RESUMO
Since brain functions are under the continuous influence of the signals derived from peripheral tissues, it is critical to elucidate how glial cells in the brain sense various biological conditions in the periphery and transmit the signals to neurons. Microglia, immune cells in the brain, are involved in synaptic development and plasticity. Therefore, the contribution of microglia to neural circuit construction in response to the internal state of the body should be tested critically by intravital imaging of the relationship between microglial dynamics and neuronal activity. Here, we describe a technique for the simultaneous imaging of microglial dynamics and neuronal activity in awake mice. Adeno-associated virus encoding R-CaMP, a gene-encoded calcium indicator of red fluorescence protein, was injected into layer 2/3 of the primary visual cortex in CX3CR1-EGFP transgenic mice expressing EGFP in microglia. After viral injection, a cranial window was installed onto the brain surface of the injected region. In vivo two-photon imaging in awake mice 4 weeks after the surgery demonstrated that neural activity and microglial dynamics could be recorded simultaneously at the sub-second temporal resolution. This technique can uncover the coordination between microglial dynamics and neuronal activity, with the former responding to peripheral immunological states and the latter encoding the internal brain states.
Assuntos
Microglia , Vigília , Animais , Encéfalo/diagnóstico por imagem , Camundongos , Camundongos Transgênicos , Neurônios/fisiologiaRESUMO
Melanoma-associated antigens (MAGEs) were initially identified in melanoma and have since been widely studied. Melanoma-associated antigen-As (MAGE-As), a subfamily of MAGEs, are expressed in germ cells and various types of cancer, and are considered to be ideal targets for cancer immunotherapy. Glial cells and melanocytes originate from the neural ectoderm, so tumors derived from these two types of cells, i.e. gliomas and melanomas, may have common biological characteristics. However, studies on the expression of the MAGE-A family in gliomas are limited and conflicting. In the present study, the expression levels of MAGE-A1, -A3 and -A11 were detected by immunohistochemistry, and the association of their expression levels with the clinicopathological parameters, overall survival (OS) and ki-67 labeling indices of glioma patients were analyzed. The results showed that i) the expression levels of MAGE-A1, -A3 and -A11 proteins in the glioma tissues were 64.1, 51.3 and 57.7%, respectively and that no MAGE-A1, -A3 or -A11 expression was detected in the normal brain specimens; ii) the expression levels of MAGE-A1 and -A11 increased with ascending pathological grades and were positively correlated with the ki-67 labeling index; and iii) the OS of the patients in the groups with high MAGE-A1 (P=0.005) and -A11 (P=0.019) expression was statistically lower compared with the groups with low expression and no significant differences in OS were detected between the patients in the groups with high and low MAGE-A3 expression (P=0.304). Based on these results, we conclude that MAGE-A1, -A3 and -A11 may be used as ideal targets for glioma immunotherapy, and that MAGE-A1 and -A11 expression may be involved in tumor cell proliferation. These proteins may be potential indicators of a poor prognosis in glioma patients.
RESUMO
Purified Rehmannia glutinosa polysaccharide (RGP) is used as functional foods for the prevention and treatment of various diseases. In this study, we examined the effects of RGP on phenotypic and functional maturation of murine bone marrow derived Dendritic cells (BMDCs). Phenotypic maturation of BMDCs was confirmed by conventional scanning electron microscopy (SEM), flow cytometry (FCM) and functional maturation by transmission electron microscopy (TEM), cytochemistry assay, Acid phosphatase (ACP) activity, FITC-dextran, bio-assay and enzyme linked immunosorbent assay (ELISA).We found that RGP up-regulated the expression of CD40, CD80, CD83, CD86 and MHC II molecules of BMDCs, down-regulated pinocytosis and phagocytosis activity, induced IL-12 and TNF-α production of BMDCs. It is therefore concluded that RGP can effectively promote the maturation of DCs. Our study provides evidence and rationale on using RGP in various clinical conditions to enhance host immunity and suggests RGP as a potent adjuvant for the design of DC-based vaccines.