Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 119
Filtrar
1.
Cancer Med ; 13(14): e70024, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39049187

RESUMO

This study pioneered the use of WIRA whole-body infrared hyperthermia combined with ICI therapy to treat GIT and verified the feasibility and safety of HIT. The final results showed a DCR of 55.6%, with a median PFS of 53.5 days, median OS of 134 days, and an irAE incidence of 22.2%. Therefore, we believe that HIT can exert multiple synergistic sensitisation effects, thereby providing clinical benefits to patients with advanced GITs, increasing overall safety, and improving patients' QOL.


INTRODUCTION: This study aimed to validate the effectiveness, safety and feasibility of water­filtered infrared A radiation (WIRA) whole­body hyperthermia combined with immune checkpoint inhibitor (ICI) therapy (HIT) and evaluate the real­world clinical application prospects. METHODS: This open­label single­arm phase 2 clinical trial (NCT06022692) aimed to enrol advanced gastrointestinal tumour (GIT) patients with the MSS/pMMR phenotype. The patients were treated with whole­body hyperthermia on Days 1 and 8 of each HIT cycle along with administration of tislelizumab on Day 2. RESULTS: Between 1 June 2020 and 31 May 2022, 18 patients were enrolled in the study, including those with gastric cancer (n = 6), colon cancer (n = 7), rectal cancer (n = 3) and appendiceal cancer (n = 2). As of 19 May 2023, 17 of the 18 patients had died, including 14 deaths caused by tumour progression and three deaths caused by diseases other than cancer, while one patient was still undergoing follow­up. In terms of efficacy, the median DCR was 55.6%, while the median PFS and OS were 53.5 days and 134 days, respectively. Four patients (22.2%) experienced immune­related adverse events, and none of the patients reported grade 3 or higher irAEs. Hyperthermia was followed by an increase in the number of tumour immune­activated cells. CONCLUSIONS: HIT can provide survival benefits in patients with GITs by activating antitumour immune function and shows good safety and feasibility.


Assuntos
Neoplasias Gastrointestinais , Hipertermia Induzida , Imunoterapia , Raios Infravermelhos , Humanos , Hipertermia Induzida/métodos , Raios Infravermelhos/uso terapêutico , Masculino , Terapia Combinada , Feminino , Imunoterapia/métodos , Neoplasias Gastrointestinais/terapia , Pessoa de Meia-Idade , Idoso , Água , Adulto , Qualidade de Vida , Resultado do Tratamento
2.
Nano Lett ; 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39046153

RESUMO

Because of the challenges posed by anatomical uncertainties and the low resolution of plain computed tomography (CT) scans, implementing adaptive radiotherapy (ART) for small hepatocellular carcinoma (sHCC) using artificial intelligence (AI) faces obstacles in tumor identification-alignment and automatic segmentation. The current study aims to improve sHCC imaging for ART using a gold nanoparticle (Au NP)-based CT contrast agent to enhance AI-driven automated image processing. The synthesized charged Au NPs demonstrated notable in vitro aggregation, low cytotoxicity, and minimal organ toxicity. Over time, an in situ sHCC mouse model was established for in vivo CT imaging at multiple time points. The enhanced CT images processed using 3D U-Net and 3D Trans U-Net AI models demonstrated high geometric and dosimetric accuracy. Therefore, charged Au NPs enable accurate and automatic sHCC segmentation in CT images using classical AI models, potentially addressing the technical challenges related to tumor identification, alignment, and automatic segmentation in CT-guided online ART.

3.
Phys Med Biol ; 69(12)2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38729170

RESUMO

Objective. Ovarian cancer is the deadliest gynecologic malignancy worldwide. Ultrasound is the most useful non-invasive test for preoperative diagnosis of ovarian cancer. In this study, by leveraging multiple ultrasound images from the same patient to generate personalized, informative statistical radiomic features, we aimed to develop improved ultrasound image-based prognostic models for ovarian cancer.Approach. A total of 2057 ultrasound images from 514 ovarian cancer patients, including 355 patients with epithelial ovarian cancer, from two hospitals in China were collected for this study. The models were constructed using our recently developed Frequency Appearance in Multiple Univariate pre-Screening feature selection algorithm and Cox proportional hazards model.Main results. The models showed high predictive performance for overall survival (OS) and recurrence-free survival (RFS) in both epithelial and nonepithelial ovarian cancer, with concordance indices ranging from 0.773 to 0.794. Radiomic scores predicted 2 year OS and RFS risk groups with significant survival differences (log-rank test,P< 1.0 × 10-4for both validation cohorts). OS and RFS hazard ratios between low- and high-risk groups were 15.994 and 30.692 (internal cohort) and 19.339 and 19.760 (external cohort), respectively. The improved performance of these newly developed prognostic models was mainly attributed to the use of multiple preoperative ultrasound images from the same patient to generate statistical radiomic features, rather than simply using the largest tumor region of interest among them. The models also revealed that the roundness of tumor lesion shape was positively correlated with prognosis for ovarian cancer.Significance.The newly developed prognostic models based on statistical radiomic features from ultrasound images were highly predictive of the risk of cancer-related death and possible recurrence not only for patients with epithelial ovarian cancer but also for those with nonepithelial ovarian cancer. They thereby provide reliable, non-invasive markers for individualized prognosis evaluation and clinical decision-making for patients with ovarian cancer.


Assuntos
Neoplasias Ovarianas , Ultrassonografia , Humanos , Feminino , Neoplasias Ovarianas/diagnóstico por imagem , Neoplasias Ovarianas/mortalidade , Prognóstico , Pessoa de Meia-Idade , Processamento de Imagem Assistida por Computador/métodos , Adulto , Idoso , Radiômica
4.
Mol Oncol ; 18(8): 1966-1979, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38605607

RESUMO

The androgen receptor (AR) is the main driver in the development of castration-resistant prostate cancer, where the emergence of AR splice variants leads to treatment-resistant disease. Through detailed molecular studies of the marine alkaloid manzamine A (MA), we identified transcription factor E2F8 as a previously unknown regulator of AR transcription that prevents AR synthesis in prostate cancer cells. MA significantly inhibited the growth of various prostate cancer cell lines and was highly effective in inhibiting xenograft tumor growth in mice without any pathophysiological perturbations in major organs. MA suppressed the full-length AR (AR-FL), its spliced variant AR-V7, and the AR-regulated prostate-specific antigen (PSA; also known as KLK3) and human kallikrein 2 (hK2; also known as KLK2) genes. RNA sequencing (RNA-seq) analysis and protein modeling studies revealed E2F8 interactions with DNA as a potential novel target of MA, suppressing AR transcription and its synthesis. This novel mechanism of blocking AR biogenesis via E2F8 may provide an opportunity to control therapy-resistant prostate cancer over the currently used AR antagonists designed to target different parts of the AR gene.


Assuntos
Neoplasias da Próstata , Receptores Androgênicos , Transcrição Gênica , Masculino , Animais , Receptores Androgênicos/metabolismo , Receptores Androgênicos/genética , Humanos , Camundongos , Linhagem Celular Tumoral , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Neoplasias da Próstata/genética , Neoplasias da Próstata/tratamento farmacológico , Transcrição Gênica/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto , Proliferação de Células/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Camundongos Nus , DNA/metabolismo
5.
Int J Hyperthermia ; 41(1): 2335201, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38583875

RESUMO

PURPOSE: Radiotherapy (RT) is the primary treatment for prostate cancer (PCa); however, the emergence of castration-resistant prostate cancer (CRPC) often leads to treatment failure and cancer-related deaths. In this study, we aimed to explore the use of microwave hyperthermia (MW-HT) to sensitize PCa to RT and investigate the underlying molecular mechanisms. METHODS: We developed a dedicated MW-HT heating setup, created an in vitro and in vivo MW-HT + RT treatment model for CRPC. We evaluated PC3 cell proliferation using CCK-8, colony experiments, DAPI staining, comet assay and ROS detection method. We also monitored nude mouse models of PCa during treatment, measured tumor weight, and calculated the tumor inhibition rate. Western blotting was used to detect DNA damage repair protein expression in PC3 cells and transplanted tumors. RESULTS: Compared to control, PC3 cell survival and clone formation rates decreased in RT + MW-HT group, demonstrating significant increase in apoptosis, ROS levels, and DNA damage. Lower tumor volumes and weights were observed in treatment groups. Ki-67 expression level was reduced in all treatment groups, with significant decrease in RT + MW-HT groups. The most significant apoptosis induction was confirmed in RT + MW-HT group by TUNEL staining. Protein expression levels of DNA-PKcs, ATM, ATR, and P53/P21 signaling pathways significantly decreased in RT + MW-HT groups. CONCLUSION: MW-HT + RT treatment significantly inhibited DNA damage repair by downregulating DNA-PKcs, ATM, ATR, and P53/P21 signaling pathways, leading to increased ROS levels, aggravate DNA damage, apoptosis, and necrosis in PC3 cells, a well-established model of CRPC.


Assuntos
Adenocarcinoma , Hipertermia Induzida , Neoplasias de Próstata Resistentes à Castração , Neoplasias da Próstata , Humanos , Masculino , Animais , Camundongos , Neoplasias de Próstata Resistentes à Castração/radioterapia , Neoplasias de Próstata Resistentes à Castração/metabolismo , Células PC-3 , Espécies Reativas de Oxigênio/metabolismo , Micro-Ondas , Proteína Supressora de Tumor p53/metabolismo , Hipertermia Induzida/métodos , Neoplasias da Próstata/radioterapia , Neoplasias da Próstata/metabolismo , Reparo do DNA , Apoptose , Estresse Oxidativo , Hipertermia , Adenocarcinoma/radioterapia , DNA/metabolismo , Linhagem Celular Tumoral , Proliferação de Células
6.
Adv Sci (Weinh) ; 11(21): e2308884, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38544480

RESUMO

DNA methylation, an epigenetic mechanism that alters gene expression without changing DNA sequence, is essential for organism development and key biological processes like genomic imprinting and X-chromosome inactivation. Despite tremendous efforts in DNA methylation research, accurate quantification of cytosine methylation remains a challenge. Here, a single-base methylation quantification approach is introduced by weighting methylation of consecutive CpG sites (Wemics) in genomic regions. Wemics quantification of DNA methylation better predicts its regulatory impact on gene transcription and identifies differentially methylated regions (DMRs) with more biological relevance. Most Wemics-quantified DMRs in lung cancer are epigenetically conserved and recurrently occurred in other primary cancers from The Cancer Genome Atlas (TCGA), and their aberrant alterations can serve as promising pan-cancer diagnostic markers. It is further revealed that these detected DMRs are enriched in transcription factor (TF) binding motifs, and methylation of these TF binding motifs and TF expression synergistically regulate target gene expression. Using Wemics on epigenomic-transcriptomic data from the large lung cancer cohort, a dozen novel genes with oncogenic potential are discovered that are upregulated by hypomethylation but overlooked by other quantification methods. These findings increase the understanding of the epigenetic mechanism by which DNA methylation regulates gene expression.


Assuntos
Metilação de DNA , Epigênese Genética , Neoplasias Pulmonares , Metilação de DNA/genética , Epigênese Genética/genética , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Ilhas de CpG/genética
7.
Cell Rep ; 42(11): 113408, 2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-37943661

RESUMO

Transfer RNA-derived fragments (tRFs) are a class of small non-coding regulatory RNAs that are involved in the pathophysiology of many diseases. However, the role of tRFs in cancer progression remains largely elusive. Here, we demonstrate that a pan-cancer 3'-tRF, CAT1 (cancer associated tRF 1), is ubiquitously upregulated in tumors and associated with poor prognosis of a variety of cancers, including lung cancer. The upregulated CAT1 in cancer cells binds to RNA-binding protein with multiple splicing (RBPMS) and displaces NOTCH2 association from RBPMS, thereby inhibiting the subsequent CCR4-NOT deadenylation-complex-mediated NOTCH2 mRNA decay. The CAT1-enhanced NOTCH2 expression promotes lung cancer cell proliferation and metastasis in vitro and in vivo. In addition, plasma CAT1 levels are substantially increased in patients with lung cancer compared to non-cancer control subjects. Our findings reveal an intrinsic connection between cancer-specific upregulation of CAT1 and cancer progression, show the regulation of NOTCH signaling in cancer by a 3'-tRF, and highlight its great clinical potential.


Assuntos
Neoplasias Pulmonares , RNA de Transferência , Humanos , RNA Mensageiro/genética , RNA de Transferência/metabolismo , Transformação Celular Neoplásica , Neoplasias Pulmonares/genética , Proteínas de Ligação a RNA , Receptor Notch2/genética , Receptor Notch2/metabolismo
8.
Genome Med ; 15(1): 80, 2023 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-37803452

RESUMO

BACKGROUND: Primary liver cancer has significant intratumor genetic heterogeneity (IGH), which drives cancer evolution and prevents effective cancer treatment. CRISPR/Cas9-induced mouse liver cancer models can be used to elucidate how IGH is developed. However, as CRISPR/Cas9 could induce chromothripsis and extrachromosomal DNA in cells in addition to targeted mutations, we wondered whether this effect contributes to the development of IGH in CRISPR/Cas9-induced mouse liver cancer. METHODS: CRISPR/Cas9-based targeted somatic multiplex-mutagenesis was used to target 34 tumor suppressor genes (TSGs) for induction of primary liver tumors in mice. Target site mutations in tumor cells were analyzed and compared between single-cell clones and their subclones, between different time points of cell proliferation, and between parental clones and single-cell clones derived from mouse subcutaneous allografts. Genomic instability and generation of extrachromosomal circular DNA (eccDNA) was explored as a potential mechanism underlying the oscillation of target site mutations in these liver tumor cells. RESULTS: After efficiently inducing autochthonous liver tumors in mice within 30-60 days, analyses of CRISPR/Cas9-induced tumors and single-cell clones derived from tumor nodules revealed multiplexed and heterogeneous mutations at target sites. Many target sites frequently displayed more than two types of allelic variations with varying frequencies in single-cell clones, indicating increased copy number of these target sites. The types and frequencies of targeted TSG mutations continued to change at some target sites between single-cell clones and their subclones. Even the proliferation of a subclone in cell culture and in mouse subcutaneous graft altered the types and frequencies of targeted TSG mutations in the absence of continuing CRISPR/Cas9 genome editing, indicating a new source outside primary chromosomes for the development of IGH in these liver tumors. Karyotyping of tumor cells revealed genomic instability in these cells manifested by high levels of micronuclei and chromosomal aberrations including chromosomal fragments and chromosomal breaks. Sequencing analysis further demonstrated the generation of eccDNA harboring targeted TSG mutations in these tumor cells. CONCLUSIONS: Small eccDNAs carrying TSG mutations may serve as an important source supporting intratumor heterogeneity and tumor evolution in mouse liver cancer induced by multiplexed CRISPR/Cas9.


Assuntos
Sistemas CRISPR-Cas , Neoplasias Hepáticas , Camundongos , Animais , Neoplasias Hepáticas/genética , Edição de Genes , Mutação , Genes Supressores de Tumor , DNA , Instabilidade Genômica , DNA Circular
9.
J Gynecol Oncol ; 34(6): e71, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37417299

RESUMO

OBJECTIVE: More than 75% of ovarian cancer patients are diagnosed at advanced stages and die of tumor cell metastasis. This study aimed to identify new epigenetic and transcriptomic alterations associated with ovarian cancer metastasis. METHODS: Two cell sublines with low- and high-metastasis potentials were derived from the ovarian cancer cell line A2780. Genome-wide DNA methylome and transcriptome profiling were carried out in these two sublines by Reduced Representation Bisulfite Sequencing and RNA-seq technologies. Cell-based assays were conducted to support the clinical findings. RESULTS: There are distinct DNA methylation and gene expression patterns between the two cell sublines with low- and high-metastasis potentials. Integrated analysis identified 33 methylation-induced genes potentially involved in ovarian cancer metastasis. The DNA methylation patterns of two of them (i.e., SFRP1 and LIPG) were further validated in human specimens, indicating that they were hypermethylated and downregulated in peritoneal metastatic ovarian carcinoma compared to primary ovarian carcinoma. Patients with lower SFRP1 and LIPG expression tend to have a worse prognosis. Functionally, knockdown of SFRP1 and LIPG promoted cell growth and migration, whereas their overexpression resulted in the opposite effects. In particular, knockdown of SFRP1 could phosphorylate GSK3ß and increase ß-catenin expression, leading to deregulated activation of the Wnt/ß-catenin signaling. CONCLUSION: Many systemic and important epigenetic and transcriptomic alterations occur in the progression of ovarian cancer. In particular, epigenetic silencing of SFRP1 and LIPG is a potential driver event in ovarian cancer metastasis. They can be used as prognostic biomarkers and therapeutic targets for ovarian cancer patients.


Assuntos
Neoplasias Ovarianas , beta Catenina , Humanos , Feminino , beta Catenina/genética , Transcriptoma , Neoplasias Ovarianas/genética , Epigenoma , Linhagem Celular Tumoral , Metilação de DNA , Regulação Neoplásica da Expressão Gênica , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Lipase/genética , Lipase/metabolismo
10.
Noncoding RNA ; 9(2)2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37104006

RESUMO

Acute kidney injury (AKI) is the rapid reduction in renal function. It is often difficult to detect at an early stage. Biofluid microRNAs (miRs) have been proposed as novel biomarkers due to their regulatory role in renal pathophysiology. The goal of this study was to determine the overlap in AKI miRNA profiles in the renal cortex, urine, and plasma samples collected from a rat model of ischemia-reperfusion (IR)-induced AKI. Bilateral renal ischemia was induced by clamping the renal pedicles for 30 min, followed by reperfusion. Urine was then collected over 24 h, followed by terminal blood and tissue collection for small RNA profiling. Differentially expressed (IR vs. sham) miRs within the urine and renal cortex sample types demonstrated a strong correlation in normalized abundance regardless of injury (IR and sham: R2 = 0.8710 and 0.9716, respectively). Relatively few miRs were differentially expressed in multiple samples. Further, there were no differentially expressed miRs with clinically relevant sequence conservation common between renal cortex and urine samples. This project highlights the need for a comprehensive analysis of potential miR biomarkers, including analysis of pathological tissues and biofluids, with the goal of identifying the cellular origin of altered miRs. Analysis at earlier timepoints is needed to further evaluate clinical potential.

11.
Curr Oncol ; 30(3): 2625-2641, 2023 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-36975413

RESUMO

Regional lymph node metastasis (LNM) increases the risk of distant metastasis in papillary thyroid cancer (PTC) patients. However, it remains unclear how tumor cells in PTC patients with LNM evade immune system surveillance and proceed to colonize distant organs. Here, we comprehensively characterize the tumor-infiltrating immune cell landscape in PTC with LNM. LNM-related genes include multiple important soluble mediators such as CXCL6, IL37, MMP10, and COL11A1, along with genes involved in areas such as extracellular matrix organization and TLR regulation by endogenous ligands. In PTC without LNM, the tumor infiltration of activated dendritic cells and M0 macrophages showed increases from normal cells, but with yet greater increases and correspondingly worse prognosis in PTC with LNM. Conversely, the tumor infiltration of activated NK cells and eosinophils was decreased in PTC without LNM, as compared to normal cells, and yet further decreased in PTC with LNM, with such decreases associated with poor prognosis. We further demonstrate that mutations of driver genes in tumor cells influence the infiltration of surrounding immune cells in the tumor microenvironment (TME). Particularly, patients carrying TG mutations tend to show increased filtration of M2 macrophages and activated NK cells in the TME, whereas patients carrying HRAS mutations tend to show reduced filtration of M0 macrophages and show enhanced filtration of activated dendritic cells in the TME. These findings increase our understanding of the mechanisms of regional lymph node metastasis in PTC and its associated tumor microenvironment, potentially facilitating the development of personalized treatment regimens to combat immunotherapy failure.


Assuntos
Carcinoma Papilar , Neoplasias da Glândula Tireoide , Humanos , Câncer Papilífero da Tireoide/genética , Câncer Papilífero da Tireoide/patologia , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/patologia , Metástase Linfática , Carcinoma Papilar/genética , Carcinoma Papilar/patologia , Prognóstico , Microambiente Tumoral , Interleucina-1
12.
Bioinformatics ; 39(2)2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36727489

RESUMO

MOTIVATION: Mammalian cells can be transcriptionally reprogramed to other cellular phenotypes. Controllability of such complex transitions in transcriptional networks underlying cellular phenotypes is an inherent biological characteristic. This network controllability can be interpreted by operating a few key regulators to guide the transcriptional program from one state to another. Finding the key regulators in the transcriptional program can provide key insights into the network state transition underlying cellular phenotypes. RESULTS: To address this challenge, here, we proposed to identify the key regulators in the transcriptional co-expression network as a minimum dominating set (MDS) of driver nodes that can fully control the network state transition. Based on the theory of structural controllability, we developed a weighted MDS network model (WMDS.net) to find the driver nodes of differential gene co-expression networks. The weight of WMDS.net integrates the degree of nodes in the network and the significance of gene co-expression difference between two physiological states into the measurement of node controllability of the transcriptional network. To confirm its validity, we applied WMDS.net to the discovery of cancer driver genes in RNA-seq datasets from The Cancer Genome Atlas. WMDS.net is powerful among various cancer datasets and outperformed the other top-tier tools with a better balance between precision and recall. AVAILABILITY AND IMPLEMENTATION: https://github.com/chaofen123/WMDS.net. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Algoritmos , Neoplasias , Animais , Transcriptoma , Neoplasias/genética , Oncogenes , Redes Reguladoras de Genes , Mamíferos/genética
13.
Curr Oncol ; 30(1): 981-999, 2023 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-36661724

RESUMO

BACKGROUND: tRNA-derived RNA fragments (tRFs) are a novel class of small ncRNA that are derived from precursor or mature tRNAs. Recently, the general relevance of their roles and clinical values in tumorigenesis, metastasis, and recurrence have been increasingly highlighted. However, there has been no specific systematic study to elucidate any potential clinical significance for these tRFs in prostate adenocarcinoma (PRAD), one of the most common and malignant cancers that threatens male health worldwide. Here, we investigate the clinical value of 5'-tRFs in PRAD. METHODS: Small RNA sequencing data were analyzed to discover new 5'-tRFs biomarkers for PRAD. Machine learning algorithms were used to identify 5'-tRF classifiers to distinguish PRAD tumors from normal tissues. LASSO and Cox regression analyses were used to construct 5'-tRF prognostic predictive models. NMF and consensus clustering analyses were performed on 5'-tRF profiles to identify molecular subtypes of PRAD. RESULTS: The overall levels of 5'-tRFs were significantly upregulated in the PRAD tumor samples compared to their adjacent normal samples. tRF classifiers composed of 13 5'-tRFs achieved AUC values as high as 0.963, showing high sensitivity and specificity in distinguishing PRAD tumors from normal samples. Multiple 5'-tRFs were identified as being associated with the PRAD prognosis. The tRF score, defined by a set of eight 5'-tRFs, was highly predictive of survival in PRAD patients. The combination of tRF and Gleason scores showed a significantly better performance than the Gleason score alone, suggesting that 5'-tRFs can offer PRAD patients additional and improved prognostic information. Four molecular subtypes of the PRAD tumor were identified based on their 5'-tRF expression profiles. Genetically, these 5'-tRFs PRAD tumor subtypes exhibited distinct genomic landscapes in tumor cells. Clinically, they showed marked differences in survival and clinicopathological features. CONCLUSIONS: 5'-tRFs are potential clinical biomarkers for the diagnosis, prognosis, and classification of tumor subtypes on a molecular level. These can help clinicians formulate personalized treatment plans for PRAD patients and may have similar potential applications for other disease types.


Assuntos
Neoplasias da Próstata , Pequeno RNA não Traduzido , Humanos , Masculino , RNA de Transferência/genética , RNA de Transferência/metabolismo , Neoplasias da Próstata/diagnóstico , Neoplasias da Próstata/genética , Prognóstico , Pequeno RNA não Traduzido/genética , Biomarcadores
14.
Am J Respir Cell Mol Biol ; 68(4): 395-405, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36481055

RESUMO

Mitochondrial function and metabolic homeostasis are integral to cardiovascular function and influence how vascular cells respond to stress. However, little is known regarding how mitochondrial redox control mechanisms and metabolic regulation interact in the developing lungs. Here we show that human OLA1 (Obg-like ATPase-1) couples redox signals to the metabolic response pathway by activating metabolic gene transcription in the nucleus. OLA1 phosphorylation at Ser232/Tyr236 triggers its translocation from the cytoplasm and mitochondria into the nucleus. Subsequent phosphorylation of OLA1 at Thr325 effectively changes its biochemical function from ATPase to GTPase, promoting the expression of genes involved in the mitochondrial bioenergetic function. This process is regulated by ERK1/2 (extracellular-regulated kinases 1 and 2), which were restrained by PP1A (protein phosphatase 1A) when stress abated. Knockdown of ERK1 or OLA1 mutated to a phosphoresistant T325A mutant blocked its nuclear translocation, compromised the expression of nuclear-encoded mitochondrial genes, and consequently led to cellular energy depletion. Moreover, the lungs of OLA1 knockout mice have fewer mitochondria, lower cellular ATP concentrations, and higher lactate concentrations. The ensuing mitochondrial metabolic dysfunction resulted in abnormal behaviors of pulmonary vascular cells and significant vascular remodeling. Our findings demonstrate that OLA1 is an important component of the mitochondrial retrograde communication pathways that couple stress signals with metabolic genes in the nucleus. Thus, phosphorylation-dependent nuclear OLA1 localization that governs cellular energy metabolism is critical to cardiovascular function.


Assuntos
Adenosina Trifosfatases , Proteínas de Ligação ao GTP , Animais , Camundongos , Humanos , Proteínas de Ligação ao GTP/metabolismo , Fosforilação , Adenosina Trifosfatases/genética , Mitocôndrias/metabolismo , Metabolismo Energético
15.
Cancer Med ; 12(3): 3201-3221, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35908281

RESUMO

BACKGROUND: Within the field of oncotherapy, research interest regarding immunotherapy has risen to the point that it is now seen as a key application. However, inherent disadvantages of immune checkpoint inhibitors (ICIs), such as their low response rates and immune-related adverse events (irAEs), currently restrict their clinical application. Were these disadvantages to be overcome, more patients could derive prolonged benefits from ICIs. At present, many basic experiments and clinical studies using hyperthermia combined with ICI treatment (HIT) have been performed and shown the potential to address the above challenges. Therefore, this review extensively summarizes the knowledge and progress of HIT for analysis and discusses the effect and feasibility. METHODS: In this review, we explored the PubMed and clinicaltrials.gov databases, with regard to the searching terms "immune checkpoint inhibitor, immunotherapy, hyperthermia, ablation, photothermal therapy". RESULTS: By reviewing the literature, we analyzed how hyperthermia influences tumor immunology and improves the efficacy of ICI. Hyperthermia can trigger a series of multifactorial molecular cascade reactions between tumors and immunization and can significantly induce cytological modifications within the tumor microenvironment (TME). The pharmacological potency of ICIs can be enhanced greatly through the immunomodulatory amelioration of immunosuppression, and the activation of immunostimulation. Emerging clinical trials outcome regarding HIT have verified and enriched the theoretical foundation of synergistic sensitization. CONCLUSION: HIT research is now starting to transition from preclinical studies to clinical investigations. Several HIT sensitization mechanisms have been reflected and demonstrated as significant survival benefits for patients through pioneering clinical trials. Further studies into the theoretical basis and practical standards of HIT, combined with larger-scale clinical studies involving more cancer types, will be necessary for the future.


Assuntos
Hipertermia Induzida , Neoplasias , Humanos , Inibidores de Checkpoint Imunológico/uso terapêutico , Neoplasias/tratamento farmacológico , Radioimunoterapia , Imunoterapia/efeitos adversos , Microambiente Tumoral
16.
Pediatr Res ; 93(3): 551-558, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35717485

RESUMO

BACKGROUND: Persistent pulmonary hypertension of the newborn (PPHN) occurs when pulmonary vascular resistance (PVR) fails to decrease at birth. Decreased angiogenesis in the lung contributes to the persistence of high PVR at birth. MicroRNAs (miRNAs) regulate gene expression through transcript binding and degradation. They were implicated in dysregulated angiogenesis in cancer and cardiovascular disease. METHODS: We investigated whether altered miRNA levels contribute to impaired angiogenesis in PPHN. We used a fetal lamb model of PPHN induced by prenatal ductus arteriosus constriction and sham ligation as controls. We performed RNA sequencing of pulmonary artery endothelial cells (PAECs) isolated from control and PPHN lambs. RESULTS: We observed a differentially expressed miRNA profile in PPHN for organ development, cell-cell signaling, and cardiovascular function. MiR-34c was upregulated in PPHN PAECs compared to controls. Exogenous miR34c mimics decreased angiogenesis by control PAEC and anti-miR34c improved angiogenesis of PPHN PAEC in vitro. Notch1, a predicted target for miR-34c by bioinformatics, was decreased in PPHN PAECs, along with Notch1 downstream targets, Hey1 and Hes1. Exogenous miR-34c decreased Notch1 expression in control PAECs and anti-miR-34c restored Notch1 and Hes1 expression in PPHN PAECs. CONCLUSION: We conclude that increased miR-34c in PPHN contributes to impaired angiogenesis by decreasing Notch1 expression in PAECs. IMPACT: Adds a novel mechanism for the regulation of angiogenesis in persistent pulmonary hypertension of the newborn. Identifies non-coding RNAs that are involved in the altered angiogenesis in PPHN and thus the potential for future studies to identify links between known pathways regulating angiogenesis. Provides preliminary data to conduct studies targeting miR34c expression in vivo in animal models of pulmonary hypertension to identify the mechanistic role of miR34c in angiogenesis in the lung vasculature.


Assuntos
Hipertensão Pulmonar , MicroRNAs , Síndrome da Persistência do Padrão de Circulação Fetal , Gravidez , Humanos , Feminino , Recém-Nascido , Ovinos , Animais , Células Endoteliais/metabolismo , Síndrome da Persistência do Padrão de Circulação Fetal/genética , Carneiro Doméstico , Artéria Pulmonar , MicroRNAs/genética , MicroRNAs/metabolismo , Receptor Notch1/genética , Receptor Notch1/metabolismo
17.
Cell Death Dis ; 13(11): 936, 2022 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-36344495

RESUMO

Long non-coding RNAs (lncRNAs) play key roles in cancer development and progression. However, the biological function and clinical significance of most lncRNAs in cervical cancer remain elusive. In this study, we explore the function and mechanism of lncRNA surfactant associated 1 (SFTA1P) in cervical cancer. We firstly identified SFTA1P by analyzing the RNA sequencing data of cervical cancer from our previous study and from The Cancer Genome Atlas (TCGA). We then verified SFTA1P expression by qRT-PCR. The cell proliferation and migration capacity of SFTA1P was assessed by using CCK-8, colony formation, transwell and wound healing assays. RNA pull-down, RNA immunoprecipitation (RIP), RNA stability and western blot assays were used to reveal potential mechanisms. Athymic nude mice were used to evaluate tumorigenicity and metastasis in vivo. SFTA1P is upregulated in cervical tumor tissues and its high expression is associated with poor prognosis. Biologically, knockdown of SFTA1P inhibited the proliferation, migration, and invasion of cervical cancer cells in vitro, as well as tumorigenesis and metastasis in vivo. Mechanistically, SFTA1P was shown to interact with polypyrimidine tract binding protein 1 (PTBP1) to regulate the stability of tropomyosin 4 (TPM4) mRNA, thereby resulting in malignant cell phenotypes. TPM4 knockdown could attenuate the suppression of cell progression induced by either SFTA1P or PTBP1 knockdown. Our findings demonstrate that SFTA1P can promote tumor progression by mediating the degradation of TPM4 mRNA through its interaction with PTBP1 protein. This provides a potential therapeutic strategy to target the SFTA1P-PTBP1-TPM4 axis in cervical cancer.


Assuntos
RNA Longo não Codificante , Neoplasias do Colo do Útero , Animais , Feminino , Humanos , Camundongos , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Ribonucleoproteínas Nucleares Heterogêneas/genética , Ribonucleoproteínas Nucleares Heterogêneas/metabolismo , Camundongos Nus , Proteína de Ligação a Regiões Ricas em Polipirimidinas/genética , Proteína de Ligação a Regiões Ricas em Polipirimidinas/metabolismo , Estabilidade de RNA/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , RNA Mensageiro/genética , Tropomiosina/genética , Tropomiosina/metabolismo , Neoplasias do Colo do Útero/patologia
18.
Cell Death Dis ; 13(10): 877, 2022 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-36257938

RESUMO

Long non-coding RNAs (lncRNAs) is known to play vital roles in modulating tumorigenesis. We previously reported that LCAT1, a novel lncRNA, promotes the growth and metastasis of lung cancer cells both in vitro and in vivo. However, the underlying mechanism(s) of LCAT1 as an oncogenic regulator remains elusive. Here, we showed that LCAT1 physically interacts with and stabilizes IGF2BP2, an m6A reader protein, by preventing its degradation via autolysosomes. IGF2BP2 is overexpressed in lung cancer tissues, which is associated with poor survival of non-small cell lung cancer patients, suggesting its oncogenic role. Biologically, IGF2BP2 depletion inhibits growth and survival as well as the migration of lung cancer cells. Mechanistically, the LCAT1/IGF2BP2 complex increased the levels of CDC6, a key cell cycle regulator, by stabilizing its mRNA in an m6A-dependent manner. Like IGF2BP2, CDC6 is also overexpressed in lung cancer tissues with poor patient survival, and CDC6 knockdown has oncogenic inhibitory activity. Taken together, the LCAT1-IGF2BP2-CDC6 axis appears to play a vital role in promoting the growth and migration of lung cancer cells, and is a potential therapeutic target for lung cancer. Importantly, our finding also highlights a previously unknown critical role of LCAT1 in m6A-dependent gene regulation by preventing autolytic degradation of IGF2BP2.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , MicroRNAs , RNA Longo não Codificante , Humanos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Carcinoma Pulmonar de Células não Pequenas/genética , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , Proliferação de Células/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Linhagem Celular Tumoral , Carcinogênese/genética , RNA Mensageiro , Proteínas Nucleares/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ligação a RNA/metabolismo
19.
J Cancer Prev ; 27(2): 129-138, 2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35864858

RESUMO

Myelodysplastic syndromes (MDS) and myelodysplastic/myeloproliferative neoplasms (MDS/MPN) are bone marrow disorders characterized by cytopenias and progression to acute myeloid leukemia. Hypomethylating agents (HMAs) are Food and Drug Administration-approved therapies for MDS and MDS/MPN patients. HMAs have improved patients' survival and quality of life when compared with other therapies. Although HMAs are effective in MDS and MDS/MPN patients, they are associated with significant toxicities that place a large burden on patients. Our goal is to develop a safer and more effective HMA from natural products. We previously reported that black raspberries (BRBs) have hypomethylating effects in the colon, blood, spleen, and bone marrow of mice. In addition, BRBs exert hypomethylating effects in patients with colorectal cancer and familial adenomatous polyposis. In the current study, we conducted a pilot clinical trial to evaluate the hypomethylating effects of BRBs in patients with low-risk MDS or MDS/MPN. Peripheral blood mononuclear cells (PBMCs) were isolated before and after three months of BRB intervention. CD45+ cells were isolated from PBMCs for methylation analysis using a reduced-representation bisulfite sequencing assay. Each patient served as their own matched control, with their measurements assessed before intervention providing a baseline for post-intervention results. Clinically, our data showed that BRBs were well-tolerated with no side effects. When methylation data was combined, BRBs significantly affected methylation levels of 477 promoter regions. Pathway analysis suggests that BRB-induced intragenic hypomethylation drives leukocyte differentiation. A randomized, placebo-controlled clinical trial of BRB use in low-risk MDS or MDS/MPN patients is warranted.

20.
iScience ; 25(7): 104628, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35800777

RESUMO

Less than 35% of advanced patients with high-grade serous ovarian cancer (HGSOC) survive for 5 years after diagnosis. Here, we developed radiomics-based models to predict HGSOC clinical outcomes using preoperative contrast-enhanced computed tomography (CECT) images. 891 radiomics features were extracted between primary, metastatic, or lymphatic lesions from preoperative venous phase CECT images of 217 patients with HGSOC. A heuristic method, Frequency Appearance in Multiple Univariate preScreening (FAMUS), was proposed to identify stable and task-relevant radiomic features. Using FAMUS, we constructed predictive models of overall survival and disease-free survival in patients with HGSOC based on these stable radiomic features. According to their CT images, patients with HGSOC can be accurately stratified into high-risk or low-risk groups for cancer-related death within 2-6 years or for likely recurrence within 1-5 years. These radiomic models provide convincing and reliable non-invasive markers for individualized prognostic evaluation and clinical decision-making for patients with HGSOC.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA