Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38662932

RESUMO

BACKGROUND: Extracellular vesicles derived from mesenchymal stem cells (MSCs) show great promise in treating osteoarthritis (OA). However, studies from the perspective of clinical feasibility that consider an accessible cell source and a scalable preparation method for MSC-extracellular vesicles are lacking. QUESTIONS/PURPOSES: (1) Does an infrapatellar fat pad obtained from patients undergoing TKA provide a suitable source to provide MSC-extracellular vesicles purified by anion exchange chromatography? Using an in vivo mouse model for OA in the knee, (2) how does injection of the infrapatellar fat pad-derived MSC-extracellular vesicles alter gait, cartilage structure and composition, protein expression (Type II collagen, MMP13, and ADAMTS5), subchondral bone remodeling and osteophytes, and synovial inflammation? METHODS: The infrapatellar fat pad was collected from three patients (all female; 62, 74, 77 years) during TKA for infrapatellar fat pad-derived MSC culturing. Patients with infection, rheumatic arthritis, and age > 80 years were excluded. MSC-extracellular vesicles were purified by anion exchange chromatography. For the animal study, we used 30 male C57BL/6 mice aged 10 weeks, divided into six groups. MSC-extracellular vesicles were injected weekly into the joint of an OA mouse model during ACL transection (ACLT). To answer our first research question, we characterized MSCs based on their proliferative potential, differentiation capacity, and surface antigen expression, and we characterized MSC-extracellular vesicles by size, morphology, protein marker expression, and miRNA profile. To answer our second research question, we evaluated the effects of MSC-extracellular vesicles in the OA mouse model with quantitative gait analysis (mean pressure, footprint area, stride length, and propulsion time), histology (Osteoarthritis Research Society International Score based on histologic analysis [0 = normal to 24 = very severe degeneration]), immunohistochemistry staining of joint sections (protein expression of Type II collagen, MMP13, and ADAMTS5), and micro-CT of subchondral bone (BV/TV and Tb.Pf) and osteophyte formation. We also examined the mechanism of action of MSC-extracellular vesicles by immunofluorescent staining of the synovium membrane (number of M1 and M2 macrophage cells) and by analyzing their influence on the expression of inflammatory factors (relative mRNA level and protein expression of IL-1ß, IL-6, and TNF-α) in lipopolysaccharide-induced macrophages. RESULTS: Infrapatellar fat pads obtained from patients undergoing TKA provide a suitable cell source for producing MSC-extracellular vesicles, and anion exchange chromatography is applicable for isolating MSC-extracellular vesicles. Cultured MSCs were spindle-shaped, proliferative at Passage 4 (doubling time of 42.75 ± 1.35 hours), had trilineage differentiation capacity, positively expressed stem cell surface markers (CD44, CD73, CD90, and CD105), and negatively expressed hematopoietic markers (CD34 and CD45). MSC-extracellular vesicles purified by anion exchange chromatography had diameters between 30 and 200 nm and a typical cup shape, positively expressed exosomal marker proteins (CD63, CD81, CD9, Alix, and TSG101), and carried plentiful miRNA. Compared with the ACLT group, the ACLT + extracellular vesicle group showed alleviation of pain 8 weeks after the injection, indicated by increased area (0.67 ± 0.15 cm2 versus 0.20 ± 0.03 cm2, -0.05 [95% confidence interval -0.09 to -0.01]; p = 0.01) and stride length (5.08 ± 0.53 cm versus 6.20 ± 0.33 cm, -1.12 [95% CI -1.86 to -0.37]; p = 0.005) and decreased propulsion time (0.22 ± 0.06 s versus 0.11 ± 0.04 s, 0.11 [95% CI 0.03 to 0.19]; p = 0.007) in the affected hindlimb. Compared with the ACLT group, the ACLT + extracellular vesicles group had lower Osteoarthritis Research Society International scores after 4 weeks (8.80 ± 2.28 versus 4.80 ± 2.28, 4.00 [95% CI 0.68 to 7.32]; p = 0.02) and 8 weeks (16.00 ± 3.16 versus 9.60 ± 2.51, 6.40 [95% CI 2.14 to 10.66]; p = 0.005). In the ACLT + extracellular vesicles group, there was more-severe OA at 8 weeks than at 4 weeks (9.60 ± 2.51 versus 4.80 ± 2.28, 4.80 [95% CI 0.82 to 8.78]; p = 0.02), indicating MSC-extracellular vesicles could only delay but not fully suppress OA progression. Compared with the ACLT group, the injection of MSC-extracellular vesicles increased Type II collagen expression, decreased MMP13 expression, and decreased ADAMTS5 expression at 4 and 8 weeks. Compared with the ACLT group, MSC-extracellular vesicle injection alleviated osteophyte formation at 8 weeks and inhibited bone loss at 4 weeks. MSC-extracellular vesicle injection suppressed inflammation; the ACLT + extracellular vesicles group had fewer M1 type macrophages than the ACLT group. Compared with lipopolysaccharide-treated cells, MSC-extracellular vesicles reduced mRNA expression and inhibited IL-1ß, IL-6, and TNF-α in cells. CONCLUSION: Using an OA mouse model, we found that infrapatellar fat pad-derived MSC-extracellular vesicles could delay OA progression via alleviating pain and suppressing cartilage degeneration, osteophyte formation, and synovial inflammation. The autologous origin of extracellular vesicles and scalable purification method make our strategy potentially viable for clinical translation. CLINICAL RELEVANCE: Infrapatellar fat pad-derived MSC-extracellular vesicles isolated by anion exchange chromatography can suppress OA progression in a mouse model. Further studies with large-animal models, larger animal groups, and subsequent clinical trials are necessary to confirm the feasibility of this technique for clinical OA treatment.

2.
Am J Sports Med ; 51(7): 1752-1764, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37103335

RESUMO

BACKGROUND: Mechanical loading and alendronate (ALN) can be used as noninvasive physical therapy methods for osteoarthritis (OA). However, the timing and efficacy for treatments are unknown. PURPOSE: To determine whether the timing of mechanical loading and ALN influences the pathobiological changes of OA. STUDY DESIGN: Controlled laboratory study. METHODS: Mice with OA induced by anterior cruciate ligament transection were subjected to early (1-3 weeks) or late (5-7 weeks) axial compressive dynamic load or intraperitoneal injection of ALN. Changes in gait were analyzed using gait analysis system, pathobiological changes in subchondral bone, cartilage, osteophyte, and synovitis were assessed using micro-computed tomography, tartrate-resistant acid phosphatase staining, pathologic section staining, and immunohistochemistry at 1, 2, 4, and 8 weeks. RESULTS: At 1, 2, and 4 weeks, the OA limb had lower mean footprint pressure intensity, lower bone volume per tissue volume (BV/TV) in the subchondral bone, and more osteoclasts. At 4 weeks, the early loading, ALN, and load + ALN treatments induced less cartilage destruction, with a corresponding reduction in Osteoarthritis Research Society International score and increased hyaline cartilage thickness. The treatments also resulted in fewer osteoclasts and higher BV/TV and bone mineral density of subchondral bone and suppressed inflammation and interleukin 1ß- and tumor necrosis factor α-positive cells in synovium. At 8 weeks, early loading or load + ALN improved the mean footprint pressure intensity and knee flexion. At 8 weeks, early load + ALN had a synergistic effect on protecting hyaline cartilage and proteoglycans. Footprint pressure intensity and cartilage destruction were worse in late loading limbs, and no differences in BV/TV, bone mineral density, osteophyte formation, and synovium inflammation were found between the late load, ALN, and load + ALN groups and the anterior cruciate ligament transection group. CONCLUSION: Dynamic axial mechanical loading or ALN in the early stages of knee trauma protected against OA by suppressing subchondral bone remodeling. However, late loading promoted cartilage degeneration in advanced OA, indicating that reduced loading should be performed in the late stages of OA to avoid the acceleration of OA. CLINICAL RELEVANCE: Early low-level functional exercise or antiosteoporotic drugs could clearly slow or prevent the progression of early OA. For patients with mild to severe OA, loading reduction via brace protection or maintenance of joint stability via early ligament reconstruction surgery may ameliorate OA exacerbation.


Assuntos
Cartilagem Articular , Osteoartrite , Osteófito , Camundongos , Animais , Osteófito/patologia , Microtomografia por Raio-X , Cartilagem Articular/patologia , Osteoartrite/patologia , Alendronato/farmacologia , Alendronato/uso terapêutico , Remodelação Óssea , Inflamação/patologia , Modelos Animais de Doenças
3.
Se Pu ; 41(1): 47-57, 2023 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-36633076

RESUMO

Premature ovarian failure (POF) is a prevalent gynecological disease. In traditional Chinese medicine, it is believed that POF is directly related to abnormal function of the liver and kidneys. As such, regulation of the liver metabolism through the use of medicinal and edible substances is important for the treatment of POF. Pine pollen, a traditional Chinese medicinal and edible pollen variety, contains various active substances, such as sex hormones and phytohormones, which have been used to inhibit inflammation, regulate the immune system, and protect reproductive tissues. Using ultra-high performance liquid chromatography-triple quadrupole mass spectrometry (UHPLC-MS/MS), this study examined the influence of pine pollen on the liver metabolome of cyclophosphamide-induced POF model Sprague Dawley (SD) rats. The variations in the metabolites present in the liver tissue of control SD rats, model SD rats, and SD rats treated with various doses of pine pollen or estrogen were analyzed using principal component analysis (PCA) in combination with orthogonal partial least squares discriminant analysis (OPLS-DA) and other multivariate statistical methods to reveal the mechanism of pine pollen intervention in the livers of POF SD rats. An animal model experiment was conducted using six groups of ten-week-old rats. Cyclophosphamide was administered intraperitoneally to the model group and four intervention groups at a dosage of 60 mg/kg for 1 d followed by a dosage of 10 mg/kg for 14 d. Within the following four weeks, each of the four intervention groups received the intragastric administration of 0.1, 0.5, or 1.5 g/kg bodyweight (BW) of pine pollen, or 0.075 g/kg BW of conjugated estrogens (positive control). Equal quantities of normal saline were administered to the control and cyclophosphamide-treated model groups. Subsequently, the rat livers were subject to pseudotargeted metabolomics, and a total of 687 liver metabolites were discovered using both positive and negative ions. The metabolites differing in content were screened using the t-test (p<0.05) and the fold change (FC>2 or <0.5) in univariate analysis, and the variable importance in projection (VIP>1) in multivariate analysis. It was found that in comparison with the control group, the contents of 32 metabolites significantly increased, while those of 28 metabolites significantly decreased in the model group. The majority of these metabolites were involved α-linolenic acid metabolism, vitamin B6 metabolism, and purine metabolism, along with the lysine degradation and glycolysis/gluconeogenesis metabolic pathways. Compared with the cyclophosphamide-induced model group, the estrogen group exhibited increased levels of 47 metabolites and decreased levels of 29 metabolites, wherein 34 metabolites were restored to the levels found in the control group. These metabolites mainly involved the vitamin B6, lysine, glycolysis/gluconeogenesis, arginine and proline, and cysteine and methionine metabolic pathways. In the low/medium/high-dose pine pollen groups, the contents of 34/32/34 metabolites increased, the contents of 30/37/24 metabolites decreased, and the contents of 47/38/34 metabolites were restored to the levels found in the control group, respectively. These metabolites were mainly involved in vitamin B6 metabolism, purine metabolism, and the glycolysis/gluconeogenesis metabolic pathway. These results therefore indicate that the restoring effect of pine pollen is equivalent or superior to that of conjugated estrogen. Additionally, based on the known metabolic pathways, it appears that when estrogen interferes with the liver metabolism, the key metabolic pathways that become affected are the arginine and proline metabolism and cysteine and methionine metabolism pathways. In contrast, pine pollen intervention affected existing metabolic pathways that were known to be disordered by cyclophosphamide. The use of pine pollen may therefore restore the levels of many metabolites. It should be noted that 23 overlaps exist between the estrogen-restored metabolites and the pine pollen-restored metabolites, including a variety of acylcarnitines, such as ACar 10∶0. As a result, pine pollen extract may be able to normalize the liver metabolic abnormalities induced by POF. This study therefore establishes a theoretical reference for the development of functional applications for pine pollen and for the treatment of POF.


Assuntos
Medicamentos de Ervas Chinesas , Insuficiência Ovariana Primária , Humanos , Feminino , Ratos , Animais , Ratos Sprague-Dawley , Espectrometria de Massas em Tandem , Insuficiência Ovariana Primária/tratamento farmacológico , Cisteína , Lisina , Medicamentos de Ervas Chinesas/química , Metabolômica , Cromatografia Líquida de Alta Pressão , Fígado/metabolismo , Estrogênios , Ciclofosfamida , Purinas , Biomarcadores/urina
4.
J Transl Med ; 20(1): 515, 2022 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-36348497

RESUMO

Osteoarthritis (OA) is a chronic degenerative joint disease characterized by the destruction of the articular cartilage, sclerosis of the subchondral bone, and joint dysfunction. Its pathogenesis is attributed to direct damage and mechanical destruction of joint tissues. Mesenchymal stem cells (MSCs), suggested as a potential strategy for the treatment of OA, have shown therapeutic effects on OA. However, the specific fate of MSCs after intraarticular injection, including cell attachment, proliferation, differentiation, and death, is still unclear, and there is no guarantee that stem cells can be retained in the cartilage tissue to enact repair. Direct homing of MSCs is an important determinant of the efficacy of MSC-based cartilage repair. Recent studies have revealed that the unique homing capacity of MSCs and targeted modification can improve their ability to promote tissue regeneration. Here, we comprehensively review the homing effect of stem cells in joints and highlight progress toward the targeted modification of MSCs. In the future, developments of this targeting system that accelerate tissue regeneration will benefit targeted tissue repair.


Assuntos
Cartilagem Articular , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Osteoartrite , Humanos , Cartilagem Articular/patologia , Osteoartrite/terapia , Osteoartrite/patologia , Diferenciação Celular
5.
Eur J Med Res ; 25(1): 66, 2020 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-33287905

RESUMO

BACKGROUND: Although distal radius fractures (DRFs) are clinically common, intra-articular DRFs accompanied by dorsally displaced free fragments are much less so. At present, it is very difficult to fix and stabilize the intra-articular distal radius fractures accompanying dorsally displaced free fragments with a plate. Our aim was to investigate the clinical effect of DRFs with distally displaced dorsal free mass treated with distal volaris radius (DVR) combined with turning of the radius via the distal palmar approach. METHODS: From 2015 to 2019, 25 patients with intra-articular distal radius fractures associated with dorsally displaced free fragments were selected and treated with distal volaris radius (DVR) combined with turning of the radius via the distal palmar approach. This study involved 14 males and 11 females, with an average age of 34.5 years (ranging from 21 to 50 years). The mean follow-up period was 16.5 months (ranging from 12 to 22 months). The dorsal displacement of the free fragments was analyzed by X-ray and three-dimensional computed tomography, allowing characterization of postoperative recovery effects by radial height, volar tilt and radial inclination. For the follow-up, we evaluated effects of the surgery by analyzing range of motion (ROM); Modified Mayo Wrist Score (MMWS); and Disabilities of Arm, Shoulder and Hand (DASH) score. Postoperative wound recovery and complications were also monitored to evaluate the clinical therapeutic effects of the surgical procedures. RESULTS: X-ray showed that all patients showed reduced fractures, well-healed wounds and recovered function with no obvious complications. Based on the follow-up, patients had a mean radial height of 10.5 mm (ranging from 8.1 to 12.6 mm), mean MMWS of 78.8° (ranging from 61° to 90°), mean DASH score of 16.25 (ranging from 11 to 21), mean ROM for volar flexion of 76.5° (ranging from 62° to 81°), mean ROM for dorsiflexion of 77.1° (ranging from 59 to 83) and mean VAS score of 1.4 (ranging from 1 to 3). CONCLUSION: Treatment of the intra-articular distal radius fractures accompanying dorsally displaced free fragments with turning of the radius and the DVR plate system via the distal palmar approach is effective and has no obvious complications.


Assuntos
Fixação de Fratura/métodos , Fraturas do Rádio/cirurgia , Adulto , Placas Ósseas , Feminino , Fixação de Fratura/efeitos adversos , Humanos , Masculino , Pessoa de Meia-Idade , Duração da Cirurgia , Fraturas do Rádio/diagnóstico por imagem , Amplitude de Movimento Articular , Tomografia Computadorizada por Raios X , Resultado do Tratamento , Adulto Jovem
6.
J Orthop Surg Res ; 15(1): 357, 2020 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-32847603

RESUMO

BACKGROUND: Closed reduction and locked intramedullary nailing has become a common surgical method in the treatment of femoral shaft fractures. Overlap and rotation displacements can usually be corrected through the use of an orthopedic traction table. However, lateral displacement and angulation persist. METHODS: In this paper, we describe a joystick that can be used in the closed reduction of a fracture. It can correct lateral displacement and angulation, and has the advantage of multi-direction reduction. The device described in this paper includes two parallel horizontal joysticks, one vertical main joystick and four assistant rods. Moreover, there are many specific spacing holes in the two parallel horizontal joysticks and a groove structure in the vertical main joystick. When the main "H" joystick is pressed, it can adjust lateral displacements and angulation because of the lever principle. The distance between parallel horizontal joysticks and assistant rods can be adjusted to the fracture position and body mass index of different patients. RESULTS: The study participants consisted of 11 males and 5 females with a mean age of 31.0 years. All participants had good closed reduction and achieved bony union without any complications such as infection, nerve injury, non-union, malunion, and limb length discrepancy. By using an "H" joystick, closed femoral shaft fracture reduction and locked intramedullary nailing becomes simpler and faster. CONCLUSION: Based on the use of this instrument, we can easily and conveniently obtain the correct reduction situation, which leads to better surgical results. This device can be applied in the reduction of clinical femoral fractures and gradually extended to the reduction of other fractures.


Assuntos
Pinos Ortopédicos , Redução Fechada/métodos , Fraturas do Fêmur/cirurgia , Fixação Intramedular de Fraturas/métodos , Fraturas Cominutivas/cirurgia , Desenho de Prótese , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Tração/métodos , Resultado do Tratamento , Adulto Jovem
7.
J Cell Mol Med ; 24(2): 1945-1957, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31845522

RESUMO

The purpose of this study was to measure the heterogeneity in human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) and human synovial fluid-derived mesenchymal stem cells (hSF-MSCs) by single-cell RNA-sequencing (scRNA-seq). Using Chromium™ technology, scRNA-seq was performed on hUC-MSCs and hSF-MSCs from samples that passed our quality control checks. In order to identify subgroups and activated pathways, several bioinformatics tools were used to analyse the transcriptomic profiles, including clustering, principle components analysis (PCA), t-Distributed Stochastic Neighbor Embedding (t-SNE), gene set enrichment analysis, as well as Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. scRNA-seq was performed on the two sample sets. In total, there were 104 761 163 reads for the hUC-MSCs and 6 577 715 for the hSF-MSCs, with >60% mapping rate. Based on PCA and t-SNE analyses, we identified 11 subsets within hUC-MSCs and seven subsets within hSF-MSCs. Gene set enrichment analysis determined that there were 533, 57, 32, 44, 10, 319, 731, 1037, 90, 25 and 230 differentially expressed genes (DEGs) in the 11 subsets of hUC-MSCs and 204, 577, 30, 577, 16, 57 and 35 DEGs in the seven subsets of hSF-MSCs. scRNA-seq was not only able to identify subpopulations of hUC-MSCs and hSF-MSCs within the sample sets, but also provided a digital transcript count of hUC-MSCs and hSF-MSCs within a single patient. scRNA-seq analysis may elucidate some of the biological characteristics of MSCs and allow for a better understanding of the multi-directional differentiation, immunomodulatory properties and tissue repair capabilities of MSCs.


Assuntos
Perfilação da Expressão Gênica , Células-Tronco Mesenquimais/metabolismo , Análise de Célula Única , Líquido Sinovial/citologia , Transcrição Gênica , Cordão Umbilical/citologia , Regulação da Expressão Gênica , Ontologia Genética , Humanos , Análise de Componente Principal
8.
Am J Transl Res ; 11(8): 4967-4975, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31497213

RESUMO

Distal tibiofibular syndesmosis injury (DTS) occurs frequently with ankle sprains. Current treatments pose several limitations including causing soft tissue irritation, bringing damage to fixation secondary to weight-bearing, and requiring follow-up surgeries. Here, we investigated the clinical effects of a new technique, titanium cable isotonic annular fixation, for the treatment of DTS injury. From January 2015 to June 2017, 36 patients with ankle fractures and DTS injuries had their fractures repaired with the titanium cable isotonic annular fixation system. Recovery was scored by the AOFAS ankle function score system. We also assessed the differences in ankle motion between healthy and operative joints, and recorded the complications. All patients recovered from surgery without any serious complications. We followed all the cases for 18-25 months with an average follow-up of 21.26±3.23 months. 12 months after the operation, X-ray images showed that the titanium cables were fixed in the correct position without any fracture or loosening. Additionally, no degeneration or traumatic arthritis was observed in the ankle joint. There were no incision or bone mineral density changes between the titanium fix and tibiofibular bones. Nearly all patients recovered well except for three who developed inflammation and infection. However, these three patients recovered following 1 week of intravenous antibiotics and local radiofrequency physiotherapy. According to the AOFAS scoring system, all patients achieved satisfactory recovery 12 months post operation. Our titanium cable isotonic annular fixation system has both the advantages of elastic and rigid fixations. It can restore isotonic strength of the distal tibiofibular joint, and its biomechanical performance approaches normal physiological function. After the operation, patients tolerated weight-bearing exercise and recovered joint mobility. Finally, there is no need to remove the distal tibiofibular implant after 12 weeks. Overall, it is a highly effective surgical method to treat DTS injury.

9.
Am J Transl Res ; 11(4): 2056-2069, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31105817

RESUMO

Synovial fluid-derived mesenchymal stem cells (SF-MSCs) represent a superior source of stem cells and have great potential for autologous transplantation for cartilage regeneration. Transforming growth factor-ß3 (TGF-ß3) has been demonstrated to stimulate the chondrogenic differentiation of MSCs. Recently, the small molecule kartogenin (KGN) was reported to enhance chondrogenic differentiation and cartilage regeneration. The effects of KGN and TGF-ß3 on the in vitro chondrogenic differentiation of rabbit SF-MSCs were studied. The monolayer and pellet cultures of rabbit SF-MSCs were stimulated in vitro using either KGN or TGF-ß3 alone or in combination for 21 days. The in vivo therapeutic effects of KGN combined with TGF-ß3 were studied using an intra-articular delivery of autologous rabbit SF-MSCs to cartilage defects in a rabbit model. Compared to a single treatment, the in vitro results demonstrated that the combination of KGN and TGF-ß3 resulted in significantly increased protein expression levels of type II collagen (COL II) and SRY-box 9 (SOX9) and decreased the expression level of type X collagen (COL X). Compared with the regenerated cartilage in the single treatment groups, the intra-articular injection of rabbit SF-MSCs mixed with TGF-ß3 and KGN exhibited substantial amounts of regenerated cartilage in the defective areas in the medial femoral condyles. We noted that the thicker, hyaline-like cartilaginous tissue contained abundant levels of extracellular matrix, which is characteristic of cartilage. This study demonstrated that TGF-ß3 and KGN exhibit synergistic effects for the promotion of the chondrogenesis of rabbit SF-MSCs and can effectively repair cartilage defects through the regeneration of hyaline cartilage.

10.
J Transl Med ; 16(1): 123, 2018 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-29739472

RESUMO

BACKGROUND: The role of rabbit synovial fluid-derived mesenchymal stem cells (rbSF-MSCs) in cartilage defect repair remains undefined. This work evaluates the in vivo effects of rbSF-MSCs to repair knee articular cartilage defects in a rabbit model. METHODS: Cartilage defects were made in the patellar grooves of New Zealand white rabbits. The rbSF-MSCs were generated from the knee cavity by arthrocentesis. Passage 5 rbSF-MSCs were assayed by flow cytometry. The multipotency of rbSF-MSCs was confirmed after 3 weeks induction in vitro and the autologous rbSF-MSCs and predifferentiated rbSF-MSCs were injected into the synovial cavity. The intra-articular injection was performed once a week for 4 weeks. The animals were euthanized and the articular surfaces were subjected to macroscopic and histological evaluations at 8 and 12 weeks after the first intra-articular injection. RESULTS: Hyaline-like cartilage was detected in the defects treated with rbSF-MSCs, while fibrocartilage tissue formed in the defects treated with chondrocytes induced from rbSF-MSCs. CONCLUSIONS: Our results suggest that autologous undifferentiated rbSF-MSCs are favorable to articular cartilage regeneration in treating cartilage defects.


Assuntos
Cartilagem Articular/patologia , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , Líquido Sinovial/citologia , Cicatrização , Animais , Diferenciação Celular , Linhagem da Célula , Forma Celular , Colágeno/metabolismo , Epitopos/metabolismo , Injeções Intra-Articulares , Coelhos , Transplante Autólogo
11.
Cell Biol Int ; 42(3): 262-271, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29068101

RESUMO

Mesenchymal stem cells (MSCs) are the primary source of cells used for cell-based therapy in tissue engineering. MSCs are found in synovial fluid, a source that could be conveniently used for cartilage tissue engineering. However, the purification and characterization of SF-MSCs has been poorly documented in the literature. Here, we outline an easy-to-perform approach for the isolation and culture of MSCs derived from human synovial fluid (hSF-MSCs). We have successfully purified hSF-MSCs using magnetic-activated cell sorting (MACS) using the MSC surface marker, CD90. Purified SF-MSCs demonstrate significant renewal capacity following several passages in culture. Furthermore, we demonstrated that MACS-sorted CD90+ cells could differentiated into osteoblasts, adipocytes, and chondrocytes in vitro. In addition, we show that these cells can generate cartilage tissue in micromass culture as well. This study demonstrates that MACS is a useful tool that can be used for the purification of hSF-MSCs from synovial fluid. The proliferation properties and ability to differentiate into chondrocytes make these hSF-MSCs a promising source of stem cells for applications in cartilage repair.


Assuntos
Separação Celular/métodos , Células-Tronco Mesenquimais/citologia , Adipócitos/citologia , Cartilagem/citologia , Técnicas de Cultura de Células , Diferenciação Celular , Células Cultivadas , Condrócitos/citologia , Humanos , Células-Tronco Mesenquimais/metabolismo , Osteoblastos/metabolismo , Células-Tronco/metabolismo , Líquido Sinovial/citologia , Antígenos Thy-1 , Engenharia Tecidual
12.
Cell Death Discov ; 3: 17037, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29263848

RESUMO

Cytolytic peptides are an emerging class of promising cancer therapeutics shown to overcome drug resistance. They eliminate cancer cells via disruption of the phospholipid bilayer of cell membranes, a mechanism that differentiates it from traditional treatments. However, applications of lytic peptides via systematic administration are hampered by nonspecific toxicity. Here, we describe activatable, masked lytic peptides that are conjugated with anionic peptides via a cleavable linker sensitive to matrix metalloproteinases (Ac-w-ßA-e8-XPLG*LAG-klUklUkklUklUk-NH2; lower case letters in the sequences represent D-amino-acids, U=Aib, α-aminoisobutyric acid, *cleavage site). The peptides were activated upon being introduced into the triple negative breast cancer cell line MDA-MB-231, which overexpresses secreted matrix metalloproteinases, to selectively cleave the peptide linker. Our results indicate that the activatable design could be applied to improve the targeting ability of lytic peptides.

13.
J Med Chem ; 60(21): 8731-8740, 2017 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-29045135

RESUMO

Direct inhibition of the protein-protein interaction of ERα and its endogenous coactivators with a cell permeable stabilized peptide may offer a novel, promising strategy for combating ERα positive breast cancers. Here, we report the co-crystal structure of a helical peptide stabilized by a N-terminal unnatural cross-linked aspartic acid (TD) in complex with the ERα ligand binding domain (LBD). We designed a series of peptides and peptide 6 that showed direct and high-affinity binding to ERα with selective antiproliferative activity in ERα positive breast cancer cells. The co-crystal structure of the TD-stabilized peptide 6 in complex with ERα LBD further demonstrates that it forms an α helical conformation and directly binds at the coactivator binding site of ERα. Further studies showed that peptide 6W could potently inhibit cellular ERα's transcriptional activity. This approach demonstrates the potential of TD stabilized peptides to modulate various intracellular protein-protein interactions involved in a range of disorders.


Assuntos
Desenho de Fármacos , Receptor alfa de Estrogênio/química , Ácido Isoaspártico/química , Peptídeos/química , Sítios de Ligação , Neoplasias da Mama/tratamento farmacológico , Cristalografia por Raios X , Humanos , Ácido Isoaspártico/farmacologia , Peptídeos/farmacologia , Ligação Proteica , Estrutura Secundária de Proteína , Transcrição Gênica/efeitos dos fármacos
14.
Mater Sci Eng C Mater Biol Appl ; 70(Pt 2): 969-975, 2017 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-27772728

RESUMO

Inorganic/organic hybrid scaffolds have great potential for tissue engineering applications due to controllable mechanical properties and tailorable biodegradation. Here, silica/chitosan hybrid scaffolds were fabricated through the sol-gel method with a freeze drying process. 3-Glycidoxypropyl trimethoxysilane (GPTMS) and tetraethylorthosilicate (TEOS) were used as the covalent inorganic/organic coupling agent and the separate inorganic source, respectively. Hybrid scaffolds with various inorganic/organic weight ratios (I/Os) and molar ratios of chitosan and GPTMS (GCs) were examined and compared in this study. FTIR showed that higher GPTMS content resulted in the increased covalent cross-linking of the chitosan and the silica network in hybrids. Compression testing indicated that increasing the GPTMS content greatly improved the compressive strength of scaffold. LIVE/DEAD assay showed that enhanced cytocompatibility was obtained as the silica content increased. Therefore, the results confirmed that the two parameters I/O and GC can largely influence the scaffold performance, which can be used to tailor the hybrid properties.


Assuntos
Quitosana/química , Compostos Orgânicos/química , Dióxido de Silício/química , Alicerces Teciduais/química , Absorção Fisico-Química , Morte Celular , Linhagem Celular Tumoral , Sobrevivência Celular , Força Compressiva , Humanos , Porosidade , Silanos/química , Silício/análise , Espectroscopia de Infravermelho com Transformada de Fourier , Estresse Mecânico
15.
Angew Chem Int Ed Engl ; 55(39): 12088-93, 2016 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-27572954

RESUMO

Described is a facile helix-nucleating template based on a tethered aspartic acid at the N-terminus [terminal aspartic acid (TD)]. The nucleating effect of the template is subtly influenced by the substituent at the end of the side-chain-end tether as indicated by circular dichroism, nuclear magnetic resonance, and molecular dynamics simulations. Unlike most nucleating strategies, the N-terminal amine is preserved, thus enabling further modification. Peptidomimetic estrogen receptor modulators (PERMs) constructed using this strategy show improved therapeutic properties. The current strategy can be regarded as a good complement to existing helix-stabilizing methods.

16.
Arthritis Res Ther ; 18(1): 105, 2016 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-27165343

RESUMO

BACKGROUND: Estrogen deficiency is closely related to the development of menopausal arthritis. Estrogen replacement therapy (ERT) shows a protective effect against the osteoarthritis. However, the underlying mechanism of this protective effect is unknown. This study aimed to determine the role of miR-140 in the estrogen-dependent regulation of MMP-13 in human chondrocytes. METHODS: Primary human articular chondrocytes were obtained from female OA patients undergoing knee replacement surgery. Normal articular chondrocytes were isolated from the knee joints of female donors after trauma and treated with interleukin-1 beta (IL-1ß). Gene expression levels of miR-140, MMP-13, and ADAMTS-5 were detected by quantitative real-time PCR (qRT-PCR). miR-140 levels were upregulated or downregulated by transfecting cells with a miRNA mimic and inhibitor, respectively, prior to treatment with IL-1ß. MMP-13 expression was then evaluated by Western blotting and immunofluorescence. Luciferase reporter assays were performed to verify the interaction between miR-140 and ER. RESULTS: 17-ß-estradiol (E2) suppressed MMP-13 expression in human articular chondrocytes. miR-140 expression was upregulated after estrogen treatment. Knockdown of miR-140 expression abolished the inhibitory effect of estrogen on MMP-13. In addition, the estrogen/ER/miR-140 pathway showed an inhibitory effect on IL-1ß-induced cartilage matrix degradation. CONCLUSIONS: This study suggests that estrogen acts via ER and miR-140 to inhibit the catabolic activity of proteases within the chondrocyte extracellular matrix. These findings provide new insight into the mechanism of menopausal arthritis and indicate that the ER/miR-140 signaling pathway may be a potential target for therapeutic interventions for menopausal arthritis.


Assuntos
Condrócitos/metabolismo , Estradiol/farmacologia , Metaloproteinase 13 da Matriz/biossíntese , MicroRNAs/metabolismo , Osteoartrite do Joelho/metabolismo , Western Blotting , Cartilagem Articular/efeitos dos fármacos , Cartilagem Articular/metabolismo , Células Cultivadas , Condrócitos/efeitos dos fármacos , Receptor alfa de Estrogênio/metabolismo , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/metabolismo , Feminino , Imunofluorescência , Perfilação da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Interleucina-1beta/metabolismo , Osteoartrite do Joelho/patologia , Reação em Cadeia da Polimerase em Tempo Real , Transcriptoma
17.
Angew Chem Int Ed Engl ; 55(28): 8013-7, 2016 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-27167181

RESUMO

The addition of a precisely positioned chiral center in the tether of a constrained peptide is reported, yielding two separable peptide diastereomers with significantly different helicity, as supported by circular dichroism (CD) and NMR spectroscopy. Single crystal X-ray diffraction analysis suggests that the absolute configuration of the in-tether chiral center in helical form is R, which is in agreement with theoretical simulations. The relationship between the secondary structure of the short peptides and their biochemical/biophysical properties remains elusive, largely because of the lack of proper controls. The present strategy provides the only method for investigating the influence of solely conformational differences upon the biochemical/biophysical properties of peptides. The significant differences in permeability and target binding affinity between the peptide diastereomers demonstrate the importance of helical conformation.


Assuntos
Peptídeos/química , Peptídeos/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Permeabilidade da Membrana Celular , Dicroísmo Circular , Cristalografia por Raios X , Receptor alfa de Estrogênio/metabolismo , Células HEK293 , Humanos , Ligantes , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Peptídeos/farmacologia , Permeabilidade , Estrutura Secundária de Proteína , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Estereoisomerismo
18.
Chem Sci ; 7(5): 3325-3330, 2016 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-29997825

RESUMO

Peptide stapling emerged as a versatile strategy to recapitulate the bioactive helical conformation of unstructured short peptides in water to improve their therapeutic properties in targeting intracellular "undruggable" targets. Here, we describe the development of photo-induced intramolecular thiol-yne macrocyclization for rapid access to short stapled peptides with enhanced biophysical properties. This new peptide stapling technique provides rapid access to conformationally constrained helices with satisfying functional group tolerance. Notably, the vinyl sulfide linkage shows distinct lipophilicity with reduced membrane toxicity compared to the corresponding all-hydrocarbon analogue. As a proof of principle, we constructed stabilized helices modulating intracellular estrogen receptor (ER)-coactivator interactions with a nanomolar binding affinity, enhanced serum stability, a diffuse cellular distribution and selective cytotoxicity towards ER-positive MCF-7 cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA