Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Am J Chin Med ; 50(1): 313-332, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34963428

RESUMO

18[Formula: see text]-glycyrrhetinic acid (GA) is the active ingredient of the traditional Chinese medicinal herb Glycyrrhizae radix et rhizoma. We previously demonstrated that GA inhibited tumor growth in hepatocellular carcinoma (HCC). However, the effect of GA on transforming growth factor-[Formula: see text] (TGF-[Formula: see text]-induced epithelial-mesenchymal transition (EMT) and metastasis were still unclear. In this study, in vitro transwell assays and immunofluorescence (IF) demonstrated that GA inhibited TGF-[Formula: see text]-induced migration, invasion and EMT of HCC cells. However, it had little effect on the inhibition of proliferation by TGF-[Formula: see text]. Moreover, we confirmed that GA suppressed the metastasis of HCC cells in vivousing an ectopic lung metastasis model. Furthermore, we found that GA inhibited TGF-[Formula: see text]-induced EMT mainly by reducing the phosphorylation of signal transducer and activator of transcription 3 (STAT3), which played an essential role in TGF-[Formula: see text]-induced EMT and cell mobility. Mechanistically, GA inhibited the phosphorylation of STAT3 by increasing the expression of Src homology 2 domain-containing protein tyrosine phosphatases 1 and 2 (SHP1 and SHP2). Therefore, we concluded that GA inhibited TGF-[Formula: see text]-induced EMT and metastasis via the SHP1&SHP2/STAT3/Snail pathway. Our data provide an attractive therapeutic target for future multimodal management of HCC.


Assuntos
Carcinoma Hepatocelular , Ácido Glicirretínico , Neoplasias Hepáticas , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Transição Epitelial-Mesenquimal , Ácido Glicirretínico/farmacologia , Humanos , Neoplasias Hepáticas/patologia , Invasividade Neoplásica , Fator de Transcrição STAT3/metabolismo , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/metabolismo
2.
Clin Transl Med ; 11(11): e635, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34841685

RESUMO

BACKGROUND: Aberrant TAK1 (transforming growth factor ß-activated kinase 1) activity is known to be involved in a variety of malignancies, but the regulatory mechanisms of TAK1 remain poorly understood. GRAMD4 (glucosyltransferase Rab-like GTPase activator and myotubularin domain containing 4) is a newly discovered p53-independent proapoptotic protein with an unclear role in HCC (hepatocellular carcinoma). RESULTS: In this research, we found that GRAMD4 expression was lower in HCC samples, and its downregulation predicted worse prognosis for patients after surgical resection. Functionally, GRAMD4 inhibited HCC migration, invasion and metastasis. Mechanistically, GRAMD4 interacted with TAK1 to promote its protein degradation, thus, resulting in the inactivation of MAPK (Mitogen-activated protein kinase) and NF-κB pathways. Furthermore, GRAMD4 was proved to recruit ITCH (itchy E3 ubiquitin protein ligase) to promote the ubiquitination of TAK1. Moreover, high expression of TAK1 was correlated with low expression of GRAMD4 in HCC patients. CONCLUSIONS: GRAMD4 inhibits the migration and metastasis of HCC, mainly by recruiting ITCH to promote the degradation of TAK1, which leads to the inactivation of MAPK and NF-κB signalling pathways.


Assuntos
Carcinoma Hepatocelular/tratamento farmacológico , MAP Quinase Quinase Quinases/antagonistas & inibidores , Proteínas Mitocondriais/farmacologia , Metástase Neoplásica/tratamento farmacológico , Carcinoma Hepatocelular/fisiopatologia , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/fisiopatologia , MAP Quinase Quinase Quinases/uso terapêutico , Proteínas Mitocondriais/uso terapêutico , Metástase Neoplásica/prevenção & controle , Proteínas Repressoras/farmacologia , Proteínas Repressoras/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Ubiquitina-Proteína Ligases/farmacologia , Ubiquitina-Proteína Ligases/uso terapêutico
3.
Am J Cancer Res ; 10(2): 662-673, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32195034

RESUMO

Type-2 11ß-hydroxysteroid dehydrogenase (HSD11B2) is a key enzyme which converts cortisol to inactive cortisone and is involved in tumor progression and metastasis. Several studies have shown that the promotion of tumor progression and metastasis by HSD11B2 resulted from its physiological function of inactivating glucocorticoids (GC). However, the underlying molecular mechanisms by which HSD11B2 drives metastasis, in addition to inactivating GC, are still unclear. In our study, a series of in vivo and in vitro assays were performed to determine the function of HSD11B2 and the possible mechanisms underlying its role in CRC metastasis. mRNA transcriptome array analysis was used to identify the possible downstream targets of HSD11B2. We found that the ectopic expression of HSD11B2 significantly promoted the migration, invasion and metastasis of colorectal cancer (CRC) cells both in vitro and in vivo, while it did not affect their proliferation in either case. Mechanically, HSD11B2 appeared to enhance cell migration and invasion by upregulating the expression of fibroblast growth factor binding protein 1 (Fgfbp1), and subsequently increasing the phosphorylation of AKT. Furthermore, AKT activation partially mediated the increased expression of Fgfbp1 induced by HSD11B2. HSD11B2 expression was positively correlated with Fgfbp1 and p-AKT expression in clinical samples of CRC. Additionally, knockdown of either Fgfbp1 or AKT impaired the migration and invasion capability of CRC cells with HSD11B2 overexpression, suggesting that HSD11B2 promoted the migration, invasion and metastasis of CRC cells via the Fgfbp1-AKT pathway. Therefore, targeting HSD11B2 or Fgfbp1 may be a novel treatment strategy for inhibiting the metastasis of CRC.

4.
Mol Oncol ; 13(4): 792-810, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30556279

RESUMO

Fam134b (JK-1, RETREG1) was first identified as an oncogene in esophageal squamous cell carcinoma. However, the roles of FAM134B during tumorigenesis of hepatocellular carcinoma (HCC) and in epithelial-to-mesenchymal transition (EMT) were previously unclear. In this study, we investigated the function of FAM134B in HCC and the related tumorigenesis mechanisms, as well as how FAM134B induces EMT. We detected the expression of FAM134B in a normal hepatic cell line, HCC cell lines, fresh specimens, and a HCC tissue microarray. A retrospective study of 122 paired HCC tissue microarrays was used to analyze the correlation between FAM134B and clinical features. Gain- and loss-of-function experiments, rescue experiments, Akt pathway activator/inhibitors, nude mice xenograft models, and nude mice lung metastasis models were used to determine the underlying mechanisms of FAM134B in inducing tumorigenesis and EMT in vitro and in vivo. The expression level of FAM134B was highly elevated in HCC, as compared with that in normal liver tissues and normal hepatic cells. Overexpression of FAM134B was significantly associated with tumor size (P = 0.025), pathological vascular invasion (P = 0.026), differentiation grade (P = 0.023), cancer recurrence (P = 0.044), and portal vein tumor thrombus (P = 0.036) in HCC. Patients with high expression of FAM134B had shorter overall survival and disease-free survival than patients with non-high expression of FAM134B. Furthermore, knockdown of FAM134B with shRNAs inhibited cell growth and motility, as well as tumor formation and metastasis in nude mice, all of which were promoted by overexpression of FAM134B. Our study demonstrated that Fam134b is an oncogene that plays a crucial role in HCC via the Akt signaling pathway with subsequent glycogen synthase kinase-3ß phosphorylation, accumulation of ß-catenin, and stabilization of Snail, which promotes tumorigenesis, EMT, and tumor metastasis in HCC.


Assuntos
Carcinogênese/patologia , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Transição Epitelial-Mesenquimal , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Neoplasias Hepáticas/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Idoso , Animais , Caderinas/metabolismo , Carcinogênese/genética , Carcinoma Hepatocelular/genética , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Ciclina D1/metabolismo , Ativação Enzimática , Feminino , Regulação Neoplásica da Expressão Gênica , Glicogênio Sintase Quinase 3 beta/metabolismo , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Masculino , Camundongos Endogâmicos BALB C , Camundongos Nus , Pessoa de Meia-Idade , Metástase Neoplásica , Estabilidade Proteica , Fatores de Transcrição da Família Snail/metabolismo , Regulação para Cima/genética , beta Catenina/metabolismo
5.
Sci Rep ; 8(1): 9365, 2018 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-29921924

RESUMO

18ß-Glycyrrhetinic acid (GA) is the active ingredient of the traditional Chinese medicine, Glycyrrhrzae Radix et Rhizoma. Here, we explored the effects of GA on hepatocellular carcinoma (HCC) in vitro and in vivo and the underlying molecular mechanisms. We confirmed that GA suppressed proliferation of various HCC cell lines. Treatment of GA caused G0/G1 arrest, apoptosis and autophagy in HCC cells. GA-induced apoptosis and autophagy were mainly due to the unfolded protein response. We compared the roles of the ATF4/CHOP and IRE1α/XBP1s UPR pathways, which were both induced by GA. The ATF4/CHOP cascade induced autophagy and was indispensable for the induction of apoptosis in GA-treated HCC cells. In contrast, the IRE1α/XBP1s cascade protected HCC cells from apoptosis in vitro and in vivo induced by GA. Despite this, activation of autophagy protected HCC cells from apoptosis induced by GA. We concluded that pharmacological inhibition of autophagy or IRE1α may be of benefit to enhance the antitumor activity of GA.


Assuntos
Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Carcinoma Hepatocelular/metabolismo , Ácido Glicirretínico/análogos & derivados , Neoplasias Hepáticas/metabolismo , Resposta a Proteínas não Dobradas/genética , Apoptose/genética , Autofagia/genética , Carcinoma Hepatocelular/genética , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/genética , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Endorribonucleases/genética , Endorribonucleases/metabolismo , Fase G1/efeitos dos fármacos , Fase G1/genética , Ácido Glicirretínico/farmacologia , Células Hep G2 , Humanos , Neoplasias Hepáticas/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Fase de Repouso do Ciclo Celular/efeitos dos fármacos , Fase de Repouso do Ciclo Celular/genética , Resposta a Proteínas não Dobradas/efeitos dos fármacos , Proteína 1 de Ligação a X-Box/genética , Proteína 1 de Ligação a X-Box/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA