Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
2.
Acta Biomater ; 167: 519-533, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37328041

RESUMO

Cerenkov radiation-induced photodynamic therapy (CR-PDT) gets rid of the limited tissue penetration depth of the external light source and provides a feasible scheme for the PDT excited by the internal light. However, due to the low luminescence intensity of Cerenkov radiation, CR-PDT alone cannot effectively inhibit tumor growth, curbing the potential clinical translation of CR-PDT. Herein, we reported an AIE-PS/bacteria biohybrid (EcN@TTVP) composed of Escherichia coli Nissle 1917 (EcN) loaded with aggregation-induced emission photosensitizer (AIE-PS) termed TTVP, which enhanced CR-PDT by activating anti-tumor immunity for synergistic tumor treatment. The preferential tumor-colonized EcN@TTVP and radiopharmaceutical 18F-fluorodeoxyglucose (18F-FDG) were administered sequentially to enable them to co-enrich in the tumor site, thereby triggering CR-PDT and promoting immunogenic tumor cell death. Most importantly, EcN acting as immunoadjuvants enhanced the maturation of dendritic cells (DCs) and priming of cytotoxic T cells (CTLs). Therefore, under the synergistic treatment of CR-PDT and immunotherapy, AIE-PS/bacteria biohybrids resulted in either efficient tumor remission or a survival prolongation in tumor-bearing mice, which presented significant advantages over single CR-PDT. Remarkably, no obvious toxic effects were observed during the treatment. In this study, we proposed a synergistic therapeutic strategy based on EcN@TTVP for combined CR-PDT and immunotherapy against tumors. Moreover, this strategy may have great potential in clinical translation and provide references for deep-seated tumor treatment. STATEMENT OF SIGNIFICANCE: PDT is restricted due to the shallow penetration depth of light into tumor tissues. Using CR as the excitation light source for PDT can overcome the aforementioned issue and greatly expand the application of PDT. However, the low efficacy of single CR-PDT limits further its applications. Therefore, the design and development of feasible strategies to improve the efficacy of CR-PDT are of immediate importance. Introducing probiotics to our study can be used not only as tumor-targeting carriers of photosensitizers but also as immunoadjuvants. Under co-stimulation by immunogenic tumor cell death triggered by CR-PDT and probiotics acting as immunoadjuvants, anti-tumor immune responses were effectively activated, thus remarkably enhancing the efficacy of CR-PDT.


Assuntos
Nanopartículas , Neoplasias , Fotoquimioterapia , Animais , Camundongos , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Fotoquimioterapia/métodos , Neoplasias/terapia , Adjuvantes Imunológicos , Linhagem Celular Tumoral
3.
Eur J Nucl Med Mol Imaging ; 50(8): 2342-2352, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36877233

RESUMO

PURPOSE: This study aimed to explore the feasibility of using [177Lu]Lu-prostate-specific membrane antigen (PSMA)-617 and [177Lu]Lu-Evans blue (EB)-PSMA-617 for in vivo radioligand therapy by single-dose administration in a PSMA-positive hepatocellular carcinoma (HCC) xenograft mouse model. METHODS: [177Lu]Lu-PSMA-617 and [177Lu]Lu-EB-PSMA-617 were prepared, and labelling efficiency and radiochemical purity were determined. A HepG2 human HCC subcutaneous xenograft mouse model was established. After intravenous injection of [177Lu]Lu-PSMA-617 or [177Lu]Lu-EB-PSMA-617 (37 MBq) into the mouse model, single-photon emission computed tomography/computed tomography (SPECT/CT) was performed. Biodistribution studies were conducted to verify targeting specificity and pharmacokinetics. In the radioligand therapy study, mice were randomized into 4 groups: 37 MBq [177Lu]Lu-PSMA-617, 18.5 MBq [177Lu]Lu-PSMA-617, 7.4 MBq [177Lu]Lu-EB-PSMA-617, and saline (control). A single-dose administration was applied at the beginning of therapy studies. Tumor volume, body weight, and survival were monitored every 2 days. After the end of therapy, mice were euthanized. Tumors were then weighed, and systemic toxicity was evaluated via blood testing and histological examination of healthy organs. RESULTS: [177Lu]Lu-PSMA-617 and [177Lu]Lu-EB-PSMA-617 were successfully prepared with high purity and stability. SPECT/CT and biodistribution showed that tumor uptake was higher and persisted longer for [177Lu]Lu-EB-PSMA-617 compared with [177Lu]Lu-PSMA-617. [177Lu]Lu-PSMA-617 was rapidly cleared from the blood, while [177Lu]Lu-EB-PSMA-617 persisted for significantly longer. In radioligand therapy studies, tumor growth was significantly suppressed in the 37 MBq [177Lu]Lu-PSMA-617, 18.5 MBq [177Lu]Lu-PSMA-617, and 7.4 MBq [177Lu]Lu-EB-PSMA-617 groups compared to the saline group. Median survival was 40, 44, 43, and 30 days, respectively. No healthy organ toxicity was observed in safety and tolerability evaluation. CONCLUSIONS: Radioligand therapy using [177Lu]Lu-PSMA-617 and [177Lu]Lu-EB-PSMA-617 significantly suppressed tumor growth and prolonged survival time in PSMA-positive HCC xenograft mice without obvious toxicity. These radioligands appear promising for clinical use in humans, and future studies are warranted.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Neoplasias de Próstata Resistentes à Castração , Masculino , Humanos , Animais , Camundongos , Carcinoma Hepatocelular/diagnóstico por imagem , Carcinoma Hepatocelular/radioterapia , Carcinoma Hepatocelular/tratamento farmacológico , Medicina de Precisão , Distribuição Tecidual , Neoplasias Hepáticas/diagnóstico por imagem , Neoplasias Hepáticas/radioterapia , Neoplasias Hepáticas/tratamento farmacológico , Antígeno Prostático Específico , Dipeptídeos , Compostos Heterocíclicos com 1 Anel , Compostos Radiofarmacêuticos/farmacocinética , Lutécio/uso terapêutico , Lutécio/farmacocinética , Linhagem Celular Tumoral , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico
4.
Pharmaceutics ; 14(9)2022 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-36145541

RESUMO

Nowadays, pancreatic cancer is still a formidable disease to diagnose. The CXC chemokine receptor 4 (CXCR4) and integrin αvß3 play important roles in tumor development, progression, invasion, and metastasis, which are overexpressed in many types of human cancers. In this study, we developed a heterodimeric tracer 68Ga-yG5-RGD targeting both CXCR4 and integrin αvß3, and evaluated its feasibility and utility in PET imaging of pancreatic cancer. The 68Ga-yG5-RGD could accumulate in CXCR4/integrin αvß3 positive BxPC3 tumors in a high concentration and was much higher than that of 68Ga-yG5 (p < 0.001) and 68Ga-RGD (p < 0.001). No increased uptake of 68Ga-yG5-RGD was found in MX-1 tumors (CXCR4/integrin αvß3, negative). In addition, the uptake of 68Ga-yG5-RGD in BxPC3 was significantly blocked by excess amounts of AMD3100 (an FDA-approved CXCR4 antagonist) and/or unlabeled RGD (p < 0.001), confirming its dual-receptor targeting properties. The ex vivo biodistribution and immunohistochemical results were consistent with the in vivo imaging results. The dual-receptor targeting strategy achieved improved tumor-targeting efficiency and prolonged tumor retention in BxPC3 tumors, suggesting 68Ga-yG5-RGD is a promising tracer for the noninvasive detection of tumors that express either CXCR4 or integrin αvß3 or both, and therefore may have good prospects for clinical translation.

5.
Eur J Nucl Med Mol Imaging ; 49(12): 4156-4170, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35790537

RESUMO

PURPOSE: γδ T cell-based immunotherapy has been rolled out as a promising treatment strategy for malignant tumors due to their potent anti-tumor cytotoxicity, ease of expansion, and unrestricted MHC feature. However, the dynamics and outcomes of γδ T cells in tumor sites are poorly understood. Reported strategies rely on ex vivo biolabeling, significantly limiting the application of γδ T cell molecular imaging. Herein, we investigated whether VLA-4 (very late antigen-4), a crucial component in the effective trafficking of lymphocytes, could serve as a biomarker to non-invasively visualize γδ T cells. METHODS: VLA-4-targeted tracer, 68 Ga-LLP2A, was evaluated in MDA-MB-231- and A549-bearing mice with adoptive transfer of γδ T cells by longitudinal PET/CT imaging. Imaging data were verified by ex vivo biodistribution studies, and the co-localization of CD3 and VLA-4 was validated by immunohistochemistry studies. RESULTS: 68 Ga-LLP2A showed high specificity to VLA-4-expressing γδ T cells in both in vitro and tumor-bearing mice with adoptive transfer of γδ T cells. Longitudinal PET imaging of 68 Ga-LLP2A in tumor-bearing mice with adoptive transfer of γδ T cells showed an increasing tumor tracer uptake, revealing the tumor-specific homing of γδ T cells. The presence of VLA-4-expressing γδ T cells in tumors was confirmed via histological analysis. CONCLUSION: To the best of our knowledge, we reported the first molecular probe, 68 Ga-LLP2A, for in vivo imaging of γδ T cells in live tumors, which advances PET imaging of γδ T cells and supports the translation of imaging agents for immunotherapeutic monitoring.


Assuntos
Integrina alfa4beta1 , Melanoma Experimental , Animais , Linhagem Celular Tumoral , Integrina alfa4beta1/metabolismo , Camundongos , Sondas Moleculares , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Tomografia por Emissão de Pósitrons/métodos , Linfócitos T/metabolismo , Distribuição Tecidual
6.
Front Oncol ; 12: 884554, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35664759

RESUMO

Ovarian cancer has the highest mortality rate of gynecologic malignancy. 18F-FDG positron emission tomography (PET) adds an important superiority over traditional anatomic imaging modalities in oncological imaging but has drawbacks including false negative results at the early stage of ovarian cancer, and false positives when inflammatory comorbidities are present. Aminopeptidase N (APN, also known as CD13) and integrin αvß3 are two important targets overexpressed on tumor neo-vessels and frequently on ovarian cancerous cells. In this study, we used subcutaneous and metastatic models of ovarian cancer and muscular inflammation models to identify 68Ga-NGR-RGD, a heterodimeric tracer consisting of NGR and RGD peptides targeting CD13 and integrin αvß3, respectively, and compared it with 18F-FDG. We found that 68Ga-NGR-RGD showed greater contrast in SKOV3 and ES-2 tumors than 18F-FDG. Low accumulation of 68Ga-NGR-RGD but avid uptake of 18F-FDG were observed in inflammatory muscle. In abdominal metastasis models, PET imaging with 68Ga-NGR-RGD allowed for rapid and clear delineation of both peritoneal and liver metastases (3-6 mm), whereas, 18F-FDG could not distinguish the metastasis lesions due to the relatively low metabolic activity in tumors and the interference of intestinal physiological 18F-FDG uptake. Due to the high tumor-targeting efficacy, low inflammatory uptake, and higher tumor-to-background ratios compared to that of 18F-FDG, 68Ga-NGR-RGD presents a promising imaging agent for diagnosis, staging, and follow-up of ovarian tumors.

7.
Eur J Nucl Med Mol Imaging ; 49(12): 4228-4240, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35657428

RESUMO

PURPOSE: Gallium-68-labeled fibroblast activation protein inhibitor (68Ga-FAPI) is an emerging promising tumor tracer. This study aims to evaluate the diagnostic efficiency of 68Ga-FAPI PET in gastrointestinal cancer, and to determine its potential impact on clinical management. METHODS: Patients with malignancies were prospectively enrolled in a clinical trial to evaluate the diagnostic value of 68Ga-FAPI PET. One hundred twenty patients with gastrointestinal malignancies (121 68Ga-FAPI PET scans) between June 2020 and May 2021 were retrospectively analyzed. Initial staging of untreated patients and restaging of treated patients were evaluated. The treatment scheme promoted by imaging was determined according to NCCN guidelines. Final diagnosis and treatment reference standards were determined by a dedicated multidisciplinary team. The diagnostic performance and treatment guidance of 68Ga-FAPI PET were compared with those of conventional imaging (CI) and 18F-FDG PET. RESULTS: The diagnostic accuracy of 68Ga-FAPI PET was much higher than that of CI and 18F-FDG PET (95.0% vs. 65.1% and 69.0%, respectively, both p < 0.001). 68Ga-FAPI PET revised diagnosis in 30.3% and 26.2% of patients compared with CI and 18F-FDG PET. The accordance rate of 68Ga-FAPI PET-guided treatment in comparison with the reference standard was significantly higher than that of CI and 18F-FDG PET (96.7% vs. 75.2% and 76.2%, respectively, both p < 0.001). 68Ga-FAPI PET changed treatment in 22.9% and 23.8% of patients compared with CI and 18F-FDG PET. CONCLUSIONS: 68Ga-FAPI PET showed remarkable diagnostic performance in gastrointestinal cancer, resulting in more accurate staging and guidance for timely treatment revision, thereby having a critical impact on clinical management. TRIAL REGISTRATION: NCT04554719. Registered September 8, 2020-retrospectively registered, http://clinicaltrails.gov/show/NCT04554719.


Assuntos
Neoplasias Gastrointestinais , Quinolinas , Fibroblastos/metabolismo , Fibroblastos/patologia , Fluordesoxiglucose F18 , Radioisótopos de Gálio , Neoplasias Gastrointestinais/diagnóstico por imagem , Neoplasias Gastrointestinais/patologia , Neoplasias Gastrointestinais/terapia , Humanos , Proteínas de Membrana/metabolismo , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Quinolinas/farmacologia
8.
Eur J Nucl Med Mol Imaging ; 49(12): 4000-4013, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35763056

RESUMO

OBJECTIVE: Hepatocellular carcinoma (HCC) is a malignant tumor associated with high morbidity and mortality rates. In many non-prostate solid tumors such as HCC, prostate-specific membrane antigens (PSMA) are overexpressed in tumor-associated endothelial cells. Therefore, the aim of this study was to evaluate the performance of [68Ga]Ga-PSMA-617 PET imaging on HCC with different animal models, including cell line-derived xenografts (CDX) and patient-derived xenografts (PDX), and to explore its mechanisms of function. METHODS: [68Ga]Ga-PSMA-617 was prepared. The expression level of PSMA in two human hepatocellular cancer cells (HepG2 and HuH-7) was evaluated, and the cellular uptakes of [68Ga]Ga-PSMA-617 were assayed. HepG2 and HuH-7 subcutaneous xenograft models, HepG2 orthotopic xenograft models, and four different groups of PDX models were prepared. Preclinical pharmacokinetics and performance of [68Ga]Ga-PSMA-617 were evaluated in different types of HCC xenografts models using small animal PET and biodistribution studies. RESULTS: Low PSMA expression level of HepG2 and HuH-7 cells was observed, and the cellular uptake and blocking study confirmed the non-specificity of the PSMA-targeted probe binding to HepG2 and HuH-7 cells. In the subcutaneous xenograft models, the tumor uptakes at 0.5 h were 0.76 ± 0.12%ID/g (HepG2 tumors) and 0.78 ± 0.08%ID/g (HuH-7 tumors), respectively, which were significantly higher than those of the blocking groups (0.23 ± 0.04%ID/g and 0.20 ± 0.04%ID/g, respectively). In the orthotopic xenograft models, PET images clearly displayed the tumor locations based on the preferential accumulation of [68Ga]Ga-PSMA-617 in tumor tissue versus normal liver tissue, suggesting the possibility of using [68Ga]Ga-PSMA-617 PET imaging to detect primary HCC lesions in deep tissue. In the four different groups of HCC PDX models, PET imaging with [68Ga]Ga-PSMA-617 provided clear tumor uptakes with prominent tumor-to-background contrast, further demonstrating its potential for the clinical imaging of PSMA-positive HCC lesions. The staining of tumor tissue sections with CD31- and PSMA-specific antibodies visualized the tumor-associated blood vessels and PSMA expression on endothelial cells in subcutaneous, orthotopic tissues, and PDX tissues, confirming the imaging with [68Ga]Ga-PSMA-617 might be mediated by targeting tumor associated endothelium. CONCLUSION: In this study, in vivo PET on different types of HCC xenograft models illustrated high uptake within tumors, which confirmed that [68Ga]Ga-PSMA-617 PET may be a promising imaging modality for HCC by targeting tumor associated endothelium.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Neoplasias da Próstata , Animais , Carcinoma Hepatocelular/diagnóstico por imagem , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Dipeptídeos , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Endotélio/metabolismo , Endotélio/patologia , Radioisótopos de Gálio , Glutamato Carboxipeptidase II/metabolismo , Compostos Heterocíclicos com 1 Anel , Humanos , Neoplasias Hepáticas/diagnóstico por imagem , Neoplasias Hepáticas/metabolismo , Masculino , Tomografia por Emissão de Pósitrons/métodos , Antígeno Prostático Específico , Neoplasias da Próstata/patologia , Distribuição Tecidual
9.
J Nanobiotechnology ; 20(1): 243, 2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35614462

RESUMO

BACKGROUND: Triple-negative breast cancer (TNBC) is more prone to distant metastasis and visceral recurrence in comparison to other breast cancer subtypes, and is related to dismal prognosis. Nevertheless, TNBC has an undesirable response to targeted therapies. Therefore, to tackle the huge challenges in the diagnosis and treatment of TNBC, Nectin-4 was selected as a theranostic target because it was recently found to be highly expressed in TNBC. We developed anti-Nectin-4 monoclonal antibody (mAbNectin-4)-based theranostic pair, 99mTc-HYNIC-mAbNectin-4 and mAbNectin-4-ICG. 99mTc-HYNIC-mAbNectin-4 was applied to conduct immuno-single photon emission computed tomography (SPECT) for TNBC diagnosis and classification, and mAbNectin-4-ICG to mediate photothermal therapy (PTT) for relieving TNBC tumor growth. METHODS: Nectin-4 expression levels of breast cancer cells (MDA-MB-468: TNBC cells; and MCF-7, non-TNBC cells) were proved by western blot, flow cytometry, and immunofluorescence imagning. Cell uptake assays, SPECT imaging, and biodistribution were performed to evaluate Nectin-4 targeting of 99mTc-HYNIC-mAbNectin-4. A photothermal agent (PTA) mAbNectin-4-ICG was generated and characterized. In vitro photothermal therapy (PTT) mediated by mAbNectin-4-ICG was conducted under an 808 nm laser. Fluorescence (FL) imaging was performed for mAbNectin-4-ICG mapping in vivo. In vivo PTT treatment effects on TNBC tumors and corresponding systematic toxicity were evaluated. RESULTS: Nectin-4 is overexpressed in MDA-MB-468 TNBC cells, which could specifically uptake 99mTc-HYNIC-mAbNectin-4 with high targeting in vitro. The corresponding immunoSPECT imaging demonstrated exceptional performance in TNBC diagnosis and molecular classification. mAbNectin-4-ICG exhibited favourable biocompatibility, photothermal effects, and Nectin-4 targeting. FL imaging mapped biodistribution of mAbNectin-4-ICG with excellent tumor-targeting and retention in vivo. Moreover, mAbNectin-4-ICG-mediated PTT provided advanced TNBC tumor destruction efficiency with low systematic toxicity. CONCLUSION: mAbNectin-4-based radioimmunoimaging provides visualization tools for the stratification and diagnosis for TNBC, and the corresponding mAbNectin-4-mediated PTT shows a powerful anti-tumor effect. Our findings demonstrate that this Nectin-4 targeting strategy offers a simple theranostic platform for TNBC.


Assuntos
Nectinas , Terapia Fototérmica , Tomografia Computadorizada com Tomografia Computadorizada de Emissão de Fóton Único , Neoplasias de Mama Triplo Negativas , Anticorpos Monoclonais/uso terapêutico , Linhagem Celular Tumoral , Humanos , Hidrazinas/uso terapêutico , Imunoconjugados/uso terapêutico , Verde de Indocianina , Nectinas/imunologia , Nectinas/metabolismo , Ácidos Nicotínicos/uso terapêutico , Terapia Fototérmica/métodos , Tomografia Computadorizada com Tomografia Computadorizada de Emissão de Fóton Único/métodos , Distribuição Tecidual , Neoplasias de Mama Triplo Negativas/diagnóstico por imagem , Neoplasias de Mama Triplo Negativas/terapia
10.
Eur J Nucl Med Mol Imaging ; 49(2): 709-720, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34241652

RESUMO

PURPOSE: To describe the uptake of 68Gallium-labelled fibroblast activation protein inhibitor (68Ga-FAPI) in the bones and joints for better understanding of the role of 68Ga-FAPI PET in benign and malignant bone lesions and joint diseases. METHODS: All 129 68Ga-FAPI PET/MR or PET/CT scans from June 1, 2020, to February 20, 2021, performed at our PET center were retrospectively reviewed. Foci of elevated 68Ga-FAPI uptake in the bones and joints were identified. All lesions were divided into malignant and benign diseases. Benign lesions included osteofibrous dysplasia, periodontitis, degenerative bone diseases, arthritis, and other inflammatory or trauma-related abnormalities. The number, locations, and SUVmax of all lesions were recorded and analyzed. The detectability of 68Ga-FAPI PET and 18F-FDG PET in patients who had two scans was also compared. RESULTS: Elevated uptake of 68Ga-FAPI in/around the bones and joints was found in 82 cases (63.57%). A total of 295 lesions were identified, including 94 (31.9%) malignant lesions (all were metastases) and 201 (68.1%) benign lesions. The benign lesions consisted of 13 osteofibrous dysplasia, 48 degenerative bone disease, 33 periodontitis, 56 arthritis, and 51 other inflammatory or trauma-related abnormalities. The spine, shoulder joint, alveolar ridge, and pelvis were the most commonly involved locations. Bone metastases were mainly distributed in the spine, pelvis, and ribs. Among benign diseases, periodontitis and arthritis are site-specific. The mean SUVmax of bone metastases was significantly higher than that of benign diseases (7.14 ± 4.33 vs. 3.57 ± 1.60, p < 0.001), but overlap existed. The differences in SUVmax among subgroups of benign diseases were statistically significant (p < 0.001), with much higher uptake in periodontitis (4.45 ± 1.17). 68Ga-FAPI PET identified much more lesions than 18F-FDG PET (104 vs. 48) with higher uptake value. CONCLUSION: 68Ga-FAPI accumulated in both bone metastases and some benign diseases of the bones and joints. Although the uptake of 68Ga-FAPI was often higher in bone metastases, this finding cannot be used to distinguish between benign and malignant lesions. 68Ga-FAPI PET also has the potential to locate and evaluate the extent of both malignant tumor and benign diseases in bones and joints. TRIAL REGISTRATION: NCT04554719, NCT04605939. Registered September 8, 2020 and October 25, 2020-retrospectively registered, http://clinicaltrails.gov/show/NCT04554719 ; http://clinicaltrails.gov/show/NCT04605939.


Assuntos
Neoplasias Ósseas , Radioisótopos de Gálio , Neoplasias Ósseas/diagnóstico por imagem , Neoplasias Ósseas/secundário , Compostos Heterocíclicos com 1 Anel , Humanos , Metástase Neoplásica/diagnóstico por imagem , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Quinolinas , Estudos Retrospectivos
11.
J Nucl Med ; 63(1): 81-88, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-33863819

RESUMO

We sought to evaluate the performance of 68Ga-DOTA-FAPI-04 ( 68 Ga-FAPI) PET/MR for the diagnosis of primary tumor and metastatic lesions in patients with gastric carcinomas and to compare the results with those of 18F-FDG PET/CT. Methods: Twenty patients with histologically proven gastric carcinomas were recruited, and each patient underwent both 18F-FDG PET/CT and 68 Ga-FAPI PET/MR. A visual scoring system was established to compare the detectability of primary tumors and metastases in different organs or regions (the peritoneum, abdominal lymph nodes, supradiaphragmatic lymph nodes, liver, ovary, bone, and other tissues). The original SUVmax and normalized SUVmax (calculated by dividing a lesion's original SUVmax with the SUVmean of the descending aorta) of selected lesions on both 18F-FDG PET/CT and 68Ga-FAPI PET/MR were measured. Original/normalized SUVmax-FAPI and SUVmax-FDG were compared for patient-based (including a single lesion with the highest activity uptake in each organ/region) and lesion-based (including all lesions [≤5] or the 5 lesions with highest activity [>5]) analyses, respectively. Results: The 20 recruited patients (median age: 56.0 y; range: 29-70 y) included 9 men and 11 women, 14 patients for initial staging and 6 for recurrence detection. 68Ga-FAPI PET was superior to 18F-FDG PET for primary tumor detection (100.00% [14/14] vs. 71.43% [10/14]; P = 0.034), and the former had higher tracer uptake levels (P < 0.05). 68Ga-FAPI PET was superior to 18F-FDG PET in both patient-based and lesion-based evaluation except for the metastatic lesions in supradiaphragmatic lymph nodes and ovaries. Additionally, multiple sequences of MR images were beneficial for the interpretation of hepatic metastases in 3 patients, uterine and rectal metastases in 1 patient, ovarian lesions in 7 patients, and osseous metastases in 2 patients. Conclusion:68Ga-FAPI PET/MR outperformed 18F-FDG PET/CT in visualizing the primary and most metastatic lesions of gastric cancer and might be a promising method, with the potential of replacing 18F-FDG PET/CT.


Assuntos
Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada
12.
Mol Pharm ; 18(9): 3544-3552, 2021 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-34482695

RESUMO

Maternal embryo leucine zipper kinase (MELK) is a serine/threonine kinase and is highly expressed in triple-negative breast cancer (TNBC). This study aimed to develop a 18F-radiolabeled tracer based on the structure of a small-molecule MELK inhibitor OTSSP167 and evaluate its application for PET imaging of MELK expression in TNBC. OTSSP167 was modified with ethylene glycol to adjust its pharmacokinetics and was then radiolabeled with 18F to obtain [18F]F-ET-OTSSP167 at a labeling yield of 7.14 ± 2.19% and a molar activity of 16.23 ± 1.13 MBq/nmol. In vitro binding assays showed differentiated binding affinities of [18F]F-ET-OTSSP167 in different breast cancer cell lines, with high uptake in MDA-MB-231 (mild MELK expression) and low uptake in MCF-7 (negative MELK expression). PET imaging revealed that MDA-MB-231 tumors could be clearly delineated in vivo, while low tracer uptake was observed in MCF-7 tumors. These findings were confirmed by ex vivo biodistribution studies and were consistent with the immunohistochemistry and tissue staining results. Tracer accumulation in MDA-MB-231 tumors was significantly inhibited by excess amounts of OTSSP167, indicating high specificity of the tracer. In summary, [18F]F-ET-OTSSP167, an easily-prepared probe, can be used to visualize MELK positive tumors, demonstrating its promising clinical potential in selecting patients for MELK inhibitor therapy.


Assuntos
Naftiridinas/administração & dosagem , Tomografia por Emissão de Pósitrons/métodos , Proteínas Serina-Treonina Quinases/análise , Compostos Radiofarmacêuticos/administração & dosagem , Neoplasias de Mama Triplo Negativas/diagnóstico , Animais , Linhagem Celular Tumoral , Feminino , Radioisótopos de Flúor , Humanos , Camundongos , Imagem Molecular/métodos , Naftiridinas/química , Naftiridinas/farmacocinética , Seleção de Pacientes , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/metabolismo , Compostos Radiofarmacêuticos/química , Compostos Radiofarmacêuticos/farmacocinética , Distribuição Tecidual , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Pharmaceutics ; 13(8)2021 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-34452187

RESUMO

Highly efficient drug delivery systems with excellent tumor selectivity and minimal toxicity to normal tissues remain challenging for tumor treatment. Although great effort has been made to prolong the blood circulation and improve the delivery efficiency to tumor sites, nanomedicines are rarely approved for clinical application. Bacteria have the inherent properties of homing to solid tumors, presenting themselves as promising drug delivery systems. Escherichia coli Nissle 1917 (EcN) is a commonly used probiotic in clinical practice. Its facultative anaerobic property drives it to selectively colonize in the hypoxic area of the tumor for survival and reproduction. EcN can be engineered as a bacteria-based microrobot for molecular imaging, drug delivery, and gene delivery. This review summarizes the progress in EcN-mediated tumor imaging and therapy and discusses the prospects and challenges for its clinical application. EcN provides a new idea as a delivery vehicle and will be a powerful weapon against cancer.

14.
Front Med (Lausanne) ; 8: 657619, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34055836

RESUMO

Purpose: To analyze 68Ga-PSMA-617 PET/CT or PET/MR and delayed PET/MR images in patients diagnosed with or suspicion of prostate cancer, and to explore the optimal use of PET/CT and PET/MR for initial diagnosis and staging in prostate cancer. Methods: Images from conventional scan by 68Ga-PSMA whole-body PET/CT or PET/MR followed by delayed pelvic PET/MR were retrospectively analyzed. Prostatic 68Ga-PSMA uptake was measured as SUVmax1 (conventional scan 1 h post injection) and SUVmax2 (delayed scan 3 h post injection). Age, PSA levels, and SUVmax were compared between benign and malignant cases. The correlation of SUVmax1 and SUVmax2 was analyzed. Diagnostic performance was evaluated by ROC analysis. Results: Fifty-six patients with 41 prostate cancers and 15 benign prostate lesions were enrolled. Fifty-three patients had paired conventional and delayed scans. Age, tPSA, fPSA levels, and SUVmax were significantly different between benign and malignant cases. A good correlation was found between SUVmax1 and SUVmax2. There was significant difference between SUVmax1 and SUVmax2 in the malignant group (p = 0.001). SUVmax1 had superior diagnostic performance than SUVmax2, SUVmax difference and PSA levels, with a sensitivity of 85.4%, a specificity of 100% and an AUC of 0.956. A combination of SUVmax1 with nodal and/or distant metastases and MR PI-RADS V2 score had a sensitivity and specificity of 100%. Delayed pelvic PET/MR imaging in 33 patients were found to be redundant because these patients had nodal and/or distant metastases which can be easily detected by PET/CT. PET/MR provided incremental value in 8 patients at early-stage prostate cancer based on precise anatomical localization and changes in lesion signal provided by MR. Conclusion: Combined 68Ga-PSMA whole-body PET/CT and pelvic PET/MR can accurately differentiate benign prostate diseases from prostate cancer and accurately stage prostate cancer. Whole-body PET/CT is sufficient for advanced prostate cancer. Pelvic PET/MR contributes to diagnosis and accurate staging in early prostate cancer. Imaging at about 1 h after injection is sufficient in most patients. ClinicalTrials.gov : NCT03756077. Registered 27 November 2018-Retrospectively registered, https://clinicaltrials.gov/show/NCT03756077.

15.
J Nanobiotechnology ; 19(1): 81, 2021 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-33743740

RESUMO

BACKGROUND: Triple-negative breast cancer (TNBC) is a kind of aggressive breast cancer with a high rate of metastasis, poor overall survival time, and a low response to targeted therapies. To improve the therapeutic efficacy and overcome the drug resistance of TNBC treatments, here we developed the cancer cell membrane-coated oxygen delivery nanoprobe, CCm-HSA-ICG-PFTBA, which can improve the hypoxia at tumor sites and enhance the therapeutic efficacy of the photodynamic therapy (PDT), resulting in relieving the tumor growth in TNBC xenografts. RESULTS: The size of the CCm-HSA-ICG-PFTBA was 131.3 ± 1.08 nm. The in vitro 1O2 and ROS concentrations of the CCm-HSA-ICG-PFTBA group were both significantly higher than those of the other groups (P < 0.001). In vivo fluorescence imaging revealed that the best time window was at 24 h post-injection of the CCm-HSA-ICG-PFTBA. Both in vivo 18F-FMISO PET imaging and ex vivo immunofluorescence staining results exhibited that the tumor hypoxia was significantly improved at 24 h post-injection of the CCm-HSA-ICG-PFTBA. For in vivo PDT treatment, the tumor volume and weight of the CCm-HSA-ICG-PFTBA with NIR group were both the smallest among all the groups and significantly decreased compared to the untreated group (P < 0.01). No obvious biotoxicity was observed by the injection of CCm-HSA-ICG-PFTBA till 14 days. CONCLUSIONS: By using the high oxygen solubility of perfluorocarbon (PFC) and the homologous targeting ability of cancer cell membranes, CCm-HSA-ICG-PFTBA can target tumor tissues, mitigate the hypoxia of the tumor microenvironment, and enhance the PDT efficacy in TNBC xenografts. Furthermore, the HSA, ICG, and PFC are all FDA-approved materials, which render the nanoparticles highly biocompatible and enhance the potential for clinical translation in the treatment of TNBC patients.


Assuntos
Biomimética/métodos , Nanopartículas/uso terapêutico , Oxigênio , Fotoquimioterapia/métodos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/radioterapia , Animais , Mama/diagnóstico por imagem , Mama/patologia , Linhagem Celular Tumoral , Feminino , Fluorescência , Camundongos , Camundongos Endogâmicos BALB C , Técnicas de Sonda Molecular , Imagem Óptica/métodos , Fármacos Fotossensibilizantes/uso terapêutico , Neoplasias de Mama Triplo Negativas/diagnóstico por imagem , Neoplasias de Mama Triplo Negativas/patologia , Microambiente Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto
16.
Eur J Nucl Med Mol Imaging ; 48(10): 3228-3237, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33609152

RESUMO

PURPOSE: To conduct a head-to-head comparison of the diagnostic ability of 68Ga-DOTA-FAPI-04 (68Ga-FAPI) and 18F-FDG PET/MR in nasopharyngeal carcinoma (NPC) patients. METHODS: Patients diagnosed with NPC were prospectively enrolled. All patients underwent head-and-neck 68Ga-FAPI PET/MR and 18F-FDG PET/MR within 1 week. Primary tumor, lymph node numbers, and tracer uptake were compared by SUVmax and visual evaluation. The primary tumor volumes derived from 68Ga-FAPI, 18F-FDG PET, and MRI were also compared. RESULTS: Fifteen patients were enrolled from June to August 2020. Both 68Ga-FAPI and 18F-FDG PET had 100% detection rate of the primary tumor. The 68Ga-FAPI SUVmax of primary tumors (13.87 ± 5.13) was lower than that of 18F-FDG (17.73 ± 6.84), but the difference was not significant (p = 0.078). Compared with 18F-FDG, 68Ga-FAPI PET improved the delineation of skull-base invasion in eight out of eight patients and intracranial invasion in four out of four patients. When 25%SUVmax of 68Ga-FAPI or 20%SUVmax of 18F-FDG was utilized as a threshold for determining tumor volume, it was highly consistent with MRI. 18F-FDG PET detected much more positive lymph nodes than 68Ga-FAPI (100 vs 48). The SUVmax of 48 paired lymph nodes was significantly lower on 68Ga-FAPI than 18F-FDG (8.67 ± 3.88 vs 11.79 ± 6.17, p < 0.001). Additionally, 68Ga-FAPI further detected four highly suspected small, distant metastases in three patients. Compared with 18F-FDG, 68Ga-FAPI changed overall staging in six of fifteen patients, with three patients being up-staged, and three down-staged. CONCLUSION: 68Ga-FAPI outperforms 18F-FDG in delineating the primary tumor and detecting suspected distant metastases, particularly in the evaluation of skull-base and intracranial invasion, suggesting 68Ga-FAPI hybrid PET/MR has the potential to serve as a single-step staging modality for patients with NPC. However, its value regarding lymph node and distant metastases evaluation needs further study. TRIAL REGISTRATION: NCT04554719. Registered September 8, 2020 - retrospectively registered, http://clinicaltrails.gov/show/NCT04554719.


Assuntos
Fluordesoxiglucose F18 , Neoplasias Nasofaríngeas , Radioisótopos de Gálio , Humanos , Imageamento por Ressonância Magnética , Carcinoma Nasofaríngeo/diagnóstico por imagem , Neoplasias Nasofaríngeas/diagnóstico por imagem , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Estudos Prospectivos , Quinolinas
17.
Front Chem ; 8: 755, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33134253

RESUMO

Natural melanin nanoplatforms have attracted attention in molecular imaging. Natural melanin can be made into small-sized nanoparticles, which penetrate tumor sites deeply, but unfortunately, the particles continue to backflow into the blood or are cleared into the surrounding tissues, leading to loss of retention within tumors. Here, we report a pH-triggered approach to aggregate natural melanin nanoparticles by introducing a hydrolysis-susceptible citraconic amide on the surface. Triggered by pH values lower than 7.0, such as the tumor acid environment, the citraconic amide moiety tended to hydrolyze abruptly, resulting in both positive and negative surface charges. The electrostatic attractions between nanoparticles drove nanoparticle aggregation, which increased accumulation in the tumor site because backflow was blocked by the increased size. Melanin nanoparticles have the natural ability to bind metal ions, which can be labeled with isotopes for nuclear medicine imaging. When the melanin nanoparticles were labeled by 68Ga, we observed that the pH-induced physical aggregation in tumor sites resulted in enhanced PET imaging. The pH-triggered assembly of natural melanin nanoparticles could be a practical strategy for efficient tumor targeted imaging.

18.
Clin Nucl Med ; 45(12): 1034-1035, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33086278

RESUMO

Ga-FAPI (Ga-labeled fibroblast activation protein inhibitor) PET imaging has been recently introduced for the diagnosis and staging in various malignant tumors. However, the reports about the utility of FAPI imaging in benign tumor are relatively rare. Here we report a case of pathologically proven recurrent angiomyolipoma in the left retroperitoneal area with low F-FDG uptake but diffuse heterogeneous intense Ga-FAPI uptake together with suspected lung metastases in a 53-year-old woman. Our case illustrates FAPI imaging could be helpful not only for detecting various malignant tumors but also for benign tumor like this case due to fibrotic activity in the disease.


Assuntos
Angiomiolipoma/metabolismo , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Quinolinas/metabolismo , Angiomiolipoma/diagnóstico por imagem , Angiomiolipoma/patologia , Transporte Biológico , Feminino , Humanos , Neoplasias Pulmonares/secundário , Pessoa de Meia-Idade
19.
Mol Imaging ; 19: 1536012120916124, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32559121

RESUMO

It has been reported that dysregulation of microRNA-155 expression and function is associated with tumorigenesis, growth, tumor subtypes, invasion, and poor survival rates. Peptide nucleic acid (PNA), an artificially synthesized nucleic acid mimic, has been applied for molecular diagnosis. In this study, a PNA sequence that undergoes complementary binding to miR-155 was labeled with 99mTc to evaluate whether the tracer could visualize the expression of miR-155 in breast cancer. Both antisense PNA (anti-PNA, fully complementary bound to human mature miR-155, referred to as "anti-PNA-155") and mismatched PNA (referred to as "mis-PNA") single strands containing 23-mer were synthesized. The relative expression of miR-155 in MCF-7 cells and tumors was higher than that in MDA-MB-231 cells and tumors. Single-photon emission computed tomography (SPECT) scan showed that radioactivity mainly accumulated in kidney. MCF-7 tumors, but not MDA-MB-231 tumors, were clearly visualized after [99mTc]anti-PNA-155 injection. MCF-7 tumors were less visible when coinjected with 100-fold excess of anti-PNA-155 or injected with [99mTc]mis-PNA, which suggested specific binding. Biodistribution study results were consistent with SPECT imaging. We successfully demonstrated that [99mTc]anti-PNA-155 could visualize miR-155 expression in vivo, suggesting it may be a promising probe applied in breast cancer.


Assuntos
Neoplasias da Mama/diagnóstico por imagem , MicroRNAs/metabolismo , Imagem Molecular , Ácidos Nucleicos Peptídicos/química , Tecnécio/química , Animais , Linhagem Celular Tumoral , Feminino , Humanos , Camundongos Endogâmicos BALB C , Camundongos Nus , MicroRNAs/genética , Ácidos Nucleicos Peptídicos/metabolismo , Compostos Radiofarmacêuticos/química , Distribuição Tecidual , Tomografia Computadorizada de Emissão de Fóton Único
20.
Mol Pharm ; 17(8): 3000-3008, 2020 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-32544337

RESUMO

Pancreatic cancer is highly malignant and has a five-year survival rate of 5% due to an early lymph node, nerve, and vascular metastasis. Integrin α3ß1 (also called very late antigen-3, VLA-3) is overexpressed in many tumors and plays a vital role in tumor formation, recurrence, and metastasis. In this study, we developed a 68Ga-radiolabeled peptide tracer targeting the α3 unit of VLA-3 and evaluated its potential application in positron emission computed tomography (PET) imaging of pancreatic cancer. NOTA-CK11 was prepared by solid-phase synthesis and successfully radiolabeled with 68Ga with greater than 99% radiochemical purity and a specific activity of 37 ± 5 MBq/nmol (n = 5). The expression level of integrin α3 in three human pancreatic cancer cells was evaluated with the order of SW1990, BXPC-3, and PANC-1 from high to low, while the expression level of integrin ß1 was relatively close. When SW1990 cells with the highest expression level of VLA-3 were stained with FITC-CK11, strong fluorescence was observed by flow cytometry and under a laser confocal microscope. However, no significant fluorescence was observed in the blocking group when treated with excessive CK11. 68Ga-NOTA-CK11 showed significant radioactivity accumulation in SW1990 cells and was blocked by CK11 successfully. Subsequent small-animal PET imaging and biodistribution studies in mice bearing SW1990 xenografts confirmed its high tumor uptake with a good tumor-to-blood ratio and tumor-to-muscle ratio (2.45 ± 0.31 and 3.65 ± 0.33, respectively) at 1 h post injection of the probe. In summary, we successfully developed a peptide-based imaging agent, 68Ga-NOTA-CK11, that showed a strong binding affinity with VLA-3 and good target specificity for SW1990 cells and xenografted pancreatic tumor, rending it a promising radiotracer for PET imaging of VLA-3 expression in pancreatic cancer.


Assuntos
Radioisótopos de Gálio/química , Radioisótopos de Gálio/farmacologia , Integrina alfa3beta1/metabolismo , Neoplasias Pancreáticas/tratamento farmacológico , Peptídeos/química , Peptídeos/farmacologia , Animais , Linhagem Celular Tumoral , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Tomografia por Emissão de Pósitrons/métodos , Radioquímica/métodos , Compostos Radiofarmacêuticos/química , Compostos Radiofarmacêuticos/farmacologia , Neoplasias Pancreáticas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA