Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Plant J ; 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39133822

RESUMO

UV-B radiation can induce the accumulation of many secondary metabolites, including flavonoids, in plants to protect them from oxidative damage. BRI1-EMS-SUPPRESSOR1 (BES1) has been shown to mediate the biosynthesis of flavonoids in response to UV-B. However, the detailed mechanism by which it acts still needs to be further elucidated. Here, we revealed that UV-B significantly inhibited the transcription of multiple transcription factor genes in tobacco, including NtMYB27, which was subsequently shown to be a repressor of flavonoids synthesis in tobacco. We further demonstrated that NtBES1 directly binds to the E-box motifs present in the promoter of NtMYB27 to mediate its transcriptional repression upon UV-B exposure. The UV-B-repressed NtMYB27 could bind to the ACCT-containing element (ACE) in the promoters of Nt4CL and NtCHS and served as a modulator that promoted the biosynthesis of lignin and chlorogenic acid (CGA) but inhibited the accumulation of flavonoids in tobacco. The expression of NtMYB27 was also significantly repressed by heat stress, suggesting its putative roles in regulating heat-induced flavonoids accumulation. Taken together, our results revealed the role of NtBES1 and NtMYB27 in regulating the synthesis of flavonoids during the plant response to UV-B radiation in tobacco.

2.
Int J Mol Sci ; 25(15)2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39125723

RESUMO

Sexually dimorphic traits such as growth and body size are often found in various crustaceans. Methyl farnesoate (MF), the main active form of sesquiterpenoid hormone in crustaceans, plays vital roles in the regulation of their molting and reproduction. However, understanding on the sex differences in their hormonal regulation is limited. Here, we carried out a comprehensive investigation on sexual dimorphic responses to MF in the hepatopancreas of the most dominant aquacultural crustacean-the white-leg shrimp (Litopenaeus vannamei). Through comparative transcriptomic analysis of the main MF target tissue (hepatopancreas) from both female and male L. vannamei, two sets of sex-specific and four sets of sex-dose-specific differentially expressed transcripts (DETs) were identified after different doses of MF injection. Functional analysis of DETs showed that the male-specific DETs were mainly related to sugar and lipid metabolism, of which multiple chitinases were significantly up-regulated. In contrast, the female-specific DETs were mainly related to miRNA processing and immune responses. Further co-expression network analysis revealed 8 sex-specific response modules and 55 key regulatory transcripts, of which several key transcripts of genes related to energy metabolism and immune responses were identified, such as arginine kinase, tropomyosin, elongation of very long chain fatty acids protein 6, thioredoxin reductase, cysteine dioxygenase, lysosomal acid lipase, estradiol 17-beta-dehydrogenase 8, and sodium/potassium-transporting ATPase subunit alpha. Altogether, our study demonstrates the sex differences in the hormonal regulatory networks of L. vannamei, providing new insights into the molecular basis of MF regulatory mechanisms and sex dimorphism in prawn aquaculture.


Assuntos
Perfilação da Expressão Gênica , Hepatopâncreas , Penaeidae , Caracteres Sexuais , Transcriptoma , Animais , Hepatopâncreas/metabolismo , Hepatopâncreas/efeitos dos fármacos , Feminino , Masculino , Penaeidae/genética , Penaeidae/metabolismo , Penaeidae/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos , Perfilação da Expressão Gênica/métodos , Ácidos Graxos Insaturados/farmacologia , Ácidos Graxos Insaturados/metabolismo
3.
Plant Physiol Biochem ; 214: 108937, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39018774

RESUMO

Scopoletin and chlorogenic acid (CGA) are important polyphenols that regulate plant growth, development, and stress resistance. The ERF transcription factor WAX INDUCER1 (WIN1) promotes the biosynthesis of cutin, suberine, and wax. However, its full roles in regulating the accumulation of plant secondary metabolites still remain to be further clarified. In this study, NtWIN1 gene encoding a SHINE-type AP2/ERF transcription factor of the Va subgroup was identified from N. tabacum. NtWIN1 showed high expression levels in tobacco stems, sepals, and pistils. Overexpression (OE) and knock-out of NtWIN1 showed that it promoted the accumulation of total polyphenols and altered their composition. Compare to that of WT plants, the CGA contents significantly increased by 25%-50% in the leaves, flowers, and capsules of OE lines, while the scopoletin contents in the OE plants significantly decreased by 30%-67%. In contrast, the CGA contents in ntwin1 lines reduced by 23%-26%, and the scopoletin contents in ntwin1 increased by 38%-75% compare to that of WT plants. Chromatin immunoprecipitation and Dual-Luc transcription activation assays showed that NtWIN1 could bind to the promoters of NtF6'H1 and NtCCoAMT, thereby modulating their expression. The scopoletin content in ntwin1/ntf6'h1 double mutant was significantly lower than that in ntwin1 and WT plants, but showed no significant differences with that in ntf6'h1 mutant, further indicating that the inhibition of NtWIN1 on scopoletin accumulation depends on the activity of NtF6'H1. Our study illustrates the new roles of NtWIN1, and provides a possible target for regulating the synthesis of polyphenols in tobacco.


Assuntos
Ácido Clorogênico , Regulação da Expressão Gênica de Plantas , Nicotiana , Proteínas de Plantas , Escopoletina , Nicotiana/genética , Nicotiana/metabolismo , Escopoletina/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ácido Clorogênico/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Metionina Adenosiltransferase/metabolismo , Metionina Adenosiltransferase/genética , Plantas Geneticamente Modificadas/metabolismo , Plantas Geneticamente Modificadas/genética , Genes de Plantas
4.
Proc Natl Acad Sci U S A ; 121(31): e2409233121, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39047046

RESUMO

Invertebrates mainly rely on sequence-specific RNA interference (RNAi) to resist viral infections. Increasing studies show that double-stranded RNA (dsRNA) can induce sequence-independent protection and that Dicer-2, the key RNAi player that cleaves long dsRNA into small interfering RNA (siRNA), is necessary for this protection. However, how this protection occurs remains unknown. Herein, we report that it is caused by adenosine triphosphate (ATP)-hydrolysis accompanying the dsRNA-cleavage. Dicer-2 helicase domain is ATP-dependent; therefore, the cleavage consumes ATP. ATP depletion activates adenosine monophosphate-activated protein kinase (Ampk) and induces nuclear localization of Fork head box O (FoxO), a key transcriptional factor for dsRNA-induced genes. siRNAs that do not require processing cannot activate the transcriptional response. This study reveals a unique nonspecific antiviral mechanism other than the specific RNAi in shrimp. This mechanism is functionally similar to, but mechanistically different from, the dsRNA-activated antiviral response in vertebrates and suggests an interesting evolution of innate antiviral immunity.


Assuntos
Proteínas Quinases Ativadas por AMP , Trifosfato de Adenosina , RNA de Cadeia Dupla , Ribonuclease III , Animais , RNA de Cadeia Dupla/metabolismo , Ribonuclease III/metabolismo , Ribonuclease III/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Trifosfato de Adenosina/metabolismo , Interferência de RNA , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Imunidade Inata , Transcrição Gênica
5.
BMC Plant Biol ; 24(1): 473, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38811869

RESUMO

BACKGROUND: Carbon nano sol (CNS) can markedly affect the plant growth and development. However, few systematic analyses have been conducted on the underlying regulatory mechanisms in plants, including tobacco (Nicotiana tabacum L.). RESULTS: Integrated analyses of phenome, ionome, transcriptome, and metabolome were performed in this study to elucidate the physiological and molecular mechanisms underlying the CNS-promoting growth of tobacco plants. We found that 0.3% CNS, facilitating the shoot and root growth of tobacco plants, significantly increased shoot potassium concentrations. Antioxidant, metabolite, and phytohormone profiles showed that 0.3% CNS obviously reduced reactive oxygen species production and increased antioxidant enzyme activity and auxin accumulation. Comparative transcriptomics revealed that the GO and KEGG terms involving responses to oxidative stress, DNA binding, and photosynthesis were highly enriched in response to exogenous CNS application. Differential expression profiling showed that NtNPF7.3/NtNRT1.5, potentially involved in potassium/auxin transport, was significantly upregulated under the 0.3% CNS treatment. High-resolution metabolic fingerprints showed that 141 and 163 metabolites, some of which were proposed as growth regulators, were differentially accumulated in the roots and shoots under the 0.3% CNS treatment, respectively. CONCLUSIONS: Taken together, this study revealed the physiological and molecular mechanism underlying CNS-mediated growth promotion in tobacco plants, and these findings provide potential support for improving plant growth through the use of CNS.


Assuntos
Carbono , Metabolômica , Nicotiana , Reguladores de Crescimento de Plantas , Transcriptoma , Nicotiana/genética , Nicotiana/metabolismo , Nicotiana/crescimento & desenvolvimento , Carbono/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Perfilação da Expressão Gênica , Metaboloma , Raízes de Plantas/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/genética , Brotos de Planta/metabolismo , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/genética
6.
Ecotoxicol Environ Saf ; 279: 116491, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38805832

RESUMO

Transplant treatment with chlorantraniliprole (CAP) is a proactive approach to protect transplanted plants from pests during early establishment and has been comprehensively applied in tobacco fields in Guangdong Province, China. However, it is not known whether the high dose of CAP in transplant treatments has lethal or sublethal effects on the generalist predator Rhynocoris fuscipes Fabricius (Hemiptera: Reduviidae). To address this concern, the mortalities of R. fuscipes were assessed when 2nd instar larvae of R. fuscipes were in direct contact with or consuming CAP and when their eggs were exposed to CAP. Furthermore, 2nd instar nymphs R. fuscipes were long-term exposed to CAP until they reached adulthood, and their life table parameters were determined. After exposure to CAP, the activity of detoxification enzymes (P450, CaeE and GST) and the functional respond of R. fuscipes to their preys Agrotis ipsilon larvae were determined. In this study, CAP at all concentrations did not significantly increase the mortality of 2nd instar of R. fuscipes nymphs in comparison with the control. The detoxification enzyme (P450, CarE and GST) activities and the number of A. ipsilon larvae consumed by R. fuscipes in the transplant treatment were not affected by CAP after 3-d or long-term exposure. These results indicated that CAP was harmless to R. fuscipes according to IOBC protocols. However, during the treatment of 2nd instar nymphs with a label rate of 15 g AI/ha and a 5× label rate of 75 g AI/ha, CAP significantly prolonged the pre-adult and pre-oviposition periods, and treated adults had lower oviposition. Attention should be given to the time interval between transplant treatment and the release of this biocontrol agent into the field to minimize the impact of CAP on the predator R. fuscipes.


Assuntos
Fertilidade , Inseticidas , Larva , Ninfa , Comportamento Predatório , ortoaminobenzoatos , Animais , ortoaminobenzoatos/toxicidade , Larva/efeitos dos fármacos , Inseticidas/toxicidade , Ninfa/efeitos dos fármacos , Ninfa/crescimento & desenvolvimento , Ninfa/fisiologia , Fertilidade/efeitos dos fármacos , Comportamento Predatório/efeitos dos fármacos , Hemípteros/efeitos dos fármacos , Hemípteros/fisiologia , China , Feminino , Heterópteros/efeitos dos fármacos , Heterópteros/fisiologia , Cadeia Alimentar
7.
Anal Chem ; 96(19): 7550-7557, 2024 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-38706132

RESUMO

Developing precise tumor cell-specific mitochondrial ferroptosis-related inhibition miRNA imaging methods holds enormous potential for anticancer drug screening and cancer treatment. Nevertheless, traditional amplification methods still tolerated the limited tumor specificity because of the "off-tumor" signal leakage resulting from their "always-active" sensing mode. To overcome this limitation, we herein developed a dual (exogenous 808 nm NIR light and endogenous APE1) activated nanoladder for precise imaging of mitochondrial ferroptosis-related miRNA with tumor cell specificity and improved imaging resolution. Exogenous NIR light-activation can regulate the ferroptosis-related inhibition miRNA imaging signals within mitochondria, and endogenous enzyme-activation can confine signals to tumor cells. Based on this dual activation design, off-tumor signals were greatly reduced and tumor-to-background contrast was enhanced with an improved tumor/normal discrimination ratio, realizing tumor cell-specific precise imaging of mitochondrial ferroptosis-related inhibition miRNA.


Assuntos
Ferroptose , MicroRNAs , Mitocôndrias , Ferroptose/efeitos dos fármacos , Humanos , MicroRNAs/metabolismo , MicroRNAs/análise , Mitocôndrias/metabolismo , Animais , Camundongos , Imagem Óptica , Linhagem Celular Tumoral , Raios Infravermelhos , Nanopartículas/química
8.
MedComm (2020) ; 5(4): e537, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38617434

RESUMO

Platinum resistance represents a major barrier to the survival of patients with ovarian cancer (OC). Cdc2-like kinase 2 (CLK2) is a major protein kinase associated with oncogenic phenotype and development in some solid tumors. However, the exact role and underlying mechanism of CLK2 in the progression of OC is currently unknown. Using microarray gene expression profiling and immunostaining on OC tissues, we found that CLK2 was upregulated in OC tissues and was associated with a short platinum-free interval in patients. Functional assays showed that CLK2 protected OC cells from platinum-induced apoptosis and allowed tumor xenografts to be more resistant to platinum. Mechanistically, CLK2 phosphorylated breast cancer gene 1 (BRCA1) at serine 1423 (Ser1423) to enhance DNA damage repair, resulting in platinum resistance in OC cells. Meanwhile, in OC cells treated with platinum, p38 stabilized CLK2 protein through phosphorylating at threonine 343 of CLK2. Consequently, the combination of CLK2 and poly ADP-ribose polymerase inhibitors achieved synergistic lethal effect to overcome platinum resistance in patient-derived xenografts, especially those with wild-type BRCA1. These findings provide evidence for a potential strategy to overcome platinum resistance in OC patients by targeting CLK2.

9.
Plant Physiol Biochem ; 207: 108413, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38330776

RESUMO

Ethylene responsive factor (ERF) is a plant-specific transcription factor that plays a pivotal regulatory role in various stress responses. Although the genome of tobacco harbors 375 ER F genes, the functional roles of the majority of these genes remain unknown. Expression pattern analysis revealed that NtERF283 was induced by water deficit and salt stresses and mainly expressed in the roots and leaves. Subcellular localization and transcriptional activity assays confirmed that NtERF283 was localized in the nucleus and exhibited transcriptional activity. In comparison to the wild-type (WT), the NtERF283-overexpressing transgenic plants (OE) exhibited enhanced water deficit tolerance, whereas the knockout mutant erf283 displayed contrasting phenotypes. Transcriptional analysis demonstrated that several oxidative stress response genes were significantly altered in OE plants under water deficit conditions. 3,3'-diaminobenzidine (DAB) and nitroblue tetrazolium (NBT) staining showed that erf283 accumulated a higher level of reactive oxygen species (ROS) compared to the WT under water deficit conditions. Conversely, OE plants displayed the least amount of ROS accumulation. Furthermore, the activities of POD and SOD were higher in OE plants and lower in erf283, suggesting that NtERF283 enhanced the capacity to effectively eliminate ROS, consequently enhancing water deficit tolerance in tobacco. These findings strongly indicate the significance of NtERF283 in promoting tobacco water deficit tolerance through the activation of the antioxidant system.


Assuntos
Antioxidantes , Água , Antioxidantes/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Água/metabolismo , Estresse Oxidativo , Plantas Geneticamente Modificadas/metabolismo , Nicotiana/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/metabolismo , Estresse Fisiológico/genética
10.
Food Chem X ; 21: 101063, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38162040

RESUMO

The effects of four polyphenols-chlorogenic acid (CA), gallic acid (GA), epicatechin gallate (ECG), and epigallocatechin gallate (EGCG) on the structure, gel properties, and interaction mechanisms of myofibrillar protein (MP) were studied. The changes in MP structure with polyphenols were analyzed using circular dichroism. The ultraviolet and fluorescence spectra and thermodynamic analysis indicated that the type of binding between the four polyphenols with the MP was static quenching of complex formation. GA had a more pronounced effect on improving MP gel properties. Finally, molecular docking determined that the affinity of the protein with the four polyphenols was in the order EGCG > ECG > CA > GA, with the main interaction force being hydrophobic interactions and hydrogen bonding, but hydrogen bonding dominates the interaction between GA and the protein. The findings illuminate the mechanism of MP binding to different polyphenols and facilitate the study of polyphenol-protein properties.

11.
BMC Cancer ; 24(1): 95, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38233827

RESUMO

BACKGROUND: Sarcopenia has received increasing attention in non-small cell lung cancer (NSCLC). Red blood cell distribution width (RDW) is a significant component of the complete blood count and indicates the heterogeneity of erythrocyte volume. Little information is known about RDW in relation to sarcopenia in early-stage (IA-IIIA) NSCLC. The purpose of the present study was to investigate the association between RDW and sarcopenia risk in early-stage NSCLC patients. METHODS: This study included 378 patients with pathologically confirmed stage IA-IIIA NSCLC. Sarcopenia was defined by measuring the skeletal muscle index (SMI) at the eleventh thoracic vertebra level. The maximum Youden index on the receiver operating characteristic (ROC) curve was used to estimate the cutoff value for RDW to predict sarcopenia. Logistic regression analyses were carried out to assess the independent risk factors for sarcopenia in NSCLC. RESULTS: The ROC curve indicated that the best cutoff point for RDW to predict sarcopenia was 12.9 (sensitivity of 43.80% and specificity of 76.76%, respectively). Moreover, there were significant differences in hemoglobin (p < 0.001), comorbidities (p = 0.001), histological type (p = 0.002), and cancer stage (p = 0.032) between the high RDW and low RDW groups. Logistic regression analyses revealed that high RDW is an independent risk factor for sarcopenia in early-stage NSCLC. CONCLUSION: RDW is associated with sarcopenia risk in early-stage NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Sarcopenia , Carcinoma de Pequenas Células do Pulmão , Humanos , Carcinoma Pulmonar de Células não Pequenas/patologia , Sarcopenia/patologia , Neoplasias Pulmonares/patologia , Estudos Retrospectivos , Carcinoma de Pequenas Células do Pulmão/patologia , Eritrócitos/patologia , Curva ROC , Prognóstico
12.
BMC Plant Biol ; 23(1): 646, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38097981

RESUMO

BACKGROUND: Long noncoding RNAs (lncRNAs) have been shown to play important roles in the response of plants to various abiotic stresses, including drought, heat and salt stress. However, the identification and characterization of genome-wide salt-responsive lncRNAs in tobacco (Nicotiana tabacum L.) have been limited. Therefore, this study aimed to identify tobacco lncRNAs in roots and leaves in response to different durations of salt stress treatment. RESULTS: A total of 5,831 lncRNAs were discovered, with 2,428 classified as differentially expressed lncRNAs (DElncRNAs) in response to salt stress. Among these, only 214 DElncRNAs were shared between the 2,147 DElncRNAs in roots and the 495 DElncRNAs in leaves. KEGG pathway enrichment analysis revealed that these DElncRNAs were primarily associated with pathways involved in starch and sucrose metabolism in roots and cysteine and methionine metabolism pathway in leaves. Furthermore, weighted gene co-expression network analysis (WGCNA) identified 15 co-expression modules, with four modules strongly linked to salt stress across different treatment durations (MEsalmon, MElightgreen, MEgreenyellow and MEdarkred). Additionally, an lncRNA-miRNA-mRNA network was constructed, incorporating several known salt-associated miRNAs such as miR156, miR169 and miR396. CONCLUSIONS: This study enhances our understanding of the role of lncRNAs in the response of tobacco to salt stress. It provides valuable information on co-expression networks of lncRNA and mRNAs, as well as networks of lncRNAs-miRNAs-mRNAs. These findings identify important candidate lncRNAs that warrant further investigation in the study of plant-environment interactions.


Assuntos
MicroRNAs , RNA Longo não Codificante , Nicotiana/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , MicroRNAs/genética , Regulação da Expressão Gênica de Plantas , Plantas Geneticamente Modificadas/genética , Estresse Salino , RNA Mensageiro/genética , Redes Reguladoras de Genes
13.
Planta ; 259(2): 31, 2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38150094

RESUMO

Chlorogenic acid (CGA) and flavonoids are important secondary metabolites, which modulate plant growth and development, and contribute to plant resistance to various environmental stresses. ERF4 has been shown to be a repressor of anthocyanin accumulation in grape, but its full roles in regulating the biosynthesis of other phenylpropanoid compounds still needs to be further studied. In the present study, two NtERF4 genes were identified from N. tabacum genome. The expression level of NtERF4a was higher than that of NtERF4b in all the tobacco tissues examined. Over-expression of NtERF4a significantly promoted the accumulation of CGA and flavonoids in tobacco leaves, while silencing of NtERF4a significantly repressed the biosynthesis of CGA and flavonoids. RNA-seq analysis of NtERF4a-OE and WT plants revealed 8 phenylpropanoids-related differentially expressed genes (DEGs), including 4 NtPAL genes that encode key enzymes in the phenylpropanoid pathway. Activation of NtERF4a-GR fusion protein in tobacco significantly induced the transcription of NtPAL1 and NtPAL2 in the presence of protein synthesis inhibitor. Chromatin immunoprecipitation and Dual-Luc assays further indicated that NtERF4a could bind to the GCC box presented in the promoters of NtPAL1 and NtPAL2, thereby activating their transcription. Moreover, ectopic expression of NtERF4a induced the transcription of NtGSK1, NtMYC2, and NtJAZ3 genes, and enhanced the resistance of tobacco seedlings to salt and drought stresses, indicating multiple roles of NtERF4a in plants. Our findings revealed new roles of NtERF4a in modulating the accumulation of phenylpropanoid compounds in tobacco, and provided a putative target for improving phenylpropanoids synthesis and stress resistance in plants.


Assuntos
Flavonoides , Nicotiana , Nicotiana/genética , Ácido Clorogênico , Metabolismo Secundário , Antocianinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA