Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 126
Filtrar
1.
Exp Cell Res ; : 114101, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38815788

RESUMO

Se-methylselenocysteine (MSC) is recognized for its potential in cancer prevention, yet the specific effects and underlying processes it initiates within non-small cell lung cancer (NSCLC) remain to be fully delineated. Employing a comprehensive array of assays, including CCK-8, colony formation, flow cytometry, MitoSOX Red staining, wound healing, transwell, and TUNEL staining, we evaluated MSC's effects on A549 and 95D cell lines. Our investigation extended to the ROS-mediated NF-κB signaling pathway, utilizing western blot analysis, P65 overexpression, and the application of IκB-α inhibitor (BAY11-7082) or N-acetyl-cysteine (NAC) to elucidate MSC's mechanism of action. In vivo studies involving subcutaneous xenografts in mice further confirmed MSC's inhibitory effect on tumor growth. Our findings indicated that MSC inhibited the proliferation of A549 and 95D cells, arresting cell cycle G0/G1 phase and reducing migration and invasion, while also inducing apoptosis and increasing intracellular ROS levels. This was accompanied by modulation of key proteins, including the upregulation of p21, p53, E-cadherin, Bax, cleaved caspase-3, cleaved-PARP, and downregulation of CDK4, SOD2, GPX-1. MSC was found to inhibit the NF-κB pathway, as evidenced by decreased levels of P-P65 and P-IκBα. Notably, overexpression of P65 and modulation of ROS levels with NAC could attenuate MSC's effects on cellular proliferation and metastasis. Moreover, MSC significantly curtailed tumor growth in vivo and disrupted the NF-κB signaling pathway. In conclusion, our research demonstrates that MSC exhibits anticancer effects against NSCLC by modulating the ROS/NF-κB signaling pathway, suggesting its potential as a therapeutic agent in NSCLC treatment.

2.
Front Oncol ; 13: 1142916, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38023195

RESUMO

Objectives: The present study aims at establishing a noninvasive and reliable model for the preoperative prediction of glypican 3 (GPC3)-positive hepatocellular carcinoma (HCC) based on multiparametric magnetic resonance imaging (MRI) and clinical indicators. Methods: As a retrospective study, the subjects included 158 patients from two institutions with surgically-confirmed single HCC who underwent preoperative MRI between 2020 and 2022. The patients, 102 from institution I and 56 from institution II, were assigned to the training and the validation sets, respectively. The association of the clinic-radiological variables with the GPC3 expression was investigated through performing univariable and multivariable logistic regression (LR) analyses. The synthetic minority over-sampling technique (SMOTE) was used to balance the minority group (GPC3-negative HCCs) in the training set, and diagnostic performance was assessed by the area under the curve (AUC) and accuracy. Next, a prediction nomogram was developed and validated for patients with GPC3-positive HCC. The performance of the nomogram was evaluated through examining its calibration and clinical utility. Results: Based on the results obtained from multivariable analyses, alpha-fetoprotein levels > 20 ng/mL, 75th percentile ADC value < 1.48 ×103 mm2/s and R2* value ≥ 38.6 sec-1 were found to be the significant independent predictors of GPC3-positive HCC. The SMOTE-LR model based on three features achieved the best predictive performance in the training (AUC, 0.909; accuracy, 83.7%) and validation sets (AUC, 0.829; accuracy, 82.1%) with a good calibration performance and clinical usefulness. Conclusions: The nomogram combining multiparametric MRI and clinical indicators is found to have satisfactory predictive efficacy for preoperative prediction of GPC3-positive HCC. Accordingly, the proposed method can promote individualized risk stratification and further treatment decisions of HCC patients.

3.
PeerJ ; 11: e16242, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37842058

RESUMO

Background: Lung adenocarcinoma (LUAD) is still the most prevalent type of respiratory cancer. Intermittent hypoxia can increase the mortality and morbidity associated with lung cancer. Long non-coding RNAs (lncRNAs) are crucial in lung adenocarcinoma. However, the effects of intermittent hypoxia-related long non-coding RNAs (IHRLs) on lung adenocarcinoma are still unknown. Method: In the current research, eight IHRLs were selected to create a prognostic model. The risk score of the prognostic model was evaluated using multivariate and univariate analyses, and its accuracy and reliability were validated using a nomogram and ROC. Additionally, we investigated the relationships between IHRLs and the immune microenvironment. Result: Our analysis identified GSEC, AC099850.3, and AL391001.1 as risk lncRNAs, while AC010615.2, AC010654.1, AL513550.1, LINC00996, and LINC01150 were categorized as protective lncRNAs. We observed variances in the expression of seven immune cells and 15 immune-correlated pathways between the two risk groups. Furthermore, our results confirmed the ceRNA network associated with the intermittent hypoxia-related lncRNA GSEC/miR-873-3p/EGLN3 regulatory pathway. GSEC showed pronounced expression in lung adenocarcinoma tissues and specific cell lines, and its inhibition resulted in reduced proliferation and migration in A549 and PC9 cells. Intriguingly, GSEC manifested oncogenic properties by sponging miR-873-3p and demonstrated a tendency to modulate EGLN3 expression favorably. Conclusion: GSEC acts as an oncogenic lncRNA by interacting with miR-873-3p, modulating EGLN3 expression. This observation underscores the potential of GSEC as a diagnostic and therapeutic target for LUAD.


Assuntos
Adenocarcinoma , MicroRNAs , RNA Longo não Codificante , Humanos , Prognóstico , RNA Longo não Codificante/genética , Reprodutibilidade dos Testes , Hipóxia , Pulmão , MicroRNAs/genética , Microambiente Tumoral/genética , Prolina Dioxigenases do Fator Induzível por Hipóxia
4.
Elife ; 122023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37737843

RESUMO

The primary cilium plays important roles in regulating cell differentiation, signal transduction, and tissue organization. Dysfunction of the primary cilium can lead to ciliopathies and cancer. The formation and organization of the primary cilium are highly associated with cell polarity proteins, such as the apical polarity protein CRB3. However, the molecular mechanisms by which CRB3 regulates ciliogenesis and the location of CRB3 remain unknown. Here, we show that CRB3, as a navigator, regulates vesicle trafficking in γ-tubulin ring complex (γTuRC) assembly during ciliogenesis and cilium-related Hh and Wnt signaling pathways in tumorigenesis. Crb3 knockout mice display severe defects of the primary cilium in the mammary ductal lumen and renal tubule, while mammary epithelial-specific Crb3 knockout mice exhibit the promotion of ductal epithelial hyperplasia and tumorigenesis. CRB3 is essential for lumen formation and ciliary assembly in the mammary epithelium. We demonstrate that CRB3 localizes to the basal body and that CRB3 trafficking is mediated by Rab11-positive endosomes. Significantly, CRB3 interacts with Rab11 to navigate GCP6/Rab11 trafficking vesicles to CEP290, resulting in intact γTuRC assembly. In addition, CRB3-depleted cells are unresponsive to the activation of the Hh signaling pathway, while CRB3 regulates the Wnt signaling pathway. Therefore, our studies reveal the molecular mechanisms by which CRB3 recognizes Rab11-positive endosomes to facilitate ciliogenesis and regulates cilium-related signaling pathways in tumorigenesis.


Assuntos
Carcinogênese , Centro Organizador dos Microtúbulos , Animais , Camundongos , Corpos Basais , Diferenciação Celular , Transformação Celular Neoplásica , Hiperplasia
5.
Front Pharmacol ; 14: 1185100, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37719850

RESUMO

Background: Notopterygium incisum K.C. Ting ex H.T. Chang, a synonym of Hansenia weberbaueriana (Fedde ex H. Wolff) Pimenov & Kljuykov, is an anti-inflammatory medicinal plant. Although abrnotopterol has been reported to be its primary active metabolite, the other metabolites and their mechanisms of action remain unclear. This study aims to investigate the potential mechanisms by which its active metabolites treat Obstructive Sleep Apnea Syndrome (OSAS) through network analysis and experimental assessment. Methods: The metabolites and potential targets of Notopterygium incisum were extracted from public databases. We searched for OSAS-related genes in the Genecards, OMIM, PharmGkb, TTD, and DrugBank databases. Cytoscape 3.9.0 was used to construct the drug-target-disease network and screen for hub genes. Human bronchial epithelial (HBE) cells were cultivated in normoxia and chronic intermittent hypoxia (CIH) medium for 24 h. Interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α), and prostaglandin E2 (PGE2) were quantified using enzyme-linked immunosorbent assay (ELISA). Prostaglandin-endoperoxide synthase 2(PTGS2) mRNA was detected using RT-qPCR, while PTGS2 and nuclear factor-kappa B (NF-κB) proteins were identified using Western blot analysis. Co-Immunoprecipitation (CoIP) and Western blotting were utilized to evaluate the ubiquitination of PTGS2 in HBE cells. Results: Pterostilbene and notopterol, isolated from Notopterygium incisum, had potential therapeutic effects on OSAS. The PTGS2 and estrogen receptor alpha (ESR1) hub genes were associated with OSAS. The pathway enrichment analysis focuses on the NF-κB, apoptosis, and HIF-1A pathways. In response to CIH, pterostilbene and notopterol decreased IL-6, TNF-α, and PGE2 levels. The NF-κB pathway was activated by an increase in PTGS2 levels. Pterostilbene promoted proteasome-mediated ubiquitination of PTGS2 protein and reduced PTGS2 levels, inhibiting the NF-κB pathway. Conclusion: This study reveals the active metabolites of Notopterygium incisum and hub genes involved in treating OSAS, which provide a basis for the follow-up development and exploitation of the botanical drug.

6.
PLoS One ; 18(6): e0286686, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37267263

RESUMO

Chronic intermittent hypoxia (CIH) induces oxidative stress in the brain, causing sleep disorders. Herein, we investigated the role of pterostilbene (Pte) in CIH-mediated oxidative stress in the brain tissue. A CIH mouse model was constructed by alternately reducing and increasing oxygen concentration in a sealed box containing the mouse; brain tissue and serum were then collected after intragastric administration of Pte. Neurological function was evaluated through field experiments. The trajectory of the CIH mice to the central region initially decreased and then increased after Pte intervention. Pte increased the number of neuronal Nissl bodies in the hippocampus of CIH mice, upregulated the protein levels of Bcl-2, occludin, and ZO-1 as well as the mRNA and protein levels of cAMP-response element binding protein (CREB) and p-BDNF, and reduced the number of neuronal apoptotic cells, Bax protein levels, IBA-1, and GFAP levels. Simultaneously, Pte reversed the decreased levels of superoxide dismutase (SOD), glutathione peroxidase (GSH-PX), and BDNF and increased levels of malondialdehyde (MDA) in the serum of CIH mice. Pte increased Th2 cells, Treg cells, IL-4, IL-10, and TGF-ß1 levels and decreased Th1 cells, Th17 cells, IFN-γ, IL-6, and IL- 17A levels in activated BV2 cells and hippocampus in CIH mice. The protein levels of p-ERK1/2, TLR4, p-p38, p-p65, and Bax, apoptosis rate, MDA concentration, Bcl-2 protein level, cell viability, and SOD and GSH-PX concentrations decreased after the activation of BV2 cells. Pte inhibited gliocytes from activating T-cell immune imbalance through p-ERK signaling to alleviate oxidative stress injury in nerve cells.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Estresse Oxidativo , Camundongos , Animais , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Hipóxia/metabolismo , Neurônios/metabolismo , Superóxido Dismutase/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Imunidade
7.
Front Cell Dev Biol ; 11: 1182123, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37123417

RESUMO

Background: As a highly prevalent malignancy among women worldwide, breast cancer, remains a critical public health issue necessitating the development of novel therapeutics and biomarkers. Kruppel Like Factor 2 (KLF2), a member of the Kruppel family of transcription factors, has been implicated in various types of cancer due to its diminished expression; however, the potential implications of KLF2 expression in relation to breast cancer progression, prognosis, and therapy remain unclear. Methods: The present study employed the Tumor Immune Estimation Resource (TIMER) and The Human Protein Atlas databases to investigate the expression pattern of KLF2 in pan-cancer. The relationship between KLF2 expression and clinical features or immune infiltration of The Cancer Genome Atlas (TCGA) breast cancer samples was evaluated using Breast Cancer Integrative Platform (BCIP) and TIMER. The expression levels of KLF2 in breast cancer were validated via immunohistochemical staining analysis. Gene Set Enrichment Analysis (GSEA) to study the KLF2-related gene ontology. STRING database was employed to construct a protein-protein interaction (PPI) network of KLF2 in relation to vascular endothelial growth factor A (VEGFA) and hypoxia-inducible factor 1α (HIF1α). The expression of KLF2 following diverse breast cancer therapies was analyzed in the Gene Expression Omnibus (GEO) databases. The expression of KLF2 following treatment with simvastatin was validated via immunofluorescence and western blotting. Results: Our study reveals that KLF2 displays significantly reduced expression in cancerous tissues compared to non-cancerous controls. Patients with low KLF2 expression levels exhibited poor prognosis across multiple cancer types. KLF2 expression levels were found to be reduced in advanced cancer stages and grades, while positively correlated with the expression of estrogen receptor (ER), progesterone receptor (PR), and tumor size in breast cancer. KLF2 expression is associated with diverse immune infiltration cells, and may impact the breast tumor immune microenvironment by regulating dendritic cell activation. Additionally, we observed a negative correlation between KLF2 expression levels and angiogenesis, as well as the expression of VEGFA and HIF1α. Notably, the anticancer drug simvastatin could induce KLF2 expression in both breast cancer. Conclusion: Based on our observations, KLF2 has potential as a diagnostic, prognostic, and therapeutic biomarker for breast cancer.

8.
J Pharm Anal ; 13(3): 262-275, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37102105

RESUMO

The development of chemoresistance which results in a poor prognosis often renders current treatments for colorectal cancer (CRC). In this study, we identified reduced microvessel density (MVD) and vascular immaturity resulting from endothelial apoptosis as therapeutic targets for overcoming chemoresistance. We focused on the effect of metformin on MVD, vascular maturity, and endothelial apoptosis of CRCs with a non-angiogenic phenotype, and further investigated its effect in overcoming chemoresistance. In situ transplanted cancer models were established to compare MVD, endothelial apoptosis and vascular maturity, and function in tumors from metformin- and vehicle-treated mice. An in vitro co-culture system was used to observe the effects of metformin on tumor cell-induced endothelial apoptosis. Transcriptome sequencing was performed for genetic screening. Non-angiogenic CRC developed independently of angiogenesis and was characterized by vascular leakage, immaturity, reduced MVD, and non-hypoxia. This phenomenon had also been observed in human CRC. Furthermore, non-angiogenic CRCs showed a worse response to chemotherapeutic drugs in vivo than in vitro. By suppressing endothelial apoptosis, metformin sensitized non-angiogenic CRCs to chemo-drugs via elevation of MVD and improvement of vascular maturity. Further results showed that endothelial apoptosis was induced by tumor cells via activation of caspase signaling, which was abrogated by metformin administration. These findings provide pre-clinical evidence for the involvement of endothelial apoptosis and subsequent vascular immaturity in the chemoresistance of non-angiogenic CRC. By suppressing endothelial apoptosis, metformin restores vascular maturity and function and sensitizes CRC to chemotherapeutic drugs via a vascular mechanism.

9.
Front Neurol ; 14: 1130378, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36937508

RESUMO

Background: By 2020, the prevalence of Obstructive Sleep Apnea Syndrome (OSAS) in the US has reached 26. 6-43.2% in men and 8.7-27.8% in women. OSAS promotes hypertension, diabetes, and tumor growth through unknown means. Chronic intermittent hypoxia (CIH), sleep fragmentation, and increased pleural pressure are central mechanisms of OSAS complications. CIH exacerbates ferroptosis, which is closely related to malignancies. The mechanism of ferroptosis in OSAS disease progression remains unknown. Methods: OSAS-related datasets (GSE135917 and GSE38792) were obtained from the GEO. Differentially expressed genes (DEGs) were screened using the R software and intersected with the ferroptosis database (FerrDb V2) to get ferroptosis-related DEGs (f-DEGs). GO, DO, KEGG, and GSEA enrichment were performed, a PPI network was constructed and hub genes were screened. The TCGA database was used to obtain the thyroid cancer (THCA) gene expression profile, and hub genes were analyzed for differential and survival analysis. The mechanism was investigated using GSEA and immune infiltration. The hub genes were validated with RT-qPCR, IHC, and other datasets. Sprague-Dawley rats were randomly separated into normoxia and CIH groups. ROS, MDA, and GSH methods were used to detect CIH-induced ferroptosis and oxidative stress. Results: GSEA revealed a statistically significant difference in ferroptosis in OSAS (FDR < 0.05). HIF1A, ATM, HSPA5, MAPK8, MAPK14, TLR4, and CREB1 were identified as hub genes among 3,144 DEGs and 74 f-DEGs. HIF1A and ATM were the only two validated genes. F-DEGs were mainly enriched in THCA. HIF1A overexpression in THCA promotes its development. HIF1A is associated with CD8 T cells and macrophages, which may affect the immunological milieu. The result found CIH increased ROS and MDA while lowering GSH indicating that it could cause ferroptosis. In OSAS patients, non-invasive ventilation did not affect HIF1A and ATM expression. Carvedilol, hydralazine, and caffeine may be important in the treatment of OSAS since they suppress HIF1A and ATM. Conclusions: Our findings revealed that the genes HIF1A and ATM are highly expressed in OSAS, and can serve as biomarkers and targets for OSAS.

10.
Cancer Res ; 83(10): 1742-1756, 2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-36939399

RESUMO

Alternative RNA splicing is an essential mechanism linking genetic variation to human diseases. While the signals from genome-wide association studies (GWAS) have been linked to expression quantitative trait loci (eQTL) in previous studies, further work is needed to better elucidate the relationship to other genetic regulatory mechanisms, such as splicing QTLs (sQTL). Here, we performed a genome-wide sQTL analysis to identify variants that might affect RNA splicing in 1,010 non-small cell lung cancer (NSCLC) samples from The Cancer Genome Atlas. The identified sQTLs were largely independent of eQTLs and were predominantly enriched in exonic regions, genetic regulatory elements, RNA-binding protein (RBP) binding sites, and known NSCLC risk loci. In addition, target genes affected by sQTLs (sGenes) were involved in multiple processes in cancer, including cell growth, apoptosis, metabolism, immune infiltration, and drug responses, and sGenes were frequently altered genetically in NSCLC. Systematic screening of sQTLs associated with NSCLC risk using GWAS data from 15,474 cases and 12,375 controls identified an sQTL variant rs156697-G allele that was significantly associated with an increased risk of NSCLC. The association between the rs156697-G variant and NSCLC risk was further validated in two additional large population cohorts. The risk variant promoted inclusion of GSTO2 alternative exon 5 and led to higher expression of the GSTO2 full-length isoform (GSTO2-V1) and lower expression of the truncated GSTO2 isoform (GSTO2-V2), which was induced by RBP quaking (QKI). Mechanistically, compared with GSTO2-V1, GSTO2-V2 inhibited NSCLC cells proliferation by increasing S-glutathionylation of AKT1 and thereby functionally blocking AKT1 phosphorylation and activation. Overall, this study provides a comprehensive view of splicing variants linked to NSCLC risk and provides a set of genetic targets with therapeutic potential. SIGNIFICANCE: Analysis of sQTL reveals the role of genetically driven mRNA splicing alterations in NSCLC risk and elucidates that rs156697 variant impacts risk by altering GSTO2 splicing.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/genética , Estudo de Associação Genômica Ampla , Neoplasias Pulmonares/genética , Splicing de RNA , Processamento Alternativo , Isoformas de Proteínas/genética , Polimorfismo de Nucleotídeo Único
11.
Cancer Sci ; 114(2): 640-653, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36156330

RESUMO

Multiple cancers have been reported to be associated with angiogenesis and are sensitive to anti-angiogenic therapies. Vascular normalization, by restoring proper tumor perfusion and oxygenation, could limit tumor cell invasiveness and improve the effectiveness of anticancer treatments. However, the underlying anticancer mechanisms of antiangiogenic drugs are still unknown. Metformin (MET) and simvastatin (SVA), two metabolic-related drugs, have been shown to play important roles in modulating the hypoxic tumor microenvironment and angiogenesis. Whether the combination of MET and SVA could exert a more effective antitumor effect than individual treatments has not been examined. The antitumor effect of the synergism of SVA and MET was detected in mouse models, breast cancer patient-derived organoids, and multiple tumor cell lines compared with untreated, SVA, or MET alone. RNA sequencing revealed that the combination of MET and SVA (but not MET or SVA alone) inhibited the expression of endothelin 1 (ET-1), an important regulator of angiogenesis and the hypoxia-related pathway. We demonstrate that the MET and SVA combination showed synergistic effects on inhibiting tumor cell proliferation, promoting apoptosis, alleviating hypoxia, decreasing angiogenesis, and increasing vessel normalization compared with the use of a single agent alone. The MET and SVA combination suppressed ET-1-induced hypoxia-inducible factor 1α expression by increasing prolyl hydroxylase 2 (PHD2) expression. Furthermore, the MET and SVA combination showed a more potent anticancer effect compared with bosentan. Together, our findings suggest the potential application of the MET and SVA combination in antitumor therapy.


Assuntos
Metformina , Neoplasias , Animais , Camundongos , Sinvastatina/farmacologia , Sinvastatina/uso terapêutico , Metformina/farmacologia , Metformina/uso terapêutico , Endotelina-1/metabolismo , Endotelina-1/uso terapêutico , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/metabolismo , Linhagem Celular Tumoral , Hipóxia/tratamento farmacológico , Subunidade alfa do Fator 1 Induzível por Hipóxia
12.
Front Pharmacol ; 14: 1323377, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38259272

RESUMO

Pterostilbene (PTS), a naturally occurring analog of resveratrol (RSV), has garnered significant attention due to its potential therapeutic effects in treating inflammatory and oncological diseases. This comprehensive review elucidates the pharmacological properties, mechanisms of action, and therapeutic potential of PTS. Various studies indicate that PTS exhibits anti-inflammatory, antioxidant, and antitumour properties, potentially making it a promising candidate for clinical applications. Its influence on regulatory pathways like NF-κB and PI3K/Akt underscores its diverse strategies in addressing diseases. Additionally, PTS showcases a favorable pharmacokinetic profile with better oral bioavailability compared to other stilbenoids, thus enhancing its therapeutic potential. Given these findings, there is an increased interest in incorporating PTS into treatment regimens for inflammatory and cancer-related conditions. However, more extensive clinical trials are imperative to establish its safety and efficacy in diverse patient populations.

13.
Front Psychiatry ; 14: 1269514, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38250278

RESUMO

Background: Observational studies have reported associations between Barrett's esophagus (BE) and obstructive sleep apnea syndrome (OSAS), but the causal relationship remained unclear due to potential confounding biases. Our study aimed to elucidate this causal relationship by deploying a two-sample Mendelian randomization (MR) methodology. Methods: Instrumental variables (IVs) for Barrett's esophagus were obtained from a public database that comprised 13,358 cases and 43,071 controls. To investigate OSAS, we utilized summary statistics from a comprehensive genome-wide association study (GWAS) encompassing 38,998 cases of OSAS and 336,659 controls. Our MR analyses adopted multiple techniques, including inverse variance weighted (IVW), weighted median, weighted mode, MR-Egger, and simple mode. Results: The IVW analysis established a causal relationship between Barrett's esophagus and OSAS, with an odds ratio (OR) of 1.19 and a 95% confidence interval (CI) of 1.11-1.28 (p = 8.88E-07). Furthermore, OSAS was identified as a contributing factor to the onset of Barrett's esophagus, with an OR of 1.44 and a 95% CI of 1.33-1.57 (p = 7.74E-19). Notably, the MR-Egger intercept test found no evidence of directional pleiotropy (p > 0.05). Conclusion: This study identifies a potential association between BE and an increased occurrence of OSAS, as well as the reverse relationship. These insights could influence future screening protocols and prevention strategies for both conditions.

15.
Cell Mol Life Sci ; 79(10): 538, 2022 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-36190571

RESUMO

Early apoptosis of grafted islets is one of the main factors affecting the efficacy of islet transplantation. The combined transplantation of islet cells and bone marrow mesenchymal stem cells (BMSCs) can significantly improve the survival rate of grafted islets. Transcription factor insulin gene enhancer binding protein 1 (ISL1) is shown to promote the angiogenesis of grafted islets and the paracrine function of mesenchymal stem cells during the co-transplantation, yet the regulatory mechanism remains unclear. By using ISL1-overexpressing BMSCs and the subtherapeutic doses of islets for co-transplantation, we managed to reduce the apoptosis and improve the survival rate of the grafts. Our metabolomics and proteomics data suggested that ISL1 upregulates aniline (ANLN) and Inhibin beta A chain (INHBA), and stimulated the release of caffeine in the BMSCs. We then demonstrated that the upregulation of ANLN and INHBA was achieved by the binding of ISL1 to the promoter regions of the two genes. In addition, ISL1 could also promote BMSCs to release exosomes with high expression of ANLN, secrete INHBA and caffeine, and reduce streptozocin (STZ)-induced islets apoptosis. Thus, our study provides mechanical insight into the islet/BMSCs co-transplantation and paves the foundation for using conditioned medium to mimic the ISL1-overexpressing BMSCs co-transplantation.


Assuntos
Exossomos , Insulinas , Ilhotas Pancreáticas , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Compostos de Anilina/metabolismo , Apoptose/genética , Cafeína/metabolismo , Cafeína/farmacologia , Meios de Cultivo Condicionados , Subunidades beta de Inibinas , Insulinas/metabolismo , Ilhotas Pancreáticas/metabolismo , Células-Tronco Mesenquimais/metabolismo , Estreptozocina/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
16.
Am J Cancer Res ; 12(8): 3548-3560, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36119829

RESUMO

Immune checkpoint inhibitors (ICIs) have encouraged a paradigm shift in the clinical management of patients with cancer. Despite the dramatically improved tumor response and patient prognosis, ICIs have been associated with ICI-related myocarditis, which has a high fatality rate. Cardiac imaging plays a critical role in the assessment of cardiac injury. Echocardiography, cardiac magnetic resonance imaging, and targeted tracer-based cardiac molecular imaging techniques alone or in combination reflect pathophysiology and depict different aspects of lesions at different clinical stages, i.e., they have potentially complementary value. Imaging techniques for identifying ICI-induced cardiotoxicity at the early stage may reduce the incidence of adverse cardiovascular events. Particularly in planned ICI therapy among patients with cancer, improved monitoring approaches to identify patients who are at the highest risk of ICI-related myocarditis may help in refining clinical decisions, allowing treatment to be more accurately targeted toward patients who are most likely to benefit. In this study, we systematically reviewed the studies on cardiac imaging techniques for assessing ICI-induced cardiotoxicity. We elaborated about the potential applications of cardiac imaging techniques for the optimized management of patients with ICI-related myocarditis, including risk stratification, diagnosis, and prognosis.

17.
Quant Imaging Med Surg ; 12(5): 2684-2695, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35502379

RESUMO

Background: The aim of this study was to investigate the reliability and accuracy of automatic coronary artery calcium (CAC) scoring and risk classification in non-gated, non-contrast chest computed tomography (CT) of different slice thicknesses using a deep learning algorithm. Methods: This retrospective study was performed at 2 tertiary hospitals. Paired, dedicated calcium-scoring CT scans and non-gated, non-contrast chest CT scans taken within a month from the same patients were included. Chest CT images were grouped according to the slice thickness (group A: 1 mm; group B: 3 mm). For internal scans, the CAC score manually measured on dedicated calcium scoring CT images was used as the gold standard. The deep learning algorithm for group A was trained using 150 chest CT scans and tested using 144 scans, and that for group B was trained using 170 chest CT scans and tested using 144 scans. The intraclass correlation coefficient (ICC) was used to evaluate the correlation between the algorithm and the gold standard. Agreement between the deep learning algorithm, the manual results on chest CT, and the gold standard was determined by Bland-Altman analysis. Cardiac risk categories were compared. External validation was performed on 334 paired scans from a different organization. Results: A total of 608 internal paired scans (1 mm: 294; 3 mm: 314) of 406 individuals and 334 external paired scans (1 mm: 117; 3 mm: 117) of 117 individuals were included in the analysis. The ICCs between the deep learning algorithm and the gold standard were excellent in both group A (0.90; 95% CI: 0.85-0.93) and group B (0.94; 95% CI: 0.92-0.96). The Bland-Altman plots showed good agreement in both groups. For the cardiovascular risk category, the deep learning algorithm accurately classified 71% of cases in group A and 81% of cases in group B. The Kappa values for risk classification were 0.72 in group A and 0.82 in group B. External validation yielded equally good results. Conclusions: The automatic calculation of CAC score and cardiovascular risk stratification on non-gated chest CT using a deep learning algorithm was reliable and accurate on both 1 and 3 mm scans. Chest CT with a slice thickness of 3 mm was slightly more accurate in CAC detection and risk classification.

18.
Environ Sci Pollut Res Int ; 29(43): 65500-65520, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35499736

RESUMO

In order to improve the recovery ratio of valuable metals in stainless steel dust, reduce environmental pollution, and promote solid waste resource recovery and sustainable development of industry, the synergistic reduction process for preparing Fe-Cr-Ni-C alloy was studied in detail by changing the addition of laterite nickel ore and reduction process conditions. The results show that with the addition of laterite nickel ore, the basicity of raw materials is reduced, the precipitation and aggregation of metal particles are promoted, the separation effect of metals and slags from reduction products is improved, and the metal recovery ratio also improved in the synergistic reduction process. When the ratio of stainless steel dust to laterite nickel ore is 94%:6%, reduction temperature is 1400 °C, reduction time is 20 min, and FC/O is 0.8, the metals and slags of the reduction product can be separated naturally after cooling; the recoveries of Fe, Cr, and Ni are 90.6%, 90.1%, and 91.2%, respectively. The grades of Fe, Cr, and Ni in the Fe-Cr-Ni-C alloy are 62.7%, 18.9%, and 4.1%, respectively. The content of harmful elements S and P in the alloy is low, so it can be directly used as raw material for stainless steel smelting.


Assuntos
Níquel , Aço Inoxidável , Ligas , Cromo/análise , Poeira , Metais , Níquel/análise , Resíduos Sólidos
19.
Front Oncol ; 12: 759300, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35615155

RESUMO

Background: Angiogenesis plays a critical role in the growth and metastasis of breast cancer and angiogenesis inhibition has become an effective strategy for cancer therapy. Our study aimed to clarify the key candidate genes and pathways related to breast cancer angiogenesis. Methods: Differentially expressed genes (DEGs) in the raw breast cancer (BRCA) gene dataset from the Cancer Genome Atlas (TCGA) database were identified and gene ontology analysis of the DEGs was performed. Hub genes were subsequently determined using the Gene Expression Omnibus database. The expression of the mesenchyme homeobox 2 (MEOX2) in breast cancer cells and tissues was assessed by quantification real-time polymerase chain reaction (qRT-PCR) and immunohistochemistry (IHC), respectively. The prognostic value of the MEOX2 gene in breast cancer tissue was evaluated with the Kaplan-Meier plotter. Results: A total of 61 angiogenesis-related DEGs were identified in the TCGA dataset, among which the gene MEOX2 was significantly down-regulated. GO functional annotation and pathway enrichment analyses showed that MEOX2 was significantly enriched in the regulation of vasculature development. The IHC results confirmed that MEOX2 expression was repressed in breast cancer tissues and the relatively low level indicated the tissue was densely vascularized. Moreover, MEOX2 expression was significantly elevated in breast cancer cells after treatment with cisplatin (DDP) and epirubicin (EPI). Finally, the Kaplan-Meier plotter confirmed that higher expression levels of MEOX2 were related to better overall survival. Conclusion: Our study revealed that the angiogenesis-associated gene MEOX2 can be used as a novel biomarker for breast cancer diagnosis and clinical therapy.

20.
Cell Death Discov ; 8(1): 155, 2022 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-35379791

RESUMO

Formin-like protein 2 (FMNL2) belongs to a highly conserved family of cytoskeletal remodeling proteins that have been reported to be implicated in various actin-dependent physiological and cancer-associated processes. In this study, we mainly investigated the effects of FMNL2 on breast cancer cell migration and invasion, and the underlying mechanisms involved. We found that FMNL2 reduced cell migration and invasion of breast cancer in vitro and in vivo. Further, FMNL2 disrupted actin cytoskeleton rearrangement and hampered the RhoA/LIMK/Cofilin pathway in breast cancer cells. Critically, both Rho inhibitor ZOL and LIMK inhibitor BMS3 significantly abrogated these migration-promoting effects in FMNL2-silencing MDA-MB-231 and BT549 cells. RhoA/LIMK/Cofilin pathway was involved in FMNL2 silencing-induced actin cytoskeleton rearrangement in MDA-MB-231 and BT549 cells. More importantly, cytoplasmic p27 promoted FMNL2-mediated cell migration and invasion through RhoA/LIMK/Cofilin pathway in MCF7 and MDA-MB-231 cells. In addition, the expression and prognosis of FMNL2 were associated with ER in breast cancer. Furthermore, ERα overexpression reduced the protein levels of FMNL2 in breast cancer cells, which were reversed by MG132. In conclusion, FMNL2 suppressed cell migration and invasion of breast cancer by inhibiting RhoA/LIMK/Cofilin pathway through a reduction of cytoplasmic p27. This finding implies that the interference of FMNL2-mediated RhoA/LIMK/Cofilin pathway involving the cytoplasmic p27 may be a promising strategy for ameliorating breast cancer metastasis and prognosis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA