Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
MedComm (2020) ; 5(7): e633, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38952575

RESUMO

cAMP responsive element binding protein 3 (CREB3), belonging to bZIP family, was reported to play multiple roles in various cancers, but its role in hepatocellular carcinoma (HCC) is still unclear. cAMP responsive element binding protein 3 like 3 (CREB3L3), another member of bZIP family, was thought to be transcription factor (TF) to regulate hepatic metabolism. Nevertheless, except for being TFs, other function of bZIP family were poorly understood. In this study, we found CREB3 inhibited growth and metastasis of HCC in vitro and in vivo. RNA sequencing indicated CREB3 regulated AKT signaling to influence HCC progression. Mass spectrometry analysis revealed CREB3 interacted with insulin receptor (INSR). Mechanistically, CREB3 suppressed AKT phosphorylation by inhibiting the interaction of INSR with insulin receptor substrate 1 (IRS1). In our study, CREB3 was firstly proved to affect activation of substrates by interacting with tyrosine kinase receptor. Besides, CREB3 could act as a TF to transactivate RNA-binding motif protein 38 (RBM38) expression, leading to suppressed AKT phosphorylation. Rescue experiments further confirmed the independence between the two functional manners. In conclusion, CREB3 acted as a tumor suppressor in HCC, which inhibited AKT phosphorylation through independently interfering interaction of INSR with IRS1, and transcriptionally activating RBM38.

2.
Cancer Commun (Lond) ; 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39030964

RESUMO

BACKGROUND: N4-acetylcytidine (ac4C) represents a novel messenger RNA (mRNA) modification, and its associated acetyltransferase N-acetyltransferase 10 (NAT10) plays a crucial role in the initiation and progression of tumors by regulating mRNA functionality. However, its role in hepatocellular carcinoma (HCC) development and prognosis is largely unknown. This study aimed to elucidate the role of NAT10-mediated ac4C in HCC progression and provide a promising therapeutic approach. METHODS: The ac4C levels were evaluated by dot blot and ultra-performance liquid chromatography-tandem mass spectrometry with harvested HCC tissues. The expression of NAT10 was investigated using quantitative real-time polymerase chain reaction, western blotting, and immunohistochemical staining across 91 cohorts of HCC patients. To explore the underlying mechanisms of NAT10-ac4C in HCC, we employed a comprehensive approach integrating acetylated RNA immunoprecipitation and sequencing, RNA sequencing and ribosome profiling analyses, along with RNA immunoprecipitation, RNA pull-down, mass spectrometry, and site-specific mutation analyses. The drug affinity responsive targets stability, cellular thermal shift assay, and surface plasmon resonance assays were performed to assess the specific binding of NAT10 and Panobinostat. Furthermore, the efficacy of targeting NAT10-ac4C for HCC treatment was elucidated through in vitro experiments using HCC cells and in vivo HCC mouse models. RESULTS: Our investigation revealed a significant increase in both the ac4C RNA level and NAT10 expression in HCC. Notably, elevated NAT10 expression was associated with poor outcomes in HCC patients. Functionally, silencing NAT10 suppressed HCC proliferation and metastasis in vitro and in vivo. Mechanistically, NAT10 stimulates the ac4C modification within the coding sequence (CDS) of high mobility group protein B2 (HMGB2), which subsequently enhances HMGB2 translation by facilitating eukaryotic elongation factor 2 (eEF2) binding to the ac4C sites on HMGB2 mRNA's CDS. Additionally, high-throughput compound library screening revealed Panobinostat as a potent inhibitor of NAT10-mediated ac4C modification. This inhibition significantly attenuated HCC growth and metastasis in both in vitro experiments using HCC cells and in vivo HCC mouse models. CONCLUSIONS: Our study identified a novel oncogenic epi-transcriptome axis involving NAT10-ac4C/eEF2-HMGB2, which plays a pivotal role in regulating HCC growth and metastasis. The drug Panobinostat validates the therapeutic potential of targeting this axis for HCC treatment.

3.
Cell Death Differ ; 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38918619

RESUMO

Hepatocellular carcinoma (HCC) is a highly heterogeneous solid tumor, with its biological characteristics intricately linked to the activation of oncogenes. This research specifically explored CCDC137, a molecule within the CCDC family exhibiting the closest association with HCC. Our investigation aimed to unravel the role, underlying mechanisms, and potential therapeutic implications of CCDC137 in the context of HCC. We observed a close correlation between elevated CCDC137 expression and poor prognosis in HCC patients, along with a promotive effect on HCC progression in vitro and in vivo. Mechanistically, we identified LZTS2, a negative regulator of ß-catenin, as the binding protein of CCDC137. CCDC137 facilitated K48-linked poly-ubiquitination of LZTS2 at lysine 467 via recruiting E3 ubiquitin ligase ß-TrCP in the nucleus, triggering AKT phosphorylation and activation of ß-catenin pathway. Moreover, the 1-75 domain of CCDC137 was responsible for the formation of the CCDC137-LZTS2-ß-TrCP complex. Subsequently, designed peptides targeting the 1-75 domain of CCDC137 to disrupt CCDC137-LZTS2 interaction demonstrated efficacy in inhibiting HCC progression. This promising outcome was further supported by HCC organoids and patient-derived xenograft (PDX) models, underscoring the potential clinical utility of the peptides. This study elucidated the mechanism of the CCDC137-LZTS2-ß-TrCP protein complex in HCC and offered clinically significant therapeutic strategies targeting this complex.

4.
Biomed Pharmacother ; 173: 116366, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38458013

RESUMO

Hepatocellular carcinoma (HCC) has a poor prognosis, and the efficacy of current therapeutic strategies is extremely limited in advanced diseases. Our previous study reported that protein tyrosine phosphatase receptor epsilon (PTPRE) is a promoting factor in HCC progression. In this study, our objective was to evaluate the treatment effect of PTPRE inhibitors in different HCC preclinical models. Our results indicated that the PTPRE inhibitory compound 63 (Cpd-63) inhibited tumor cell proliferation, migration, and HCC organoid growth. Mechanism research revealed that Cpd-63 could inhibit the expression of MYC and MYC targets by inhibiting the activation of SRC. Additionally, we found that Cpd-63 could improve the response of sorafenib in HCC cells. In conclusion, we demonstrated that the PTPRE inhibitors represented a potential therapeutic agent for HCC management.


Assuntos
Antineoplásicos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Sorafenibe/farmacologia , Sorafenibe/uso terapêutico , Carcinoma Hepatocelular/patologia , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias Hepáticas/patologia , Linhagem Celular Tumoral , Proliferação de Células , Resistencia a Medicamentos Antineoplásicos
5.
Adv Sci (Weinh) ; 11(13): e2307242, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38247171

RESUMO

N6-methyladenosine (m6A) modification orchestrates cancer formation and progression by affecting the tumor microenvironment (TME). For hepatocellular carcinoma (HCC), immune evasion and angiogenesis are characteristic features of its TME. The role of YTH N6-methyladenosine RNA binding protein 2 (YTHDF2), as an m6A reader, in regulating HCC TME are not fully understood. Herein, it is discovered that trimethylated histone H3 lysine 4 and H3 lysine 27 acetylation modification in the promoter region of YTHDF2 enhanced its expression in HCC, and upregulated YTHDF2 in HCC predicted a worse prognosis. Animal experiments demonstrated that Ythdf2 depletion inhibited spontaneous HCC formation, while its overexpression promoted xenografted HCC progression. Mechanistically, YTHDF2 recognized the m6A modification in the 5'-untranslational region of ETS variant transcription factor 5 (ETV5) mRNA and recruited eukaryotic translation initiation factor 3 subunit B to facilitate its translation. Elevated ETV5 expression induced the transcription of programmed death ligand-1 and vascular endothelial growth factor A, thereby promoting HCC immune evasion and angiogenesis. Targeting YTHDF2 via small interference RNA-containing aptamer/liposomes successfully both inhibited HCC immune evasion and angiogenesis. Together, this findings reveal the potential application of YTHDF2 in HCC prognosis and targeted treatment.


Assuntos
Aptâmeros de Nucleotídeos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Proteínas de Ligação a RNA , Animais , Angiogênese , Antígeno B7-H1/metabolismo , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Evasão da Resposta Imune , Neoplasias Hepáticas/genética , Lisina , Fatores de Transcrição/metabolismo , Microambiente Tumoral , Fator A de Crescimento do Endotélio Vascular/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a DNA/metabolismo
6.
Oncogene ; 43(2): 123-135, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37973952

RESUMO

USP11 is a member of the ubiquitin-specific protease family and plays a crucial role in tumor progression in various cancers. However, the precise mechanism by which USP11 promotes EMT and metastasis in hepatocellular carcinoma (HCC) is not fully understood. In this study, we demonstrated that the USP11 expression was dramatically upregulated in HCC tissues and cell lines. Increased USP11 expression was closely associated with tumor number, vascular invasion, and poor prognosis. Functional experiments demonstrated that USP11 markedly promoted metastasis and EMT in HCC via induction of the transcription factor Snail. Mechanistically, USP11 interacted with and deubiquitinated eEF1A1 on Lys439, thereby inhibiting its ubiquitin-mediated degradation. Subsequently, the elevated expression of eEF1A1 resulted in its binding to SP1, which in turn drove the binding of SP1 to its target HGF gene promoter to increase its transcription. This led to an enhanced expression of HGF and the activation of the downstream PI3K/AKT signaling pathway. We demonstrated that USP11 promotes EMT and metastasis in HCC via eEF1A1/SP1/HGF dependent-EMT. Our findings suggest that the USP11/ eEF1A1/SP1/HGF axis contributes to metastasis in HCC, and therefore, could be considered as a potential therapeutic target for the treatment of HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Neoplasias Hepáticas/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Transição Epitelial-Mesenquimal/genética , Metástase Neoplásica , Tioléster Hidrolases/genética , Fator de Crescimento de Hepatócito/genética , Fator de Crescimento de Hepatócito/metabolismo
7.
Adv Sci (Weinh) ; 10(17): e2207080, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37096833

RESUMO

Bone is the second leading metastatic site for hepatocellular carcinoma (HCC). Patients with HCC and bone metastasis suffer poor quality of life and reduced survival time. Extracellular vesicles (EVs) are widely involved in HCC formation and metastasis. However, the communication between primary HCC and bone lesions mediated by EVs remains unclear and the possible effect of bone metastasis on the progression of HCC remains largely unknown. Here, bone-metastasized HCC-derived EVs (BM-EVs) are found to localize to orthotropic HCC cells and promote HCC progression. Mechanistically, miR-3190-5p (miR-3190) is upregulated in intracellular HCC cells isolated from bone lesions as well as in their derived EVs. miR-3190 in BM-EVs is transferred into orthotopic tumor cells and enhances their metastatic capacity by downregulating AlkB homolog 5 (ALKBH5) expression. Decreased level of ALKBH5 exacerbates the prometastatic characteristics of HCC by modulating gene expression in N6-methyladenosine-dependent and -independent ways. Finally, antagomir-miR-3190-loaded liposomes with HCC affinity successfully suppress HCC progression in mice treated with BM-EVs. These findings reveal that BM-EVs initiate prometastatic cascades in orthotopic HCC by transferring ALKBH5-targeting miR-3190 and miR-3190 is serving as a promising therapeutic target for inhibiting the progression of HCC in patients with bone metastasis.


Assuntos
Neoplasias Ósseas , Carcinoma Hepatocelular , Vesículas Extracelulares , Neoplasias Hepáticas , MicroRNAs , Animais , Camundongos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Qualidade de Vida , Vesículas Extracelulares/metabolismo , Linhagem Celular Tumoral , Neoplasias Ósseas/genética , Neoplasias Ósseas/metabolismo
8.
Front Immunol ; 14: 1115706, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36761721

RESUMO

Background: Immunotherapy plays an increasingly critical role in the systemic treatment of HCC. This current study aimed to establish a novel prognostic predictor of Programmed death 1 (PD-1) inhibitor therapy in hepatocellular carcinoma (HCC) independent of Child-Pugh grade. Methods: Our study screened patients with HCC who received PD-1 inhibitors at Tongji Hospital Affiliated to Tongji Medical College of Huazhong University of Science and Technology from January 2018 to December 2020. ALG grade was determined by the patient's serum ALP and GGT levels before the initiation of PD-1 inhibitors. The endpoints of our study were overall survival (OS) and progression free survival (PFS). Follow-up ended at May 31, 2022. Results: Eighty- five patients (77 with Child-Pugh grade A, 8 with Child-Pugh grade B at baseline) were enrolled according to the inclusion criteria. Patients with Child-Pugh grade A achieved longer PFS and OS than those with Child-Pugh grade B. Patients with ALG grade 3 at baseline showed worse tumor response and poorer survival, and ALG grade could stratify patients with Child-Pugh grade A into subgroups with significantly different prognosis. Conclusions: ALG grade, combining ALP and GGT, is a novel and readily available prognostic marker and the predictive effect of ALG grade on patient prognosis is independent of Child-Pugh grade.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patologia , Fosfatase Alcalina , Neoplasias Hepáticas/patologia , gama-Glutamiltransferase , Inibidores de Checkpoint Imunológico/uso terapêutico , Prognóstico
9.
Oncogene ; 41(12): 1821-1834, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35140331

RESUMO

Discoidin domain receptor 1 (DDR1) is a member of the receptor tyrosine kinase family, and its ligand is collagen. Previous studies demonstrated that DDR1 is highly expressed in many tumors. However, its role in hepatocellular carcinoma (HCC) remains obscure. In this study, we found that DDR1 was upregulated in HCC tissues, and the expression of DDR1 in TNM stage II-IV was higher than that in TNM stage I in HCC tissues, and high DDR1 expression was associated with poor prognosis. Gene expression analysis showed that DDR1 target genes were functionally involved in HCC metastasis. DDR1 positively regulated the migration and invasion of HCC cells and promoted lung metastasis. Human Phospho-Kinase Array showed that DDR1 activated ERK/MAPK signaling pathway. Mechanically, DDR1 interacted with ARF6 and activated ARF6 through recruiting PSD4. The kinase activity of DDR1 was required for ARF6 activation and its role in metastasis. High expression of PSD4 was associated with poor prognosis in HCC. In summary, our findings indicate that DDR1 promotes HCC metastasis through collagen induced DDR1 signaling mediated PSD4/ARF6 signaling, suggesting that DDR1 and ARF6 may serve as novel prognostic biomarkers and therapeutic targets for metastatic HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Fator 6 de Ribosilação do ADP , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Receptor com Domínio Discoidina 1/genética , Receptor com Domínio Discoidina 1/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Sistema de Sinalização das MAP Quinases , Receptores Proteína Tirosina Quinases/metabolismo
10.
Cell Oncol (Dordr) ; 45(1): 163-178, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35089546

RESUMO

PURPOSE: Hepatocellular carcinoma (HCC) is one of the most common cancers in the world with a high mortality rate. Receptor tyrosine kinases play important roles in the occurrence and development of various cancers. Discoid protein domain receptor 1 (DDR1) is a special type of transmembrane receptor tyrosine kinase. Here, we show that the expression of DDR1 is significantly increased in HCC and is related to a poor clinical prognosis. METHODS: The expression of DDR1 in HCC cell lines and primary HCC specimens was evaluated using Western blotting and immunohistochemistry. A correlation between DDR1 and SLC1A5 expression was also investigated in primary HCC specimens. Cell proliferation was evaluated using in vitro CCK8 and colony formation assays. Gene knock-down and overexpression assays, CHX, NH4CL and Mg132 interference tests and immunoprecipitation, as well as nude mouse xenograft models were used to assess the mechanism by which DDR1 promotes tumorigenesis in vitro and in vivo. RESULTS: We found that DDR1 promotes the proliferation of HCC cells and accelerates the growth of HCC tumor xenografts, while DDR1 downregulation had the opposite effect. We also found that loss or gain of DDR1 expression affected HCC cell cycle progression. Mechanistically, we found that DDR1 interacts with SLC1A5, which belongs to the solute carrier (SLC) family of transporters, and regulates its stability, thereby affecting the mTORC1 signaling pathway. In addition, we found that SLC1A5 regulation by DDR1 can be restored by lysosome inhibitors. We also found that DDR1 is highly expressed in HCC tissues and that increased DDR1 expression predicts a shorter overall survival (OS) time. We additionally found that the expression of SLC1A5 was positively correlated with that of DDR1. Together, our data indicate that DDR1 acts as a tumor-promoting factor that can control HCC cell proliferation and cell cycle progression by stabilizing SLC1A5 in a lysosome-dependent way. CONCLUSIONS: Our study reveals a new mechanism by which DDR1 plays a liver cancer-promoting role. We also found that DDR1 expression serves as an independent prognostic marker, and that DDR1 and SLC1A5 expression levels are positively correlated in clinical samples. Our findings provide a new perspective for understanding HCC development and offers new targets for the treatment and management of HCC.


Assuntos
Sistema ASC de Transporte de Aminoácidos , Carcinoma Hepatocelular , Receptor com Domínio Discoidina 1/metabolismo , Neoplasias Hepáticas , Sistema ASC de Transporte de Aminoácidos/genética , Animais , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Proliferação de Células , Receptor com Domínio Discoidina 1/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Hepáticas/patologia , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos , Antígenos de Histocompatibilidade Menor , Transdução de Sinais
11.
Am J Chin Med ; 50(1): 313-332, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34963428

RESUMO

18[Formula: see text]-glycyrrhetinic acid (GA) is the active ingredient of the traditional Chinese medicinal herb Glycyrrhizae radix et rhizoma. We previously demonstrated that GA inhibited tumor growth in hepatocellular carcinoma (HCC). However, the effect of GA on transforming growth factor-[Formula: see text] (TGF-[Formula: see text]-induced epithelial-mesenchymal transition (EMT) and metastasis were still unclear. In this study, in vitro transwell assays and immunofluorescence (IF) demonstrated that GA inhibited TGF-[Formula: see text]-induced migration, invasion and EMT of HCC cells. However, it had little effect on the inhibition of proliferation by TGF-[Formula: see text]. Moreover, we confirmed that GA suppressed the metastasis of HCC cells in vivousing an ectopic lung metastasis model. Furthermore, we found that GA inhibited TGF-[Formula: see text]-induced EMT mainly by reducing the phosphorylation of signal transducer and activator of transcription 3 (STAT3), which played an essential role in TGF-[Formula: see text]-induced EMT and cell mobility. Mechanistically, GA inhibited the phosphorylation of STAT3 by increasing the expression of Src homology 2 domain-containing protein tyrosine phosphatases 1 and 2 (SHP1 and SHP2). Therefore, we concluded that GA inhibited TGF-[Formula: see text]-induced EMT and metastasis via the SHP1&SHP2/STAT3/Snail pathway. Our data provide an attractive therapeutic target for future multimodal management of HCC.


Assuntos
Carcinoma Hepatocelular , Ácido Glicirretínico , Neoplasias Hepáticas , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Transição Epitelial-Mesenquimal , Ácido Glicirretínico/farmacologia , Humanos , Neoplasias Hepáticas/patologia , Invasividade Neoplásica , Fator de Transcrição STAT3/metabolismo , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/metabolismo
12.
Biomed Res Int ; 2021: 4708439, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34423034

RESUMO

BACKGROUND: Tryptophan-2,3-dioxygenase (TDO2) converts tryptophan into kynurenine in the initial limiting step of the kynurenine pathway. During the past decade, the overexpression of TDO2 has been found in various human tumors. However, the role of TDO2 in hepatocellular carcinoma is controversial, and we sought to clarify it in this study. METHODS: Western blot analysis and immunochemistry were used to detect the expression of TDO2 in human tissue specimens. The effect of TDO2 on cell proliferation in vitro was assessed using CCK8 and colony formation assays, and a xenograft mouse model was used to detect the effect of TDO2 on tumor growth in vivo. Flow cytometry was used to assess the cell cycle status. RESULTS: Low TDO2 expression was found in HCC and was associated with poor prognosis and adverse clinical outcomes. Conversely, TDO2 could restrain the proliferation of HCC cells in vivo and in vitro. Furthermore, TDO2 upregulated the expression of p21 and p27, inducing cell-cycle arrest. CONCLUSIONS: The loss of TDO2 expression in HCC was correlated with a poor prognosis and adverse clinical outcomes. At the same time, TDO2 could restrain the growth of HCC in vivo and in vitro. The results indicate that TDO2 is a potential biomarker and therapeutic target for HCC.


Assuntos
Carcinoma Hepatocelular/patologia , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Regulação para Baixo , Neoplasias Hepáticas/patologia , Triptofano Oxigenase/metabolismo , Animais , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Hepáticas/metabolismo , Masculino , Camundongos , Transplante de Neoplasias , Prognóstico , Triptofano Oxigenase/genética
13.
Liver Int ; 41(8): 1933-1944, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33909326

RESUMO

BACKGROUND: Liver cancer is a major public health concern, but the mechanistic actions of biomarkers contributing to liver cancer remain to be determined. In this study, we aimed to investigate the regulatory cascade of microRNA-424-5p (miR-424-5p), X-inactive-specific transcript (XIST) and O-GlcNAc transferase (OGT) in liver cancer. METHODS: Differentially expressed miRNAs and target genes related to liver cancer were predicted by bioinformatics analyses, and their expression was determined in liver tissues of patients with liver cancer and liver cancer cells. The RNA immunoprecipitation (RIP), RNA pull-down and dual luciferase reporter assay were used to examine the binding affinity among XIST and miR-424-5p and OGT. Then, gain- and loss-of-function assays were conducted to evaluate the effects of the XIST/miR-424-5p/OGT axis on malignant phenotypes. A nude mouse model of liver cancer was further established for in vivo substantiation. RESULTS: XIST and OGT were up-regulated in liver cancer tissues and cells, responsible for poor prognosis in patients with liver cancer, while miR-424-5p was down-regulated. XIST competitively bound to miR-424-5p to increase OGT expression. XIST silencing inhibited malignant phenotypes of liver cancer cells, while miR-424-5p down-regulation negated its effect. miR-424-5p suppressed RAF1 glycosylation by negatively regulating OGT expression and promoted its ubiquitination/degradation. Furthermore, XIST knockdown inhibited tumour growth and metastasis in nude mice, while ectopic OGT reversed its effect. CONCLUSION: These results reveal a novel mechanism by which the interaction of XIST/miR-424-5p/OGT participates in the malignancy and metastasis of liver cancer.


Assuntos
Neoplasias Hepáticas , MicroRNAs , N-Acetilglucosaminiltransferases , Proteínas Proto-Oncogênicas c-raf , RNA Longo não Codificante , Animais , Proliferação de Células , Glicosilação , Humanos , Neoplasias Hepáticas/genética , Camundongos , Camundongos Nus , MicroRNAs/genética , N-Acetilglucosaminiltransferases/genética , RNA Longo não Codificante/genética
14.
Theranostics ; 11(3): 996-1015, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33391517

RESUMO

Resistance to anoikis, cell death due to matrix detachment, is acquired during tumor progression. The 14-3-3σ protein is implicated in the development of chemo- and radiation resistance, indicating a poor prognosis in multiple human cancers. However, its function in anoikis resistance and metastasis in hepatocellular carcinoma (HCC) is currently unknown. Methods: Protein expression levels of 14-3-3σ were measured in paired HCC and normal tissue samples using western blot and immunohistochemical (IHC) staining. Statistical analysis was performed to evaluate the clinical correlation between 14-3-3σ expression, clinicopathological features, and overall survival. Artificial modulation of 14-3-3σ (downregulation and overexpression) was performed to explore the role of 14-3-3σ in HCC anoikis resistance and tumor metastasis in vitro and in vivo. Association of 14-3-3σ with epidermal growth factor receptor (EGFR) was assayed by co-immunoprecipitation. Effects of ectopic 14-3-3σ expression or knockdown on EGFR signaling, ligand-induced EGFR degradation and ubiquitination were examined using immunoblotting and co-immunoprecipitation, immunofluorescence staining, and flow cytometry analysis. The levels of EGFR ubiquitination, the interaction between EGFR and 14-3-3σ, and the association of EGFR with c-Cbl after EGF stimulation, in 14-3-3σ overexpressing or knockdown cells were examined to elucidate the mechanism by which 14-3-3σ inhibits EGFR degradation. Using gain-of-function or loss-of-function strategies, we further investigated the role of the EGFR signaling pathway and its downstream target machinery in 14-3-3σ-mediated anoikis resistance of HCC cells. Results: We demonstrated that 14-3-3σ was upregulated in HCC tissues, whereby its overexpression was correlated with aggressive clinicopathological features and a poor prognosis. In vitro and in vivo experiments indicated that 14-3-3σ promoted anoikis resistance and metastasis of HCC cells. Mechanistically, we show that 14-3-3σ can interact with EGFR and significantly inhibit EGF-induced degradation of EGFR, stabilizing the activated receptor, and therefore prolong the activation of EGFR signaling. We demonstrated that 14-3-3σ downregulated ligand-induced EGFR degradation by inhibiting EGFR-c-Cbl association and subsequent c-Cbl-mediated EGFR ubiquitination. We further verified that activation of the ERK1/2 pathway was responsible for 14-3-3σ-mediated anoikis resistance of HCC cells. Moreover, EGFR inactivation could reverse the 14-3-3σ-mediated effects on ERK1/2 phosphorylation and anoikis resistance. Expression of 14-3-3σ and EGFR were found to be positively correlated in human HCC tissues. Conclusions: Our results indicate that 14-3-3σ plays a pivotal role in the anoikis resistance and metastasis of HCC cells, presumably by inhibiting EGFR degradation and regulating the activation of the EGFR-dependent ERK1/2 pathway. To our best knowledge, this is the first report of the role of 14-3-3σ in the anoikis resistance of HCC cells, offering new research directions for the treatment of metastatic cancer by targeting 14-3-3σ.


Assuntos
Proteínas 14-3-3/genética , Anoikis/genética , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , Sistema de Sinalização das MAP Quinases/genética , Transdução de Sinais/genética , Carcinoma Hepatocelular/patologia , Linhagem Celular , Linhagem Celular Tumoral , Regulação para Baixo/genética , Receptores ErbB/genética , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Células HEK293 , Células Hep G2 , Humanos , Neoplasias Hepáticas/patologia , Masculino , Pessoa de Meia-Idade , Fosforilação/genética , Ubiquitinação/genética
15.
Am J Cancer Res ; 10(2): 662-673, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32195034

RESUMO

Type-2 11ß-hydroxysteroid dehydrogenase (HSD11B2) is a key enzyme which converts cortisol to inactive cortisone and is involved in tumor progression and metastasis. Several studies have shown that the promotion of tumor progression and metastasis by HSD11B2 resulted from its physiological function of inactivating glucocorticoids (GC). However, the underlying molecular mechanisms by which HSD11B2 drives metastasis, in addition to inactivating GC, are still unclear. In our study, a series of in vivo and in vitro assays were performed to determine the function of HSD11B2 and the possible mechanisms underlying its role in CRC metastasis. mRNA transcriptome array analysis was used to identify the possible downstream targets of HSD11B2. We found that the ectopic expression of HSD11B2 significantly promoted the migration, invasion and metastasis of colorectal cancer (CRC) cells both in vitro and in vivo, while it did not affect their proliferation in either case. Mechanically, HSD11B2 appeared to enhance cell migration and invasion by upregulating the expression of fibroblast growth factor binding protein 1 (Fgfbp1), and subsequently increasing the phosphorylation of AKT. Furthermore, AKT activation partially mediated the increased expression of Fgfbp1 induced by HSD11B2. HSD11B2 expression was positively correlated with Fgfbp1 and p-AKT expression in clinical samples of CRC. Additionally, knockdown of either Fgfbp1 or AKT impaired the migration and invasion capability of CRC cells with HSD11B2 overexpression, suggesting that HSD11B2 promoted the migration, invasion and metastasis of CRC cells via the Fgfbp1-AKT pathway. Therefore, targeting HSD11B2 or Fgfbp1 may be a novel treatment strategy for inhibiting the metastasis of CRC.

16.
Hepatology ; 72(3): 997-1012, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-31903610

RESUMO

BACKGROUND AND AIMS: Transforming growth factor beta (TGF-ß) suppresses early stages of tumorigenesis, but contributes to the migration and metastasis of cancer cells. However, the role of TGF-ß signaling in invasive prometastatic hepatocellular carcinoma (HCC) is poorly understood. In this study, we investigated the roles of canonical TGF-ß/mothers against decapentaplegic homolog 3 (SMAD3) signaling and identified downstream effectors on HCC migration and metastasis. APPROACH AND RESULTS: By using in vitro trans-well migration and invasion assays and in vivo metastasis models, we demonstrated that SMAD3 and protein tyrosine phosphatase receptor epsilon (PTPRε) promote migration, invasion, and metastasis of HCC cells in vitro and in vivo. Further mechanistic studies revealed that, following TGF-ß stimulation, SMAD3 binds directly to PTPRε promoters to activate its expression. PTPRε interacts with TGFBR1/SMAD3 and facilitates recruitment of SMAD3 to TGFBR1, resulting in a sustained SMAD3 activation status. The tyrosine phosphatase activity of PTPRε is important for binding with TGFBR1, recruitment and activation of SMAD3, and its prometastatic role in vitro. A positive correlation between pSMAD3/SMAD3 and PTPRε expression was determined in HCC samples, and high expression of SMAD3 or PTPRε was associated with poor prognosis of patients with HCC. CONCLUSIONS: PTPRε positive feedback regulates TGF-ß/SMAD3 signaling to promote HCC metastasis.


Assuntos
Carcinogênese/metabolismo , Carcinoma Hepatocelular , Neoplasias Hepáticas , Metástase Neoplásica , Proteínas Tirosina Fosfatases Classe 4 Semelhantes a Receptores/metabolismo , Animais , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Transição Epitelial-Mesenquimal , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Camundongos , Receptor do Fator de Crescimento Transformador beta Tipo I/metabolismo , Transdução de Sinais , Proteína Smad3/metabolismo
17.
J Exp Clin Cancer Res ; 38(1): 273, 2019 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-31228948

RESUMO

BACKGROUND: DEPTOR is an endogenous inhibitor of mTORC1 and mTORC2 that plays a vital role in the progression of human malignances. However, the biological function of DEPTOR in HCC metastasis and the underlying molecular mechanisms are still unclear. METHODS: Western blot analysis and immunohistochemistry(IHC) were employed to examine DEPTOR expression in HCC cell lines and tissues. A series of in vivo and in vitro assays were performed to determine the function of DEPTOR and the possible mechanisms underlying its role in HCC metastasis. RESULTS: We found that DEPTOR was frequently overexpressed in HCC tissues, and its high expression was associated with high serum AFP levels, increased tumor size, vascular invasion and more advanced TMN and BCLC stage, as well as an overall poor prognosis. Functional experiments demonstrated that DEPTOR silencing inhibited the proliferation and mobility of HCC cells in vitro and suppressed tumor growth and metastasis of HCC cells in vivo. Accordingly, DEPTOR overexpression promoted the invasion and metastasis of HCC cells in vitro and in vivo, but had no effect on cell proliferation in vitro. Overexpression of DEPTOR induced EMT by snail induction. Conversely, knockdown of snail expression impaired the DEPTOR-induced migration, invasion and EMT of HCC cells. Furthermore, we found that the increase of snail expression by DEPTOR overexpression was due to an activation of TGF-ß1-smad3/smad4 signaling possibly through feedback inhibition of mTOR. CONCLUSION: DEPTOR promotes the EMT and metastasis of HCC cells by activating the TGF-ß1-smad3/smad4-snail pathway via mTOR inhibition. Therefore, targeting DEPTOR may be an ideal treatment strategy for inhibiting the growth and metastasis of HCC.


Assuntos
Carcinoma Hepatocelular/patologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Neoplasias Hepáticas/patologia , Transdução de Sinais , Regulação para Cima , Adulto , Idoso , Animais , Comunicação Autócrina , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Transição Epitelial-Mesenquimal , Feminino , Regulação Neoplásica da Expressão Gênica , Células Hep G2 , Humanos , Neoplasias Hepáticas/metabolismo , Masculino , Camundongos , Pessoa de Meia-Idade , Metástase Neoplásica , Estadiamento de Neoplasias , Prognóstico , Análise de Sobrevida , Serina-Treonina Quinases TOR/metabolismo , Fator de Crescimento Transformador beta1/metabolismo
18.
J Exp Clin Cancer Res ; 38(1): 101, 2019 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-30808376

RESUMO

BACKGROUND: Deregulation of ubiquitin ligases is related to the malignant progression of human cancers. F-box only protein 22 (FBXO22), an F-box E3 ligase, is a member of the F-box protein family. However, the biological function of FBXO22 in HCC and the underlying molecular mechanisms are still unclear. In this study, we explored the role of FBXO22 in HCC and its mechanism of promoting tumor development. METHODS: We examined the expression of FBXO22 in normal liver cell lines, HCC cell lines, HCC tissue microarrays and fresh specimens. The correlation between FBXO22 and clinical features was analyzed in a retrospective study of 110 pairs of HCC tissue microarrays. Univariate and multivariate survival analyses were used to explore the prognostic value of FBXO22 in HCC. At the same time, the correlation between the FBXO22 and p21 was also studied in HCC samples. Knock-down and overexpression experiments, CHX and Mg132 intervention experiments, ubiquitination experiments, rescue experiments and nude mouse xenograft models were used to determine the potential mechanism by which FBXO22 promotes tumorigenesis in vitro and in vivo. RESULTS: The expression of FBXO22 in HCC tissues was significantly higher than in normal liver tissues. The overall survival rate and disease-free survival time of patients with high expression of FBXO22 were significantly shorter than those of patients with low expression of FBXO22. The high expression of FBXO22 in HCC tissues were significantly correlated with serum AFP (p = 0. 003, Pearson's chi-squared test), tumor size (p = 0. 019, Pearson's chi-squared test) and vascular invasion (p = 0. 031, Pearson's chi-squared test). Especially, Multivariate analysis showed that tumor size and the expression of FBXO22 were independent prognostic indicator of OS (95% CI: 1.077-5.157, P<0.05). Correlation analysis also showed that FBXO22 was negatively correlated with p21 in tissue microarrays (r = - 0.3788, P<0.001, Pearson correlation) and fresh specimens (r = - 0.4037, P<0.01, Pearson correlation). Moreover, both in vitro and in vivo experiments showed that knocking down FBXO22 expression could inhibit cell proliferation, while overexpression of FBXO22 promoted tumor formation. Furthermore, we identified that FBXO22 interacts with p21 by regulating protein stability and by influencing the ubiquitination process. A knockdown of FBXO22 decreased the ubiquitylation of p21, while overexpression enhanced it. CONCLUSIONS: This study uncovered a new mechanism by which FBXO22 functions as an oncogene in HCC pathogenesis and progression by mediating the ubiquitination and degradation of p21. It was also found that tumor size and the expression of FBXO22 were independent prognostic indicator of OS and the expression of FBXO22 and p21 was negatively correlated in clinical samples. Our findings present a new perspective for understanding the development of HCC, which may provide a new target for the treatment and management of this challenging cancer.


Assuntos
Carcinoma Hepatocelular/patologia , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Proteínas F-Box/metabolismo , Neoplasias Hepáticas/patologia , Receptores Citoplasmáticos e Nucleares/metabolismo , Animais , Biomarcadores Tumorais/análise , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/mortalidade , Feminino , Xenoenxertos , Humanos , Estimativa de Kaplan-Meier , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/mortalidade , Masculino , Camundongos Endogâmicos BALB C , Prognóstico , Ubiquitinação
19.
J Exp Clin Cancer Res ; 38(1): 3, 2019 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-30606233

RESUMO

BACKGROUND: Heme oxygenase 1 (HO-1) has been reported to be very important in the pathogenesis or progression of multiple types of cancer. Identification of novel hmox1 binding proteins may reveal undefined oncogenes, tumor suppressors, signaling pathways, and possible treatment targets. METHODS: Immunoprecipitation and mass spectrometry analyses were used to identify novel regulators of HO-1. The association of the 14-3-3ζ protein with HO-1 and modulation of the stability of HO-1 were investigated by co-immunoprecipitation, immunofluorescence, western blotting, and quantitative RT-PCR. Degradation and in vivo ubiquitination assays were utilized to examine whether 14-3-3ζ stabilizes the HO-1 protein by inhibiting its ubiquitination. The effect of 14-3-3ζ on proliferation was investigated by function assays conducted in vitro using the CCK-8 and colony formation assays and in vivo in a xenograft mouse model. The biological functions of the 14-3-3ζ/HO-1 axis were demonstrated by western blotting and rescue experiments. Using gain-of-function and loss-of-function strategies, we further clarified the impact of 14-3-3ζ/HO-1 complex on the signal transducers and activators of transcription 3 (STAT3) signaling pathway in cancer cells. RESULTS: We identified 14-3-3ζ as a novel HO-1 binding protein. The binding inhibited the ubiquitination and proteasome-mediated degradation of HO-1, thus facilitating its stabilization. Enforced expression of 14-3-3ζ significantly promoted cell proliferation in vitro, as well as tumorigenesis in vivo, while 14-3-3ζ knockdown had opposite effects. The data indicated that 14-3-3ζ can stabilize HO-1 expression and thus influence cancer cell proliferation. We further demonstrated the involvement of the STAT3 pathway in 14-3-3ζ/HO-1 regulation of hepatocellular carcinoma cell proliferation. CONCLUSIONS: Collectively, these data show that 14-3-3ζ regulates the stability of HO-1 to promote cancer cell proliferation and STAT3 signaling activation. The data establish the 14-3-3ζ-HO-1-STAT3 axis as an important regulatory mechanism of cancer cell growth and implicate HO-1 and 14-3-3ζ as potential therapeutic targets in hepatocellular carcinoma.


Assuntos
Proteínas 14-3-3/metabolismo , Carcinoma Hepatocelular/metabolismo , Heme Oxigenase-1/antagonistas & inibidores , Heme Oxigenase-1/metabolismo , Neoplasias Hepáticas/metabolismo , Fator de Transcrição STAT3/metabolismo , Animais , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Proliferação de Células/fisiologia , Modelos Animais de Doenças , Células HEK293 , Xenoenxertos , Humanos , Neoplasias Hepáticas/patologia , Masculino , Camundongos , Camundongos Nus , Transdução de Sinais , Transfecção
20.
Mol Oncol ; 13(4): 792-810, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30556279

RESUMO

Fam134b (JK-1, RETREG1) was first identified as an oncogene in esophageal squamous cell carcinoma. However, the roles of FAM134B during tumorigenesis of hepatocellular carcinoma (HCC) and in epithelial-to-mesenchymal transition (EMT) were previously unclear. In this study, we investigated the function of FAM134B in HCC and the related tumorigenesis mechanisms, as well as how FAM134B induces EMT. We detected the expression of FAM134B in a normal hepatic cell line, HCC cell lines, fresh specimens, and a HCC tissue microarray. A retrospective study of 122 paired HCC tissue microarrays was used to analyze the correlation between FAM134B and clinical features. Gain- and loss-of-function experiments, rescue experiments, Akt pathway activator/inhibitors, nude mice xenograft models, and nude mice lung metastasis models were used to determine the underlying mechanisms of FAM134B in inducing tumorigenesis and EMT in vitro and in vivo. The expression level of FAM134B was highly elevated in HCC, as compared with that in normal liver tissues and normal hepatic cells. Overexpression of FAM134B was significantly associated with tumor size (P = 0.025), pathological vascular invasion (P = 0.026), differentiation grade (P = 0.023), cancer recurrence (P = 0.044), and portal vein tumor thrombus (P = 0.036) in HCC. Patients with high expression of FAM134B had shorter overall survival and disease-free survival than patients with non-high expression of FAM134B. Furthermore, knockdown of FAM134B with shRNAs inhibited cell growth and motility, as well as tumor formation and metastasis in nude mice, all of which were promoted by overexpression of FAM134B. Our study demonstrated that Fam134b is an oncogene that plays a crucial role in HCC via the Akt signaling pathway with subsequent glycogen synthase kinase-3ß phosphorylation, accumulation of ß-catenin, and stabilization of Snail, which promotes tumorigenesis, EMT, and tumor metastasis in HCC.


Assuntos
Carcinogênese/patologia , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Transição Epitelial-Mesenquimal , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Neoplasias Hepáticas/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Idoso , Animais , Caderinas/metabolismo , Carcinogênese/genética , Carcinoma Hepatocelular/genética , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Ciclina D1/metabolismo , Ativação Enzimática , Feminino , Regulação Neoplásica da Expressão Gênica , Glicogênio Sintase Quinase 3 beta/metabolismo , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Masculino , Camundongos Endogâmicos BALB C , Camundongos Nus , Pessoa de Meia-Idade , Metástase Neoplásica , Estabilidade Proteica , Fatores de Transcrição da Família Snail/metabolismo , Regulação para Cima/genética , beta Catenina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA