Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
bioRxiv ; 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37425704

RESUMO

Granulocyte colony stimulating factor (G-CSF) is commonly used as adjunct treatment to hasten recovery from neutropenia following chemotherapy and autologous transplantation of hematopoietic stem and progenitor cells (HSPCs) for malignant disorders. However, the utility of G-CSF administration after ex vivo gene therapy procedures targeting human HSPCs has not been thoroughly evaluated. Here, we provide evidence that post-transplant administration of G-CSF impedes engraftment of CRISPR-Cas9 gene edited human HSPCs in xenograft models. G-CSF acts by exacerbating the p53-mediated DNA damage response triggered by Cas9- mediated DNA double-stranded breaks. Transient p53 inhibition in culture attenuates the negative impact of G-CSF on gene edited HSPC function. In contrast, post-transplant administration of G-CSF does not impair the repopulating properties of unmanipulated human HSPCs or HSPCs genetically engineered by transduction with lentiviral vectors. The potential for post-transplant G-CSF administration to aggravate HSPC toxicity associated with CRISPR-Cas9 gene editing should be considered in the design of ex vivo autologous HSPC gene editing clinical trials.

2.
Am J Respir Cell Mol Biol ; 63(2): 185-197, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32338995

RESUMO

The primary function of APOE (apolipoprotein E) is to mediate the transport of cholesterol- and lipid-containing lipoprotein particles into cells by receptor-mediated endocytosis. APOE also has pro- and antiinflammatory effects, which are both context and concentration dependent. For example, Apoe-/- mice exhibit enhanced airway remodeling and hyperreactivity in experimental asthma, whereas increased APOE levels in lung epithelial lining fluid induce IL-1ß secretion from human asthmatic alveolar macrophages. However, APOE-mediated airway epithelial cell inflammatory responses and signaling pathways have not been defined. Here, RNA sequencing of human asthmatic bronchial brushing cells stimulated with APOE identified increased expression of mRNA transcripts encoding multiple proinflammatory genes, including CXCL5 (C-X-C motif chemokine ligand 5), an epithelial-derived chemokine that promotes neutrophil activation and chemotaxis. We subsequently characterized the APOE signaling pathway that induces CXCL5 secretion by human asthmatic small airway epithelial cells (SAECs). Neutralizing antibodies directed against TLR4 (Toll-like receptor 4), but not TLR2, attenuated APOE-mediated CXCL5 secretion by human asthmatic SAECs. Inhibition of TAK1 (transforming growth factor-ß-activated kinase 1), IκKß (inhibitor of nuclear factor κ B kinase subunit ß), TPL2 (tumor progression locus 2), and JNK (c-Jun N-terminal kinase), but not p38 MAPK (mitogen-activated protein kinase) or MEK1/2 (MAPK kinase 1/2), attenuated APOE-mediated CXCL5 secretion. The roles of TAK1, IκKß, TPL2, and JNK in APOE-mediated CXCL5 secretion were verified by RNA interference. Furthermore, RNA interference showed that after APOE stimulation, both NF-κB p65 and TPL2 were downstream of TAK1 and IκKß, whereas JNK was downstream of TPL2. In summary, elevated levels of APOE in the airway may activate a TLR4/TAK1/IκKß/NF-κB/TPL2/JNK signaling pathway that induces CXCL5 secretion by human asthmatic SAECs. These findings identify new roles for TLR4 and TPL2 in APOE-mediated proinflammatory responses in asthma.


Assuntos
Apolipoproteínas E/metabolismo , Asma/metabolismo , Quimiocina CXCL5/metabolismo , Células Epiteliais/metabolismo , Sistema Respiratório/metabolismo , Transdução de Sinais/fisiologia , Receptor 4 Toll-Like/metabolismo , Quimiocinas/metabolismo , Humanos , Inflamação/metabolismo , Neutrófilos/metabolismo , RNA Mensageiro/metabolismo
3.
mBio ; 10(1)2019 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-30696738

RESUMO

RNA-binding proteins (RBPs) control mRNA processing, stability, transport, editing, and translation. We recently conducted transcriptome analyses comparing normal (i.e., healthy) cervical tissue samples with human papillomavirus (HPV)-positive cervical cancer tissue samples and identified 614 differentially expressed protein-coding transcripts which are enriched in cancer-related pathways and consist of 95 known RBPs. We verified the altered expression of 26 genes with a cohort of 72 cervical samples, including 24 normal cervical samples, 25 cervical intraepithelial neoplasia grade 2 (CIN2) and CIN3 samples, and 23 cervical cancer tissue samples. LY6K (lymphocyte antigen 6 complex locus K), FAM83A (family member with sequence similarity 83), CELSR3, ASF1B, IQGAP3, SEMA3F, CLDN10, MSX1, CXCL5, ASRGL1, ELAVL2, GRB7, KHSRP, NOVA1, PTBP1, and RNASEH2A were identified as novel candidate genes associated with cervical lesion progression and carcinogenesis. HPV16 or HPV18 infection was found to alter the expression of 8 RBP genes (CDKN2A, ELAVL2, GRB7, HSPB1, KHSRP, NOVA1, PTBP1, and RNASEH2A) in human vaginal and foreskin keratinocytes. Both viral E6 and E7 decreased NOVA1 expression, but only E7 increased the expression of RNASEH2A in an E2F1-dependent manner. Proliferating cell nuclear antigen (PCNA) directs RNASEH2 activity with respect to DNA replication by removing the RNA primers to promote Okazaki fragment maturation, and two factors are closely associated with neoplasia progression. Therefore, we predict that the induction of expression of RNASEH2A via viral E7 and E2F1 may promote DNA replication and cancer cell proliferation.IMPORTANCE High-risk HPV infections lead to development of cervical cancer. This study identified the differential expression of 16 novel genes (LY6K, FAM83A, CELSR3, ASF1B, IQGAP3, SEMA3F, CLDN10, MSX1, CXCL5, ASRGL1, ELAVL2, GRB7, KHSRP, NOVA1, PTBP1, and RNASEH2A) in HPV-infected cervical tissue samples and keratinocytes. Eight of these genes (CDKN2A, ELAVL2, GRB7, HSPB1, KHSRP, NOVA1, PTBP1, and RNASEH2A) encode RNA-binding proteins. Further studies indicated that both HPV16 and HPV18 infections lead to the aberrant expression of selected RBP-encoding genes. We found that viral E6 and E7 decrease NOVA1 expression but that E7 increases RNASEH2A expression via E2F1. The altered expression of these genes may be utilized as biomarkers for high-risk (HR)-HPV carcinogenesis and progression.


Assuntos
Fator de Transcrição E2F1/metabolismo , Interações Hospedeiro-Patógeno , Papillomavirus Humano 16/fisiologia , Papillomavirus Humano 18/fisiologia , Proteínas E7 de Papillomavirus/metabolismo , Ribonuclease H/metabolismo , Neoplasias do Colo do Útero/patologia , Células Cultivadas , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Humanos , Queratinócitos/patologia , Queratinócitos/virologia , Infecções por Papillomavirus/patologia , Infecções por Papillomavirus/virologia
4.
Nat Commun ; 9(1): 4186, 2018 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-30305631

RESUMO

The induction of human CD4+ Th1 cells requires autocrine stimulation of the complement receptor CD46 in direct crosstalk with a CD4+ T cell-intrinsic NLRP3 inflammasome. However, it is unclear whether human cytotoxic CD8+ T cell (CTL) responses also rely on an intrinsic complement-inflammasome axis. Here we show, using CTLs from patients with CD46 deficiency or with constitutively-active NLRP3, that CD46 delivers co-stimulatory signals for optimal CTL activity by augmenting nutrient-influx and fatty acid synthesis. Surprisingly, although CTLs express NLRP3, a canonical NLRP3 inflammasome is not required for normal human CTL activity, as CTLs from patients with hyperactive NLRP3 activity function normally. These findings establish autocrine complement and CD46 activity as integral components of normal human CTL biology, and, since CD46 is only present in humans, emphasize the divergent roles of innate immune sensors between mice and men.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Ácidos Graxos/metabolismo , Proteína Cofatora de Membrana/metabolismo , Receptores de Complemento/metabolismo , Comunicação Autócrina , Linfócitos T CD4-Positivos/imunologia , Síndromes Periódicas Associadas à Criopirina/imunologia , Síndromes Periódicas Associadas à Criopirina/patologia , Humanos , Ativação Linfocitária/imunologia , Modelos Biológicos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Transdução de Sinais , Linfócitos T Citotóxicos/imunologia
5.
J Virol ; 92(17)2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29976658

RESUMO

Host-influenza virus interplay at the transcript level has been extensively characterized in epithelial cells. Yet, there are no studies that simultaneously characterize human host and influenza A virus (IAV) genomes. We infected human bronchial epithelial BEAS-2B cells with two seasonal IAV/H3N2 strains, Brisbane/10/07 and Perth/16/09 (reference strains for past vaccine seasons) and the well-characterized laboratory strain Udorn/307/72. Strand-specific RNA sequencing (RNA-seq) of the infected BEAS-2B cells allowed for simultaneous analysis of host and viral transcriptomes, in addition to pathogen genomes, to reveal changes in mRNA expression and alternative splicing (AS). In general, patterns of global and immune gene expression induced by the three IAVs were mostly shared. However, AS of host transcripts and small nuclear RNAs differed between the seasonal and laboratory strains. Analysis of viral transcriptomes showed deletions of the polymerase components (defective interfering-like RNAs) within the genome. Surprisingly, we found that the neuraminidase gene undergoes AS and that the splicing event differs between seasonal and laboratory strains. Our findings reveal novel elements of the host-virus interaction and highlight the importance of RNA-seq in identifying molecular changes at the genome level that may contribute to shaping RNA-based innate immunity.IMPORTANCE The use of massively parallel RNA sequencing (RNA-seq) has revealed insights into human and pathogen genomes and their evolution. Dual RNA-seq allows simultaneous dissection of host and pathogen genomes and strand-specific RNA-seq provides information about the polarity of the RNA. This is important in the case of negative-strand RNA viruses like influenza virus, which generate positive (complementary and mRNA) and negative-strand RNAs (genome) that differ in their potential to trigger innate immunity. Here, we characterize interactions between human bronchial epithelial cells and three influenza A/H3N2 strains using strand-specific dual RNA-seq. We focused on this subtype because of its epidemiological importance in causing significant morbidity and mortality during influenza epidemics. We report novel elements that differ between seasonal and laboratory strains highlighting the complexity of the host-virus interplay at the RNA level.


Assuntos
Genoma Humano/genética , Genoma Viral/genética , Interações Hospedeiro-Patógeno/genética , Imunidade Inata/genética , Vírus da Influenza A Subtipo H3N2/genética , Influenza Humana/imunologia , Brônquios/citologia , Brônquios/virologia , Células Epiteliais/virologia , Perfilação da Expressão Gênica , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Interações Hospedeiro-Patógeno/imunologia , Humanos , Vírus da Influenza A Subtipo H3N2/imunologia , Influenza Humana/virologia , Neuraminidase/genética , Splicing de RNA/genética , Estações do Ano , Análise de Sequência de RNA/métodos
6.
Methods Mol Biol ; 1783: 171-183, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29767362

RESUMO

MicroRNAs are a class of small noncoding RNAs that function as regulators involving in many biological processes. The evaluation of miRNAs and their targets has been aided by miRNA expression profiling studies including multiplex PCR, microarrays, and recent next-generation sequencing tools. Next-generation sequencing has enabled us to profile thousands of genes in a single experiment and overcome the background signal and cross-hybridization issues of microarrays. Next-generation sequencing also allows for the simultaneous confirmation of known miRNAs and discovery of new miRNAs, and significantly reduces costs while providing billions of nucleotide information within a single experiment. Here we describe a detailed procedure of generation of miRNA library for next-generation sequencing to increase the efficiency of adapter ligation and finally construct a more specific cDNA library for sequencing and analyses for miRNA expression profiling.


Assuntos
Biologia Computacional/métodos , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala/métodos , MicroRNAs/genética , Análise de Sequência de RNA/métodos , Biblioteca Gênica , Humanos
7.
Hum Genet ; 137(3): 203-213, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29423652

RESUMO

Increasing evidence implicates mitochondrial dysfunction in aging and age-related conditions. But little is known about the molecular basis for this connection. A possible cause may be mutations in the mitochondrial DNA (mtDNA), which are often heteroplasmic-the joint presence of different alleles at a single locus in the same individual. However, the involvement of mtDNA heteroplasmy in aging and age-related conditions has not been investigated thoroughly. We deep-sequenced the complete mtDNA genomes of 356 Framingham Heart Study participants (52% women, mean age 43, mean coverage 4570-fold), identified 2880 unique mutations and comprehensively annotated them by MITOMAP and PolyPhen-2. We discovered 11 heteroplasmic "hot" spots [NADH dehydrogenase (ND) subunit 1, 4, 5 and 6 genes, n = 7; cytochrome c oxidase I (COI), n = 2; 16S rRNA, n = 1; D-loop, n = 1] for which the alternative-to-reference allele ratios significantly increased with advancing age (Bonferroni correction p < 0.001). Four of these heteroplasmic mutations in ND and COI genes were predicted to be deleterious nonsynonymous mutations which may have direct impact on ATP production. We confirmed previous findings that healthy individuals carry many low-frequency heteroplasmy mutations with potentially deleterious effects. We hypothesize that the effect of a single deleterious heteroplasmy may be minimal due to a low mutant-to-wildtype allele ratio, whereas the aggregate effects of many deleterious mutations may cause changes in mitochondrial function and contribute to age-related diseases. The identification of age-related mtDNA mutations is an important step to understand the genetic architecture of age-related diseases and may uncover novel therapeutic targets for such diseases.


Assuntos
DNA Mitocondrial/genética , Genoma Mitocondrial/genética , Sequenciamento de Nucleotídeos em Larga Escala , NADH Desidrogenase/genética , Adulto , Alelos , Feminino , Humanos , Masculino , Mitocôndrias/genética , Mutação , RNA Ribossômico 16S/genética
8.
Curr Pharm Des ; 23(6): 915-920, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28124601

RESUMO

In this mini-review, the role of macrophage phenotypes in atherogenesis is considered. Recent studies on distribution of M1 and M2 macrophages in different types of atherosclerotic lesions indicate that macrophages exhibit a high degree of plasticity of phenotype in response to various conditions in microenvironment. The effect of the accumulation of cholesterol, a key event in atherogenesis, on the macrophage phenotype is also discussed. The article presents the results of transcriptome analysis of cholesterol-loaded macrophages revealing genes involved in immune response whose expression rate has changed the most. It turned out that the interaction of macrophages with modified LDL leads to higher expression levels of pro-inflammatory marker TNF-α and antiinflammatory marker CCL18. Phenotypic profile of macrophage activation could be a good target for testing of novel anti-atherogenic immunocorrectors. A number of anti-atherogenic drugs were tested as potential immunocorrectors using primary macrophage-based model.


Assuntos
Adjuvantes Imunológicos/farmacologia , Anticolesterolemiantes/farmacologia , Aterosclerose/tratamento farmacológico , Aterosclerose/imunologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Animais , Humanos
9.
Curr Protoc Microbiol ; 41: 1E.11.1-1E.11.18, 2016 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-27153386

RESUMO

Kaposi's sarcoma-associated herpesvirus (KSHV), a human gamma-herpesvirus, is etiologically linked to the development of several malignancies, mainly Kaposi's sarcoma. Expressed as an early viral protein, KSHV ORF57 is essential for lytic replication and virion production. ORF57 selectively binds to a subset of viral RNA and affects nearly all aspects of viral RNA processing. To globally identify all viral and host RNA associated with KSHV ORF57 in the infected cells, we have utilized UV cross-linking and immunoprecipitation (CLIP) of KSHV ORF57 combined with high-throughput RNA sequencing (CLIP-seq) to identify ORF57-binding RNA in BCBL-1 cells at genome-wide level. This unit provides step-by-step details on this new method that is applicable for any pathogen or host RNA-binding proteins by slight modification. © 2016 by John Wiley & Sons, Inc.


Assuntos
Linfócitos B/virologia , Herpesvirus Humano 8/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Imunoprecipitação/métodos , Proteínas Virais Reguladoras e Acessórias/metabolismo , Linfócitos B/metabolismo , Reagentes de Ligações Cruzadas/química , Regulação Viral da Expressão Gênica , Herpesvirus Humano 8/genética , Humanos , Ligação Proteica , RNA/genética , RNA/metabolismo , Proteínas Virais Reguladoras e Acessórias/genética , Replicação Viral
10.
Cardiovasc Res ; 110(3): 346-58, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27095734

RESUMO

AIMS: Protein hydroxylases are oxygen- and α-ketoglutarate-dependent enzymes that catalyse hydroxylation of amino acids such as proline, thus linking oxygen and metabolism to enzymatic activity. Prolyl hydroxylation is a dynamic post-translational modification that regulates protein stability and protein-protein interactions; however, the extent of this modification is largely uncharacterized. The goals of this study are to investigate the biological consequences of prolyl hydroxylation and to identify new targets that undergo prolyl hydroxylation in human cardiomyocytes. METHODS AND RESULTS: We used human induced pluripotent stem cell-derived cardiomyocytes in combination with pulse-chase amino acid labelling and proteomics to analyse the effects of prolyl hydroxylation on protein degradation and synthesis. We identified 167 proteins that exhibit differences in degradation with inhibition of prolyl hydroxylation by dimethyloxalylglycine (DMOG); 164 were stabilized. Proteins involved in RNA splicing such as serine/arginine-rich splicing factor 2 (SRSF2) and splicing factor and proline- and glutamine-rich (SFPQ) were stabilized with DMOG. DMOG also decreased protein translation of cytoskeletal and sarcomeric proteins such as α-cardiac actin. We searched the mass spectrometry data for proline hydroxylation and identified 134 high confidence peptides mapping to 78 unique proteins. We identified SRSF2, SFPQ, α-cardiac actin, and cardiac titin as prolyl hydroxylated. We identified 29 prolyl hydroxylated proteins that showed a significant difference in either protein degradation or synthesis. Additionally, we performed next-generation RNA sequencing and showed that the observed decrease in protein synthesis was not due to changes in mRNA levels. Because RNA splicing factors were prolyl hydroxylated, we investigated splicing ± inhibition of prolyl hydroxylation and detected 369 alternative splicing events, with a preponderance of exon skipping. CONCLUSIONS: This study provides the first extensive characterization of the cardiac prolyl hydroxylome and demonstrates that inhibition of α-ketoglutarate hydroxylases alters protein stability, translation, and splicing.


Assuntos
Diferenciação Celular , Células-Tronco Pluripotentes Induzidas/enzimologia , Miócitos Cardíacos/enzimologia , Prolina/química , Prolil Hidroxilases/metabolismo , Processamento de Proteína Pós-Traducional , Processamento Alternativo , Aminoácidos Dicarboxílicos/farmacologia , Linhagem Celular , Conectina/metabolismo , Humanos , Hidroxilação , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Fator de Processamento Associado a PTB/metabolismo , Inibidores de Prolil-Hidrolase/farmacologia , Biossíntese de Proteínas , Proteólise , Proteômica/métodos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fatores de Processamento de Serina-Arginina/metabolismo
11.
Exp Hematol ; 42(1): 14-27.e1-2, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24139908

RESUMO

In the process of human hematopoiesis, precise regulation of the expression of lineage-specific gene products is critical for multiple cell-fate decisions that govern cell differentiation, proliferation, and self-renewal. Given the important role of microRNAs (miRNAs) in development and differentiation, we examined the global expression of miRNA in CD34(+) cells during lineage specific hematopoiesis and found 49 miRNAs to be differentially expressed, with functional roles in cellular growth and proliferation, and apoptosis. miR-18a was upregulated during erythropoiesis and downregulated during megakaryopoiesis. miR-145 was upregulated during granulopoiesis and down regulated during erythropoiesis. Megakaryopoitic differentiation resulted in significant alteration in the expression of many miRNAs that are believed to play critical roles in the regulation of B and T cell differentiation. Target prediction analyses on three different miRNA databases indicated that TargetScan outperformed microCosm and miRDB in identifying potential miRNA targets associated with hematopoietic differentiation process. An integrated analysis of the observed miRNAs and messenger RNAs (mRNAs) resulted in 87 highly correlated miRNA-mRNA pairs that have major functional roles in cellular growth and proliferation, hematopoietic system development, and Wnt/B-catenin and Flt 3 signaling pathways. We believe that this study will enhance our understanding on the regulatory roles of miRNA in hematopoiesis by providing a library of mRNA-miRNA networks.


Assuntos
Hematopoese , Células-Tronco Hematopoéticas/citologia , MicroRNAs/análise , MicroRNAs/fisiologia , RNA Mensageiro/análise , Diferenciação Celular , Linhagem da Célula , Humanos , Transcriptoma , Tirosina Quinase 3 Semelhante a fms/fisiologia
12.
Arterioscler Thromb Vasc Biol ; 33(6): 1418-26, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23539218

RESUMO

OBJECTIVE: To identify transcriptomic biomarkers of coronary heart disease (CHD) in 188 cases with CHD and 188 age- and sex-matched controls who were participants in the Framingham Heart Study. APPROACH AND RESULTS: A total of 35 genes were differentially expressed in cases with CHD versus controls at false discovery rate<0.5, including GZMB, TMEM56, and GUK1. Cluster analysis revealed 3 gene clusters associated with CHD, 2 linked to increased erythrocyte production and a third to reduced natural killer and T cell activity in cases with CHD. Exon-level results corroborated and extended the gene-level results. Alternative splicing analysis suggested that GUK1 and 38 other genes were differentially spliced in cases with CHD versus controls. Gene Ontology analysis linked ubiquitination and T-cell-related pathways with CHD. CONCLUSIONS: Two bioinformatically defined groups of genes show consistent associations with CHD. Our findings are consistent with the hypotheses that hematopoesis is upregulated in CHD, possibly reflecting a compensatory mechanism, and that innate immune activity is disrupted in CHD or altered by its treatment. Transcriptomic signatures may be useful in identifying pathways associated with CHD and point toward novel therapeutic targets for its treatment and prevention.


Assuntos
Doença das Coronárias/epidemiologia , Doença das Coronárias/genética , DNA Recombinante/genética , Predisposição Genética para Doença/epidemiologia , Transcriptoma/genética , Distribuição por Idade , Idoso , Estudos de Casos e Controles , Análise por Conglomerados , Éxons/genética , Feminino , Granzimas/genética , Humanos , Incidência , Masculino , Proteínas de Membrana , Proteínas dos Microfilamentos , Pessoa de Meia-Idade , Neurofibromina 2/genética , Reação em Cadeia da Polimerase em Tempo Real , Valores de Referência , Reprodutibilidade dos Testes , Fatores de Risco , Distribuição por Sexo
13.
Physiol Genomics ; 44(1): 59-75, 2012 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-22045913

RESUMO

Despite a growing number of reports of gene expression analysis from blood-derived RNA sources, there have been few systematic comparisons of various RNA sources in transcriptomic analysis or for biomarker discovery in the context of cardiovascular disease (CVD). As a pilot study of the Systems Approach to Biomarker Research (SABRe) in CVD Initiative, this investigation used Affymetrix Exon arrays to characterize gene expression of three blood-derived RNA sources: lymphoblastoid cell lines (LCL), whole blood using PAXgene tubes (PAX), and peripheral blood mononuclear cells (PBMC). Their performance was compared in relation to identifying transcript associations with sex and CVD risk factors, such as age, high-density lipoprotein, and smoking status, and the differential blood cell count. We also identified a set of exons that vary substantially between participants, but consistently in each RNA source. Such exons are thus stable phenotypes of the participant and may potentially become useful fingerprinting biomarkers. In agreement with previous studies, we found that each of the RNA sources is distinct. Unlike PAX and PBMC, LCL gene expression showed little association with the differential blood count. LCL, however, was able to detect two genes related to smoking status. PAX and PBMC identified Y-chromosome probe sets similarly and slightly better than LCL.


Assuntos
Sangue/metabolismo , Doenças Cardiovasculares/sangue , Perfilação da Expressão Gênica , Leucócitos Mononucleares/metabolismo , Linfócitos/metabolismo , Adulto , Biomarcadores/análise , Biomarcadores/sangue , Biomarcadores/metabolismo , Doenças Cardiovasculares/diagnóstico , Doenças Cardiovasculares/etiologia , Doenças Cardiovasculares/genética , Linhagem Celular , Estudos de Coortes , Feminino , Humanos , Linfócitos/patologia , Masculino , Massachusetts , Análise em Microsséries , Pessoa de Meia-Idade , Projetos Piloto
14.
Physiol Genomics ; 43(20): 1117-34, 2011 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-21828245

RESUMO

Hematopoietic differentiation is strictly regulated by complex network of transcription factors that are controlled by ligands binding to cell surface receptors. Disruptions of the intricate sequences of transcriptional activation and suppression of multiple genes cause hematological diseases, such as leukemias, myelodysplastic syndromes, or myeloproliferative syndromes. From a clinical standpoint, deciphering the pattern of gene expression during hematopoiesis may help unravel disease-specific mechanisms in hematopoietic malignancies. Herein, we describe a human in vitro hematopoietic model system where lineage-specific differentiation of CD34(+) cells was accomplished using specific cytokines. Microarray and RNAseq-based whole transcriptome and exome analysis was performed on the differentiated erythropoietic, granulopoietic, and megakaryopoietic cells to delineate changes in expression of whole transcripts and exons. Analysis on the Human 1.0 ST exon arrays indicated differential expression of 172 genes (P < 0.0000001) and significant alternate splicing of 86 genes during differentiation. Pathway analysis identified these genes to be involved in Rac/RhoA signaling, Wnt/B-catenin signaling and alanine/aspartate metabolism. Comparison of the microarray data to next generation RNAseq analysis during erythroid differentiation demonstrated a high degree of correlation in gene (R = 0.72) and exon (R = 0.62) expression. Our data provide a molecular portrait of events that regulate differentiation of hematopoietic cells. Knowledge of molecular processes by which the cells acquire their cell-specific fate would be beneficial in developing cell-based therapies for human diseases.


Assuntos
Processamento Alternativo/genética , Diferenciação Celular/genética , Linhagem da Célula/genética , Perfilação da Expressão Gênica , Células-Tronco Hematopoéticas/citologia , Análise de Sequência de DNA , Transcriptoma/genética , Antígenos CD34/metabolismo , Análise por Conglomerados , Células Eritroides/citologia , Células Eritroides/metabolismo , Éxons/genética , Citometria de Fluxo , Regulação da Expressão Gênica , Redes Reguladoras de Genes/genética , Hematopoese/genética , Células-Tronco Hematopoéticas/metabolismo , Humanos , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase , Análise de Componente Principal , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reprodutibilidade dos Testes , Transdução de Sinais/genética
15.
Blood ; 117(2): 563-74, 2011 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-20940416

RESUMO

Chronic lymphocytic leukemia (CLL), an incurable malignancy of mature B lymphocytes, involves blood, bone marrow, and secondary lymphoid organs such as the lymph nodes (LN). A role of the tissue microenvironment in the pathogenesis of CLL is hypothesized based on in vitro observations, but its contribution in vivo remains ill-defined. To elucidate the effects of tumor-host interactions in vivo, we purified tumor cells from 24 treatment-naive patients. Samples were obtained concurrently from blood, bone marrow, and/or LN and analyzed by gene expression profiling. We identified the LN as a key site in CLL pathogenesis. CLL cells in the LN showed up-regulation of gene signatures, indicating B-cell receptor (BCR) and nuclear factor-κB activation. Consistent with antigen-dependent BCR signaling and canonical nuclear factor-κB activation, we detected phosphorylation of SYK and IκBα, respectively. Expression of BCR target genes was stronger in clinically more aggressive CLL, indicating more effective BCR signaling in this subtype in vivo. Tumor proliferation, quantified by the expression of the E2F and c-MYC target genes and verified with Ki67 staining by flow cytometry, was highest in the LN and was correlated with clinical disease progression. These data identify the disruption of tumor microenvironment interactions and the inhibition of BCR signaling as promising therapeutic strategies in CLL. This study is registered at http://clinicaltrials.gov as NCT00019370.


Assuntos
Leucemia Linfocítica Crônica de Células B/patologia , Linfonodos/patologia , NF-kappa B/metabolismo , Receptores de Antígenos de Linfócitos B/metabolismo , Transdução de Sinais/fisiologia , Microambiente Tumoral/fisiologia , Adulto , Proliferação de Células , Separação Celular , Feminino , Citometria de Fluxo , Perfilação da Expressão Gênica , Humanos , Hibridização in Situ Fluorescente , Leucemia Linfocítica Crônica de Células B/genética , Leucemia Linfocítica Crônica de Células B/metabolismo , Linfonodos/metabolismo , Masculino , Pessoa de Meia-Idade , Análise de Sequência com Séries de Oligonucleotídeos , Receptores de Antígenos de Linfócitos B/genética
16.
Blood ; 117(2): 542-52, 2011 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-20956803

RESUMO

Bortezomib induces remissions in 30%-50% of patients with relapsed mantle cell lymphoma (MCL). Conversely, more than half of patients' tumors are intrinsically resistant to bortezomib. The molecular mechanism of resistance has not been defined. We generated a model of bortezomib-adapted subclones of the MCL cell lines JEKO and HBL2 that were 40- to 80-fold less sensitive to bortezomib than the parental cells. Acquisition of bortezomib resistance was gradual and reversible. Bortezomib-adapted subclones showed increased proteasome activity and tolerated lower proteasome capacity than the parental lines. Using gene expression profiling, we discovered that bortezomib resistance was associated with plasmacytic differentiation, including up-regulation of IRF4 and CD38 and expression of CD138. In contrast to plasma cells, plasmacytic MCL cells did not increase immunoglobulin secretion. Intrinsically bortezomib-resistant MCL cell lines and primary tumor cells from MCL patients with inferior clinical response to bortezomib also expressed plasmacytic features. Knockdown of IRF4 was toxic for the subset of MCL cells with plasmacytic differentiation, but only slightly sensitized cells to bortezomib. We conclude that plasmacytic differentiation in the absence of an increased secretory load can enable cells to withstand the stress of proteasome inhibition. Expression of CD38 and IRF4 could serve as markers of bortezomib resistance in MCL. This study has been registered at http://clinicaltrials.gov as NCT00131976.


Assuntos
Antineoplásicos/farmacologia , Ácidos Borônicos/farmacologia , Resistencia a Medicamentos Antineoplásicos/fisiologia , Linfoma de Célula do Manto/tratamento farmacológico , Plasmócitos/patologia , Pirazinas/farmacologia , ADP-Ribosil Ciclase 1/biossíntese , Idoso , Western Blotting , Bortezomib , Diferenciação Celular , Linhagem Celular Tumoral , Separação Celular , Ensaio de Imunoadsorção Enzimática , Feminino , Citometria de Fluxo , Perfilação da Expressão Gênica , Humanos , Fatores Reguladores de Interferon/biossíntese , Linfoma de Célula do Manto/genética , Linfoma de Célula do Manto/metabolismo , Masculino , Pessoa de Meia-Idade , Análise de Sequência com Séries de Oligonucleotídeos , Complexo de Endopeptidases do Proteassoma/efeitos dos fármacos , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo
17.
Cytometry B Clin Cytom ; 78(2): 88-95, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19834966

RESUMO

Twenty-eight synovial effusions (SE) were obtained from 24 patients, paired samples of peripheral blood (PB) from 10 of these patients, and PB from 36 healthy individuals for analysis of CD146 on T-lymphocytes by flow cytometry. CD146+ or CD146- T-lymphocytes were sorted from three SE to study gene expression profiles and selected genes revalidated using QPCR assays. We found more CD3+CD146+ and CD4+CD146+ T-lymphocytes in PB from patients compared with PB of healthy individuals (4.71% +/- 2.48% vs. 2.53% +/- 1.08%, P = 0.028) and (6.29% +/- 2.74% vs. 2.41% +/- 0.96%, P = 0.0017), respectively, whereas CD8+CD146+ T-lymphocytes were not significantly different (2.55% +/- 1.65% vs. 3.18% +/- 2.59%, P = 0.5008). SE displayed CD146 staining on 16.32% +/- 6.06% of CD3+ cells. This expression was skewed toward CD4+ T-lymphocytes, with CD146 present on 24.06% +/- 8.20% of the CD4+ T-lymphocytes compared with 6.19% +/- 5.22% of the CD8+ T-lymphocytes. CD146 on CD3+, CD4+ and CD8+ T-lymphocytes in SE was significantly higher compared with PB in patients (P < 0.0001, P < 0.0001 and P = 0.0036, respectively). Gene expression profiles of sorted CD146+CD4+CD3+ vs. CD146-CD4+CD3+ T-lymphocytes (n = 2) and CD2+CD146+ vs. CD2+CD 146- (n = 1) from SE, displayed increased CD146, LAIR2, CXCL13, CD109, IL6ST, IL6R, TNFRsf18, and TNFRsf4 genes, whereas decreased CCR7, CCL5, and cytotoxicity-associated genes including granzymes b, h, and k, perforin were found with the CD146- T-lymphocytes. By QPCR higher mRNA expression of CXCL13, CD146 and CD109 was also noted in the CD146+ subset, compared with the CD146- subset, in PB of healthy individuals and in PB and SE from patients. Our study establishes increased CD146+ T-lymphocytes in diseases with joint effusions, and demonstrates pro-inflammatory gene profiles in these cells.


Assuntos
Antígeno CD146/metabolismo , Perfilação da Expressão Gênica , Inflamação/genética , Doenças Musculoesqueléticas/imunologia , Líquido Sinovial/citologia , Linfócitos T/metabolismo , Citometria de Fluxo , Humanos , Inflamação/imunologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sensibilidade e Especificidade , Líquido Sinovial/imunologia , Linfócitos T/citologia , Linfócitos T/imunologia
18.
J Leukoc Biol ; 87(2): 345-54, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19889728

RESUMO

GVHD is a major barrier to broader use of allogenic HSCT for nonmalignancy clinical applications such as the treatment of primary immunodeficiencies and hemoglobinopathies. We show in a murine model of C57BL/6J (H2-k(b)) --> B6D2F1/J (H2-k(b/d)) acute GVHD that when initiated 2 days before transplant, the activation of the adenosine A(2A)R with the selective agonist ATL146e inhibits the weight loss and mortality associated with disease progression. Furthermore, circulating levels of proinflammatory cytokines and chemokines, including IFN-gamma, IL-6, CCL2, KC, and G-CSF, are reduced significantly by 14-day ATL146e treatment. The up-regulation of CD25, CD69, and CD40L expression by donor CD4(+) and CD8(+) T cells is inhibited by A(2A)R activation; fewer CD3(+) T cells are found in the liver, skin, and colon of ATL146e-treated mice as compared with vehicle-treated controls; and associated tissue injury is lessened. The delayed administration of ATL146e, beginning 9 days after HSCT, reverses GVHD-associated body weight loss successfully, and improvement is sustained for the duration of treatment. We conclude that the selective activation of the A(2A)R has therapeutic potential in the prevention and treatment of acute GVHD.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Doença Enxerto-Hospedeiro/imunologia , Transplante de Células-Tronco Hematopoéticas , Receptor A2A de Adenosina/imunologia , Doença Aguda , Agonistas do Receptor A2 de Adenosina , Animais , Antígenos CD/imunologia , Linfócitos T CD4-Positivos/patologia , Linfócitos T CD8-Positivos/patologia , Ácidos Cicloexanocarboxílicos/farmacologia , Citocinas/imunologia , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/imunologia , Doença Enxerto-Hospedeiro/tratamento farmacológico , Doença Enxerto-Hospedeiro/patologia , Camundongos , Purinas/farmacologia , Transplante Homólogo
19.
J Hazard Mater ; 170(2-3): 699-704, 2009 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-19497668

RESUMO

Silica particles and metals are important occupational hazards in foundry workers, and exposure may result in DNA damage and lipid peroxidation through oxidative stress. This study aimed to compare oxidative damage by measuring the levels of plasma malondialdehyde (MDA), urinary 8-hydroxydeoxyguanosine (8-OH-dG) and DNA strand breakage in workers at two foundry plants (exposure group) and in town hall employees (control group) in central Taiwan. Air samples for metals analysis in the workplace were also collected to assess the health risk to foundry workers. Significantly higher MDA levels (4.28 microM versus 1.64 microM), DNA strand breakage (6.63 versus 1.22), and 8-OH-dG levels (5.00 microg/g creatinine versus 1.84 microg/g creatinine) were found in exposure group compared with the control group. Higher levels of these parameters were also found in workers involved in manufacturing than in workers involved in administration. Higher air respirable dust concentrations were found in manufacturing departments (0.99 mg/m(3)) than in administrative departments (0.34 mg/m(3)). The health risk assessment on metals exposure showed that the cancer risk for Cd, Cr and Ni were all above 1 x 10(-6). Future studies are necessary to determine whether metals exposure can contribute to oxidative damage in foundry workers.


Assuntos
Dano ao DNA , Desoxiguanosina/análogos & derivados , Saúde , Malondialdeído/sangue , Metalurgia , Metais Pesados/análise , Metais Pesados/toxicidade , Exposição Ocupacional/efeitos adversos , Medição de Risco/métodos , 8-Hidroxi-2'-Desoxiguanosina , Adulto , Ensaio Cometa , DNA/química , Desoxiguanosina/urina , Poeira/análise , Monitoramento Ambiental , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estresse Oxidativo/fisiologia , Taiwan
20.
Stem Cells Dev ; 16(3): 361-70, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17610366

RESUMO

Hematopoietic stem cell (HSC) graft cell dose impacts significantly on allogeneic transplant. Similarly, HSC gene therapy outcome is affected by loss of repopulating cells during culture required for ex vivo retrovirus transduction. Stromal cell-derived factor-1 (SDF-1) and its receptor CXCR4 play a central role in marrow trafficking of HSCs, and maneuvers that enhance CXCR4 activation might positively impact outcome in settings of limiting graft dose. CD26/dipeptidyl peptidase IV (DPP-IV) is an ectoenzyme protease that cleaves SDF-1, thus reducing CXCR4 activation. We show that injection of irradiated nonobese diabetic/severe combined immunodeficiency (NOD/SCID) mice with >or=2 micromol Diprotin A (a tripeptide specific inhibitor of CD26 protease activity) at the time of transplant of human granulocyte colony-stimulating factor (G-CSF) mobilized CD34(+) peripheral blood cells (CD34(+) PBCs) results in a >3.4-fold enhancement of engraftment of human cells. We also show that CD26 on residual stromal cells in the irradiated recipient marrow milieu, and not any CD26 activity in the human CD34(+) PBC graft itself, plays the critical role in regulating receptivity of this environment for the incoming graft. Human marrow stromal cells also express CD26, raising the possibility that Diprotin A treatment could significantly enhance engraftment of HSCs in humans in settings of limiting graft dose just as we observed in the NOD/SCID mouse human xenograft model.


Assuntos
Antígenos CD34/metabolismo , Células Sanguíneas/metabolismo , Transplante de Medula Óssea , Oligopeptídeos/metabolismo , Animais , Células Sanguíneas/citologia , Células Sanguíneas/efeitos da radiação , Movimento Celular , Fator Estimulador de Colônias de Granulócitos/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Oligopeptídeos/administração & dosagem , Transplante Heterólogo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA