 might be used in the prevention or treatment of pancreatic cancer.


Assuntos
Células Acinares/metabolismo , Carcinoma Ductal Pancreático/metabolismo , Transformação Celular Neoplásica/metabolismo , Dieta Hiperlipídica , Fatores de Crescimento de Fibroblastos/metabolismo , Neoplasias Intraductais Pancreáticas/metabolismo , Neoplasias Pancreáticas/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Células Acinares/patologia , Animais , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Carcinoma Ductal Pancreático/prevenção & controle , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/patologia , Regulação para Baixo , Fatores de Crescimento de Fibroblastos/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Proteínas Klotho , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos Transgênicos , Mutação , PPAR gama/genética , PPAR gama/metabolismo , Cisto Pancreático/genética , Cisto Pancreático/metabolismo , Cisto Pancreático/patologia , Neoplasias Intraductais Pancreáticas/genética , Neoplasias Intraductais Pancreáticas/patologia , Neoplasias Intraductais Pancreáticas/prevenção & controle , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/prevenção & controle , Pancreatite/genética , Pancreatite/metabolismo , Pancreatite/patologia , Proteínas Proto-Oncogênicas p21(ras)/genética , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo , Transdução de Sinais , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
14.
Cryobiology ; 86: 25-32, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30629948

RESUMO

In this study, we compared three commercially available and two widely used CPAs for their ability of cryopreserving PBMCs. Similar survival (81.0%) and recovery rate (73.7%) were observed among cells using these five CPAs. However, all the cryopreserved PBMCs exhibited a significantly lower survival rate when compared with the fresh samples (94.3%). We further evaluated effector cell subpopulation and tumoricidal activity of PBMC-derived cytokine-induced killing (CIK) cells and natural killing (NK) cells. Similar and high survival (CIK: 88.6%; NK: 87.5%) and recovery (CIK: 99.5%; NK: 99.7%) rates were detected in CIK and NK cells prepared from cryopreserved PBMCs using the five CPAs. The CD3+CD56+ effector percentage (27.3%) of cryopreserved PBMC-derived CIK cells using the five different CPAs and their tumoricidal activities on melanoma CHL-1 cells (45.7%) and bladder cancer cell line T-24 (44.7%) were similar but significantly lower than those of the fresh PBMC-derived controls (effector: 30.7%; CHL-1: 84.2%; T-24: 82.2%). Cryopreserved PBMC-derived NK cells also exhibited similar tumoricidal activities (CHL-1: 73.8%; T-24: 71.9%) but was significantly lower than that of the fresh control group. We were not able to identify a specific CPA that performed superior than others in PBMC cryopreservation.


Assuntos
Criopreservação/métodos , Crioprotetores/farmacologia , Células Matadoras Induzidas por Citocinas/imunologia , Células Matadoras Naturais/imunologia , Melanoma/imunologia , Neoplasias da Bexiga Urinária/imunologia , Linhagem Celular Tumoral , Humanos , Leucócitos Mononucleares/citologia , Soluções
15.
Oncol Lett ; 15(4): 5924-5932, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29556312

RESUMO

Placenta-specific 1 (PLAC1), a novel cancer-testis antigen (CTA), is expressed in a number of different human malignancies. It is frequently produced in breast cancer, serving a function in tumorigenesis. Adoptive immunotherapy using T cell receptor (TCR)-engineered T cells against CTA mediates objective tumor regression; however, to the best of our knowledge, targeting PLAC1 using engineered T cells has not yet been attempted. In the present study, the cDNAs encoding TCRα- and ß-chains specific for human leukocyte antigen (HLA)-A*0201-restricted PLAC1 were cloned from a cytotoxic T-lymphocyte, generated by in vitro by the stimulation of CD8+ T cells using autologous HLA-A2+ dendritic cells loaded with a PLAC1-specific peptide (p28-36, VLCSIDWFM). The TCRα/ß-chains were linked by a 2A peptide linker (TCRα-Thosea asigna virus-TCRß), and the constructs were cloned into the lentiviral vector, followed by transduction into human cytotoxic (CD8+) T cells. The efficiency of transduction was up to 25.16%, as detected by PLAC1 multimers. TCR-transduced CD8+ T cells, co-cultured with human non-metastatic breast cancer MCF-7 cells (PLAC1+, HLA-A2+) and triple-negative breast cancer MDAMB-231 cells (PLAC1+, HLA-A2+), produced interferon γ and tumor necrosis factor α, suggesting TCR activation. Furthermore, the PLAC1 TCR-transduced CD8+ T cells efficiently and specifically identified and annihilated the HLA-A2+/PLAC1+ breast cancer cell lines in a lactate dehydrogenase activity assay. Western blot analysis demonstrated that TCR transduction stimulated the production of mitogen-activated protein kinase signaling molecules, extracellular signal-regulated kinases 1/2 and nuclear factor-κB, through phosphoinositide 3-kinase γ-mediated phosphorylation of protein kinase B in CD8+ T cells. Xenograft mouse assays revealed that PLAC1 TCR-transduced CD8+T cells significantly delayed the tumor progression in mice-bearing breast cancer compared with normal saline or negative control-transduced groups. In conclusion, a novel HLA-A2-restricted and PLAC1-specific TCR was identified. The present study demonstrated PLAC1 to be a potential target for breast cancer treatment; and the usage of PLAC1-specific TCR-engineered T cells may be a novel strategy for PLAC1-positive breast cancer treatment.

16.
J Cell Physiol ; 232(5): 996-1007, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-27579673

RESUMO

Mesenchymal stem cells (MSCs) are a promising cell resource for the treatment of ischemic diseases, partially through paracrine effects. One of the major obstacles of MSC treatment is the poor survival rate and low efficiency of transplanted stem cells due to ischemic or inflammatory environments. Gremlin1 (GREM1), a regulator of growth, differentiation and development, has been identified as a novel proangiogenic factor. However, the role and mechanism of GREM1 in MSCs remains unclear. Therefore, we assessed the putative beneficial effects of GREM1 on MSC-based therapy for hindlimb ischemia. The lentiviral vector, EF1a-GREM1, was constructed using the Multisite Gateway System and used to transduce MSCs. In vitro studies demonstrated increased survival of GREM1-MSCs exposed to H2 O2 , which is consistent with the activation of caspase-3. Conditional medium from GREM1-MSCs (GREM1-MSC-CM) increased the anti-apoptotic effects of human umbilical vein endothelial cells (HUVECs), and this effect was attenuated by treatment with the PI3K/Akt pathway inhibitor LY294002. MSCs modified with GREM1 could significantly increase blood perfusion of the ischemic hindlimb in vivo in a mouse model, which was correlated to improved MSC survival. This study demonstrates that overexpression of GREM1 in MSCs have greater therapeutic effects against ischemia compared with wild-type MSCs by enhancing the survival of MSCs and ECs, which may provide new tools for studies investigating the treatment of ischemic diseases. J. Cell. Physiol. 232: 996-1007, 2017. © 2016 Wiley Periodicals, Inc.


Assuntos
Membro Posterior/irrigação sanguínea , Membro Posterior/patologia , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Isquemia/terapia , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/metabolismo , Animais , Apoptose , Arteríolas/patologia , Capilares/patologia , Sobrevivência Celular , Embrião de Galinha , Modelos Animais de Doenças , Feminino , Técnicas de Silenciamento de Genes , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Isquemia/patologia , Células-Tronco Mesenquimais/citologia , Camundongos Endogâmicos C57BL , Modelos Biológicos , Neovascularização Fisiológica , Estresse Oxidativo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fluxo Sanguíneo Regional , Transdução de Sinais , Doadores de Tecidos , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
18.
Int J Biochem Cell Biol ; 78: 349-360, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27477313

RESUMO

Neural stem cells (NSCs) migration is essential for neurogenesis and neuroregeneration after brain injury. Nestin, a widely used marker of NSCs, is expressed abundantly in several cancers, where it may correlate with tumor migration and invasion. However, it is not yet known whether nestin participates in NSC migration. Here, we show that nestin down-regulation significantly inhibits the migration and contraction of murine neural stem cells, but does not obviously influence the proliferation, filamentous actin (F-actin) content, distribution or focal adhesion assembly of these cells. Mechanistically, nestin knockdown was found to affect the phosphorylation state of myosin regulatory light chain (MRLC) and regulate the activity of myosin light chain kinase (MLCK). Co-immunoprecipitation experiments showed that it interacts with MLCK and MRLC. Together, our results indicate that nestin may increase NSC motility via elevating MLCK activity through direct binding and provide new insight into the roles of nestin in NSC migration and repair.


Assuntos
Movimento Celular , Fenômenos Mecânicos , Nestina/metabolismo , Células-Tronco Neurais/citologia , Animais , Fenômenos Biomecânicos , Linhagem Celular , Técnicas de Silenciamento de Genes , Camundongos , Cadeias Leves de Miosina/metabolismo , Quinase de Cadeia Leve de Miosina/metabolismo , Nestina/deficiência , Nestina/genética , Células-Tronco Neurais/metabolismo , Fosforilação , Proteínas rho de Ligação ao GTP/metabolismo
19.
Mol Ther ; 24(10): 1860-1872, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27397633

RESUMO

Mesenchymal stromal cells (MSCs) have shown great potential for treating inflammatory bowel disease, which is ameliorated through paracrine cross talk between MSCs and T-cells. Members of the insulin-like growth factor binding protein (IGFBP) family have important immunomodulatory functions in MSCs, but the underlying mechanisms behind these functions have not yet been clearly elucidated. In this study, we investigate whether MSC-produced IGFBP7 is involved in immune modulation using a mouse experimental colitis model. Gene expression profiling revealed that IGFBP7 was highly expressed in MSCs. Consistent with this findings, IGFBP7 knockdown in MSCs significantly decreased their immunomodulatory properties, decreasing the antiproliferative functions of MSCs against T-cells, while also having an effect on the proinflammatory cytokine production of the T-cells. Furthermore, in the mouse experimental colitis model, MSC-derived IGFBP7 ameliorated the clinical and histopathological severity of induced colonic inflammation and also restored the injured gastrointestinal mucosal tissues. In conclusion, IGFBP7 contributes significantly to MSC-mediated immune modulation, as is shown by the ability of IGFBP7 knockdown in MSCs to restore proliferation and cytokine production in T-cells. These results suggest that IGFBP7 may act as a novel MSC-secreted immunomodulatory factor.


Assuntos
Colite/terapia , Fatores Imunológicos/metabolismo , Proteínas de Ligação a Fator de Crescimento Semelhante a Insulina/metabolismo , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/citologia , Animais , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Colite/induzido quimicamente , Colite/metabolismo , Modelos Animais de Doenças , Células-Tronco Mesenquimais/metabolismo , Camundongos , Regulação para Cima
20.
Stem Cell Res Ther ; 7(1): 63, 2016 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-27107963

RESUMO

BACKGROUND: Interstitial pneumonia in connective tissue diseases (CTD-IP) featuring inflammation and fibrosis is a leading cause of death in CTD-IP patients. The related autoimmune lung injury and disturbed self-healing process make conventional anti-inflammatory drugs ineffective. Equipped with unique immunoregulatory and regenerative properties, mesenchymal stem cells (MSCs) may represent a promising therapeutic agent in CTD-IP. In this study, we aim to define the immunopathology involved in pulmonary exacerbation during autoimmunity and to determine the potential of MSCs in correcting these disorders. METHODS: Lung and blood specimens, bronchoalveolar lavage fluid cells collected from CTD-IP patients, and human primary lung fibroblasts (HLFs) from patients pathologically diagnosed with usual interstitial pneumonia (UIP) and healthy controls were analyzed by histology, flow cytometry and molecular biology. T cell subsets involved in the process of CTD-IP were defined, while the regulatory functions of MSCs isolated from the bone marrow of normal individuals (HBMSCs) on cytotoxic T cells and CTD-UIP HLFs were investigated in vitro. RESULTS: Higher frequencies of cytotoxic T cells were observed in the lung and peripheral blood of CTD-IP patients, accompanied with a reduced regulatory T cell (Treg) level. CTD-UIP HLFs secreted proinflammatory cytokines in combination with upregulation of α-smooth muscle actin (α-SMA). The addition of HBMSCs in vitro increased Tregs concomitant with reduced cytotoxic T cells in an experimental cell model with dominant cytotoxic T cells, and promoted Tregs expansion in T cell subsets from patients with idiopathic pulmonary fibrosis (IPF). HBMSCs also significantly decreased proinflammatory chemokine/cytokine expression, and blocked α-SMA activation in CTD-UIP HLFs through a TGF-ß1-mediated mechanism, which modulates excessive IL-6/STAT3 signaling leading to IP-10 expression. MSCs secreting a higher level of TGF-ß1 appear to have an optimal anti-fibrotic efficacy in BLM-induced pulmonary fibrosis in mice. CONCLUSIONS: Impairment of TGF-ß signal transduction relevant to a persistent IL-6/STAT3 transcriptional activation contributes to reduction of Treg differentiation in CTD-IP and to myofibroblast differentiation in CTD-UIP HLFs. HBMSCs can sensitize TGF-ß1 downstream signal transduction that regulates IL-6/STAT3 activation, thereby stimulating Treg expansion and facilitating anti-fibrotic IP-10 production. This may in turn block progression of lung fibrosis in autoimmunity.


Assuntos
Fibroblastos/imunologia , Fibrose Pulmonar Idiopática/imunologia , Imunomodulação , Interleucina-6/imunologia , Células-Tronco Mesenquimais/imunologia , Fator de Transcrição STAT3/imunologia , Fator de Crescimento Transformador beta1/imunologia , Actinas/genética , Actinas/imunologia , Autoimunidade , Líquido da Lavagem Broncoalveolar/citologia , Líquido da Lavagem Broncoalveolar/imunologia , Estudos de Casos e Controles , Diferenciação Celular , Quimiocina CXCL10/genética , Quimiocina CXCL10/imunologia , Feminino , Fibroblastos/patologia , Regulação da Expressão Gênica , Humanos , Fibrose Pulmonar Idiopática/genética , Fibrose Pulmonar Idiopática/patologia , Interleucina-6/genética , Pulmão/imunologia , Pulmão/patologia , Masculino , Células-Tronco Mesenquimais/patologia , Pessoa de Meia-Idade , Cultura Primária de Células , Fator de Transcrição STAT3/genética , Transdução de Sinais , Linfócitos T Citotóxicos/imunologia , Linfócitos T Citotóxicos/patologia , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/patologia , Fator de Crescimento Transformador beta1/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA