Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
FASEB J ; 37(8): e23114, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37498236

RESUMO

Adipose-derived stem cells (ASCs) from distinct age groups possess different characteristics; however, the age-associated changes in ASCs heterogenicity remain largely unknown. In this study, several publicly available single-cell RNA sequencing (RNA-seq) data cohorts of inguinal adipose tissues, including young (2 weeks), adult (8 weeks), and old (18 months) C57BL/6 mice, were analyzed. Transcriptomic clustering of integrated single-cell RNA-seq data from different age groups revealed the existence of five ASCs subtypes. Interestingly, ASCs showed a loss of heterogeneity with aging, and ASCs subtype 4 (ASC-4) was the dominant subpopulation accounting for more than 98% of aged ASCs converging to the terminal differentiation state. The multidirectional differentiation potentials of different ASCs subtypes were largely distinct while the adipogenic ability of ASC-4 increased with age persistently. Regulon analysis of ASC subtypes further identified Cebpb as the ASC-4-specific transcription factor, which was known as one of the major adipogenic regulators. Analysis of ligand-receptor pairs between ASCs and other cell types in adipose tissue identified age-associated upregulation of inflammatory responses-associated factors including CCL2 and CCL7. Treatment with 100 ng/mL CCL2 in vitro could significantly promote the adipogenesis of ASCs through enhanced phosphorylation of AKT and decreased expression of ß-catenin. In addition, supplementation of 100 ng/mL CCL7 could significantly increase the expression of inflammatory genes and ASC-4-specific transcriptional factors in 2-week-old ASCs, potentially acting as a driver of ASCs convergence. Our findings help to delineate the complex biological processes of ASCs aging and shed light on better regenerative and therapeutic applications of ASCs.


Assuntos
Tecido Adiposo , Células-Tronco Mesenquimais , Camundongos , Animais , Camundongos Endogâmicos C57BL , Tecido Adiposo/metabolismo , Células-Tronco Mesenquimais/metabolismo , Adipócitos/metabolismo , Diferenciação Celular , Adipogenia , Envelhecimento
2.
Chemosphere ; 338: 139339, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37385481

RESUMO

In this research, gold nanoparticle (GNPs)-modified metal-organic framework/reduced graphene oxide (MOF(801)/rGO) hybrid was employed to design a new aptasensor for carcinoembryonic antigen (CEA) quantification in biological sample. The sensing ability of the electrode for CEA biomarker was examined with electrochemical impedance spectroscopy (EIS) and cyclic voltammetry procedures. Besides, CEA was electrochemically quantified by the EIS method. With respect to the high surface-to-volume ratio of MOF(801) and the good electron transfer ability of rGO, the proposed sensor displayed notable sensitivity and reliability in the CEA analysis. The derived electrode showed an appreciable detection limit of 0.8 pg L-1 using EIS protocol. In addition, the present aptasensor revealed diverse advantages including anti-interference property, wide linear range (0.0025-0.25 ng L-1), convenience and high efficiency toward CEA quantification. More importantly, the performance of the suggested assay remains unchanged in analysis of CEA in body fluids. The established assay demonstrates that the suggested biosensor is a promising device in clinical diagnosis.


Assuntos
Técnicas Biossensoriais , Grafite , Nanopartículas Metálicas , Antígeno Carcinoembrionário/análise , Antígeno Carcinoembrionário/química , Biomarcadores Tumorais , Ouro/química , Reprodutibilidade dos Testes , Nanopartículas Metálicas/química , Grafite/química , Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas/métodos , Limite de Detecção , Eletrodos
3.
Nucleic Acids Res ; 51(13): 6981-6998, 2023 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-37246706

RESUMO

The molecular mechanism underlying white adipogenesis in humans has not been fully elucidated beyond the transcriptional level. Here, we found that the RNA-binding protein NOVA1 is required for the adipogenic differentiation of human mesenchymal stem cells. By thoroughly exploring the interactions between NOVA1 and its binding RNA, we proved that NOVA1 deficiency resulted in the aberrant splicing of DNAJC10 with an in-frame premature stop codon, reduced DNAJC10 expression at the protein level and hyperactivation of the unfolded protein response (UPR). Moreover, NOVA1 knockdown abrogated the down-regulation of NCOR2 during adipogenesis and up-regulated the 47b+ splicing isoform, which led to decreased chromatin accessibility at the loci of lipid metabolism genes. Interestingly, these effects on human adipogenesis could not be recapitulated in mice. Further analysis of multispecies genomes and transcriptomes indicated that NOVA1-targeted RNA splicing is evolutionarily regulated. Our findings provide evidence for human-specific roles of NOVA1 in coordinating splicing and cell organelle functions during white adipogenesis.


Assuntos
Cromatina , Proteínas de Ligação a RNA , Resposta a Proteínas não Dobradas , Animais , Humanos , Camundongos , Adipogenia/genética , Cromatina/genética , Antígeno Neuro-Oncológico Ventral , Splicing de RNA , Proteínas de Ligação a RNA/metabolismo
4.
ACS Omega ; 8(13): 12217-12231, 2023 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-37033796

RESUMO

Objectives: We aim to identify the breast cancer (BC) subtype clusters and the crucial gene classifier prognostic signatures by integrating genomic analysis with the tumor immune microenvironment (TME). Methods: Data sets of BC were derived from the Cancer Genome Atlas (TCGA), METABRIC, and Gene Expression Omnibus (GEO) databases. Unsupervised consensus clustering was carried out to obtain the subtype clusters of BC patients. Weighted gene coexpression network analysis (WGCNA), least absolute shrinkage and selection operator (LASSO), and univariate and multivariate regression analysis were employed to obtain the gene classifier signatures and their biological functions, which were validated by the BC dataset from the METABRIC database. Additionally, to evaluate the overall survival rates of BC patients, Kaplan-Meier survival analysis was carried out. Moreover, to assess how BC subtype clusters are related to the TME, single-cell analysis was performed. Finally, the drug sensitivity and the immune cell infiltration for different phenotypes of BC patients were also calculated by the CIBERSORT and ESTIMATE algorithms. Results : TCGA-BC samples were divided into three subtype clusters, S1, S2, and S3, among which the prognosis of S2 was poor and that of S1 and S3 were better. Three key pathways and 10 crucial prognostic-related gene signatures are screened. Finally, single-cell analysis suggests that S1 samples have the most types of immune cells, S2 with more sensitivity to tumor treatment drugs are enriched with more neutrophils, and more multilymphoid progenitor cells are involved in subtype cluster S3. Conclusions: Our novelty was to identify the BC subtype clusters and the gene classifier signatures employing a large-amount dataset combined with multiple bioinformatics methods. All of the results provide a basis for clinical precision treatment of BC.

5.
Chemosphere ; 330: 138634, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37030348

RESUMO

In present work, a novel voltammetric sensor for the determination of 6-thioguanine (6-TG) was fabricated. First, a graphite rod electrode (GRE) surface was modified via drop-coating of graphene oxide (GO) to increase the surface area of the electrode. Subsequently, molecularly imprinted polymer (MIP) network was prepared using a facile electro-polymerization procedure, using o-aminophenol (as functional monomer) and 6-TG (as template molecule). Influences of test solution pH, dropped GO concentration and incubation time on the performance of GRE-GO/MIP were studied, and their values determined as 7.0, 1.0 mg/mL and 90 s, respectively. Using GRE-GO/MIP, 6-TG was measured in the range of 0.5-60 µM with a low detection limit (DL) of 80 nM (based on S/N = 3). In addition, the electrochemical device demonstrated good reproducibility (3.8%) and anti-interference ability toward 6-TG monitoring. The as-prepared sensor illustrated satisfactory sensing performance in real samples with recovery ranging from 96.5% to 102.5%. For the determination of trace amounts of anticancer drug (6-TG) in real matrices (biological samples and pharmaceutical wastewater sample), this study is expected to provide an effective strategy with high selectivity, stability, and sensitivity.


Assuntos
Antineoplásicos , Grafite , Impressão Molecular , Tioguanina , Polímeros/química , Águas Residuárias , Reprodutibilidade dos Testes , Impressão Molecular/métodos , Técnicas Eletroquímicas/métodos , Grafite/química , Eletrodos , Limite de Detecção
6.
Am J Hum Genet ; 110(3): 516-530, 2023 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-36796361

RESUMO

Primate-specific genes (PSGs) tend to be expressed in the brain and testis. This phenomenon is consistent with brain evolution in primates but is seemingly contradictory to the similarity of spermatogenesis among mammals. Here, using whole-exome sequencing, we identified deleterious variants of X-linked SSX1 in six unrelated men with asthenoteratozoospermia. SSX1 is a PSG expressed predominantly in the testis, and the SSX family evolutionarily expanded independently in rodents and primates. As the mouse model could not be used for studying SSX1, we used a non-human primate model and tree shrews, which are phylogenetically similar to primates, to knock down (KD) Ssx1 expression in the testes. Consistent with the phenotype observed in humans, both Ssx1-KD models exhibited a reduced sperm motility and abnormal sperm morphology. Further, RNA sequencing indicated that Ssx1 deficiency influenced multiple biological processes during spermatogenesis. Collectively, our experimental observations in humans and cynomolgus monkey and tree shrew models highlight the crucial role of SSX1 in spermatogenesis. Notably, three of the five couples who underwent intra-cytoplasmic sperm injection treatment achieved a successful pregnancy. This study provides important guidance for genetic counseling and clinical diagnosis and, significantly, describes the approaches for elucidating the functions of testis-enriched PSGs in spermatogenesis.


Assuntos
Astenozoospermia , Tupaia , Animais , Masculino , Macaca fascicularis , Primatas , Sêmen , Motilidade dos Espermatozoides , Tupaiidae
7.
Gene Ther ; 30(1-2): 88-100, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35440807

RESUMO

Chemotherapy resistance remains a major obstacle in the treatment of esophageal cancer. Previous researches have shown that an increase in exosomal PD-L1 expression was positively associated with a more advanced clinical stage, a poorer prognosis as well as drug resistance in patients with esophageal squamous cell carcinoma (ESCC). To explore the role of exosomal PD-L1 in ESCC, we performed bioinformatics analysis as well as several in vitro/in vivo functional experiments in a parental sensitive cell line EC-9706 and its derivative, a paclitaxel-resistant subline EC-9706R, and found that the exosomal PD-L1 from EC-9706R was higher than that from EC-9706. Moreover, exosomes from EC-9706R significantly increased invasion, migration and chemoresistance of EC-9706. Anti-PD-L1 treatment in combination with chemotherapy also led to reduced tumor burden in vivo. Inhibition of the release of exosomes by GW4869 or inhibition of STAT3 phosphorylation by stattic could effectively reverse the resistance to paclitaxel mediated by exosomal PD-L1. Furthermore, we found that PD-L1, miR-21, and multidrug resistance (MDR1) gene are involved in the process of exosomal transfer. Moreover, PD-L1 could enhance miR-21 expression by increasing the enrichment of STAT3 on miR-21 promoter. Our results suggested that exosomal PD-L1 may contribute to drug resistance to paclitaxel by regulating the STAT3/miR-21/PTEN/Akt axis and promote tumorigenic phenotype. This study provides a novel potential therapeutic approach to reverse chemoresistance and tumor progression through exosomal PD-L1 in ESCC patients.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Exossomos , MicroRNAs , Humanos , Neoplasias Esofágicas/tratamento farmacológico , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Carcinoma de Células Escamosas do Esôfago/tratamento farmacológico , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/metabolismo , Exossomos/genética , Linhagem Celular Tumoral , Paclitaxel/farmacologia , Paclitaxel/uso terapêutico , Paclitaxel/metabolismo , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Proliferação de Células/genética , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo
8.
Front Endocrinol (Lausanne) ; 13: 971564, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36440230

RESUMO

Polycystic ovarian syndrome (PCOS) is one of the most common endocrinological disorders affecting between 6 to 20% of reproductive aged women. However, the etiology of PCOS is still unclear. Epidermal growth factor receptor (EGFR) plays a critical role in the growth and development of ovarian follicles. In our previous study, we showed that the expression level of EGFR was significantly higher in the cumulus granulosa cells from women with PCOS than that of normal women, suggesting that EGFR may play a potential role in the pathogenesis of PCOS. The present study further evaluated the association between EGFR and PCOS through both in clinical observation and animal experiments. We firstly validated the differential expression of EGFR in cumulus granulosa cells between PCOS patients and normal subjects by qRT-PCR and immunofluorescence staining. Then we generated a mouse model (n=20) of PCOS by injecting dehydroepiandrosterone (DHEA). The PCOS mice were then injected with an E corpus GFR inhibitor (AG1478) (n=10), which significantly improved the sex hormone levels in the estrous cycle stage, and the serum levels of LH, FSH and testosterone were compared with the PCOS mice without EGFR inhibitor treatment (n=10). Decreasing the expression level of EGFR in the PCOS mice also improved the ovulatory function of their ovaries which was indicated by the multifarious follicle stage in these mice as compared with the PCOS mice without EGFR inhibitor treatment. Also, the number of corpopa lutea were higher in the control group and the EGFR inhibitor treated group than in the PCOS group. The sex hormone levels and reproductive function were not significantly different between the control mice and the PCOS mice treated with the EGFR inhibitor. Our results demonstrated that EGF/EGFR signaling affected the proliferation of cumulus granulosa cells, oocyte maturation and meiosis, and played a potential role in the pathogenesis of PCOS. Therefore, the selective inhibition of EGFR may serve as a novel strategy for the clinical management of PCOS.


Assuntos
Síndrome do Ovário Policístico , Humanos , Feminino , Camundongos , Animais , Células da Granulosa/metabolismo , Receptores ErbB/metabolismo , Folículo Ovariano/metabolismo , Hormônios Esteroides Gonadais/metabolismo
9.
Cell Mol Immunol ; 19(12): 1392-1399, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36258005

RESUMO

The new predominant circulating SARS-CoV-2 variant, Omicron, can robustly escape current vaccines and neutralizing antibodies. Although Omicron has been reported to have milder replication and disease manifestations than some earlier variants, its pathogenicity in different age groups has not been well elucidated. Here, we report that the SARS-CoV-2 Omicron BA.1 sublineage causes elevated infection and lung pathogenesis in juvenile and aged hamsters, with more body weight loss, respiratory tract viral burden, and lung injury in these hamsters than in adult hamsters. Juvenile hamsters show a reduced interferon response against Omicron BA.1 infection, whereas aged hamsters show excessive proinflammatory cytokine expression, delayed viral clearance, and aggravated lung injury. Early inhaled IFN-α2b treatment suppresses Omicron BA.1 infection and lung pathogenesis in juvenile and adult hamsters. Overall, the data suggest that the diverse patterns of the innate immune response affect the disease outcomes of Omicron BA.1 infection in different age groups.


Assuntos
Tratamento Farmacológico da COVID-19 , COVID-19 , Interferon-alfa , Lesão Pulmonar , Animais , Cricetinae , Anticorpos Neutralizantes/uso terapêutico , Anticorpos Antivirais , Antivirais , COVID-19/patologia , Interferon-alfa/uso terapêutico , Lesão Pulmonar/virologia , Mesocricetus , SARS-CoV-2
10.
Medicine (Baltimore) ; 101(40): e30888, 2022 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-36221371

RESUMO

Esophageal cancer (ESCA), one of the most aggressive malignant tumors, has been announced to be the ninth most common cancer and the sixth leading cause of cancer-related death in the world. Chromobox family members (CBXs) are important epigenetic regulators which are related with the transcription of target genes. The role of CBXs in carcinomas has been reported in many studies. However, the function and prognostic value of different CBXs in ESCA are still largely unknown. In this article, we first performed differential expression analysis through several methods including Oncomine and Gene Expression Profiling Interactive Analysis. The results led us to determine the differential expression of CBXs in pan-cancer, especially ESCA. Then we evaluated the prognostic value of different CBX messenger RNA (mRNA) expression in patients with ESCA through the Kaplan-Meier plotter and the Human Protein Atlas database. In addition, we used cBioPortal to explore all genetic alterations and mutations in the CBXs in ESCA. Simultaneously, the correlation between its expression and the level of immune infiltration of ESCA was visualized by TIMER. Finally, the biological function of CBXs in ESCA is obtained through Biological Enrichment Analysis including gene ontology and Kyoto Encyclopedia of Genes and Genomes. The expression levels of CBX3/4/5 and CBX8 in ESCA tissues increased significantly and the expression level of CBX7 decreased through differential expression analysis. Additionally, CBX1 is significantly related to the clinical cancer stage and disease-free survival of ESCA patients. The high mRNA expression of CBX4 is related to the short overall survival of patients with esophageal squamous cell carcinoma, and the high mRNA expression of CBX3/7/8 is related to the short overall survival of patients with esophageal adenocarcinoma, indicating that CBX1/3/4/7/8 may be a potential prognostic biomarker for the survival of ESCA patients. Besides, the expression of CBXs is significantly related to the infiltration of a variety of immune cells, including six types of CD4-positive T-lymphocytes, macrophages, neutrophils, bursindependentlymphocyte, CD8-positive T-lymphocytes cells and dendritic cells in ESCA. Moreover, we found that CBXs are mainly associated with the inhibition of cell cycle and apoptosis pathway. Further, enrichment analysis indicated that CBXs and correlated genes were enriched in mismatch repair, DNA replication, cancer pathways, and spliceosomes. Our research may provide new insights into the choice of prognosis biomarkers of the CBXs in ESCA.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Biomarcadores , Proteínas Cromossômicas não Histona , Neoplasias Esofágicas/genética , Humanos , Ligases , Complexo Repressor Polycomb 1 , Proteínas do Grupo Polycomb/genética , Proteínas do Grupo Polycomb/metabolismo , Prognóstico , RNA Mensageiro/metabolismo
11.
Ecotoxicol Environ Saf ; 244: 114071, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36113270

RESUMO

Esophageal squamous cell carcinoma (ESCC) is an environment-relevant malignancy with a high mortality. Nitrosamines, a class of nitrogen-containing environmental carcinogens, are widely suggested as a risk factor for ESCC. However, how nitrosamines affect metabolic regulation to promote ESCC tumorigenesis is largely unknown. In this study, the transition trajectory of serum metabolism in the course of ESCC induced by N-nitrosomethylbenzylamine (NMBA) in rats was depicted by an untargeted metabolomic analysis, and the potential molecular mechanisms were revealed. The results showed that the metabolic alteration in rats was slight at the basal cell hyperplasia (BCH) stage, while it became apparent when the esophageal lesion developed into dysplasia (DYS) or more serious conditions. Moreover, serum metabolism of severe dysplasia (S-DYS) showed more similar characteristics to that of carcinoma in situ (CIS) and invasive cancer (IC). Aberrant nicotinate (NA) and nicotinamide (NAM) metabolism, tryptophan (TRP) metabolism, and sphingolipid metabolism could be the key players favoring the malignant transformation of esophageal epithelium induced by NMBA. More particularly, NA and NAM metabolism in the precancerous stages and TRP metabolism in the cancerous stages were demonstrated to replenish NAD+ in different patterns. Furthermore, both the IDO1-KYN-AHR axis mediated by TRP metabolism and the SPHK1-S1P-S1PR1 axis by sphingolipid metabolism provided an impetus to create the pro-inflammatory yet immune-suppressive microenvironment to facilitate the esophageal tumorigenesis and progression. Together, these suggested that NMBA exerted its carcinogenicity via more than one pathway, which may act together to produce combination effects. Targeting these pathways may open up the possibility to attenuate NMBA-induced esophageal carcinogenesis. However, the interconnection between different metabolic pathways needs to be specified further. And the integrative and multi-level systematic research will be conducive to fully understanding the mechanisms of NMBA-induced ESCC.


Assuntos
Carcinógenos Ambientais , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Niacina , Nitrosaminas , Animais , Carcinógenos/toxicidade , Transformação Celular Neoplásica , Dimetilnitrosamina/análogos & derivados , Neoplasias Esofágicas/induzido quimicamente , Carcinoma de Células Escamosas do Esôfago/induzido quimicamente , Metaboloma , NAD , Niacina/toxicidade , Niacinamida/toxicidade , Nitrogênio/toxicidade , Nitrosaminas/toxicidade , Ratos , Esfingolipídeos , Triptofano/toxicidade , Microambiente Tumoral
12.
World J Gastroenterol ; 28(29): 3869-3885, 2022 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-36157541

RESUMO

BACKGROUND: Mass spectrometry-based proteomics and glycomics reveal post-translational modifications providing significant biological insights beyond the scope of genomic sequencing. AIM: To characterize the N-linked glycoproteomic profile in esophageal squamous cell carcinoma (ESCC) via two complementary approaches. METHODS: Using tandem multilectin affinity chromatography for enrichment of N-linked glycoproteins, we performed N-linked glycoproteomic profiling in ESCC tissues by two-dimensional gel electrophoresis (2-DE)-based and isobaric tags for relative and absolute quantification (iTRAQ) labeling-based mass spectrometry quantitation in parallel, followed by validation of candidate glycoprotein biomarkers by Western blot. RESULTS: 2-DE-based and iTRAQ labeling-based quantitation identified 24 and 402 differentially expressed N-linked glycoproteins, respectively, with 15 in common, demonstrating the outperformance of iTRAQ labeling-based quantitation over 2-DE and complementarity of these two approaches. Proteomaps showed the distinct compositions of functional categories between proteins and glycoproteins with differential expression associated with ESCC. Western blot analysis validated the up-regulation of total procathepsin D and high-mannose procathepsin D, and the down-regulation of total haptoglobin, high-mannose clusterin, and GlcNAc/sialic acid-containing fraction of 14-3-3ζ in ESCC tissues. The serum levels of glycosylated fractions of clusterin, proline-arginine-rich end leucine-rich repeat protein, and haptoglobin in patients with ESCC were remarkably higher than those in healthy controls. CONCLUSION: Our study provides insights into the aberrant N-linked glycoproteome associated with ESCC, which will be a valuable resource for future investigations.


Assuntos
Carcinoma de Células Escamosas , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Proteínas 14-3-3/metabolismo , Arginina , Biomarcadores Tumorais , Carcinoma de Células Escamosas/metabolismo , Clusterina/metabolismo , Neoplasias Esofágicas/metabolismo , Carcinoma de Células Escamosas do Esôfago/genética , Glicoproteínas/genética , Glicoproteínas/metabolismo , Haptoglobinas/metabolismo , Humanos , Manose , Ácido N-Acetilneuramínico , Prolina
13.
BMC Cancer ; 22(1): 1017, 2022 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-36162992

RESUMO

BACKGROUND: Long noncoding RNAs (lncRNAs) are abnormally expressed in a broad type of cancers and play significant roles that regulate tumor development and metastasis. However, the pathological roles of lncRNAs in esophageal squamous cell carcinoma (ESCC) remain largely unknown. Here we aimed to investigate the role and regulatory mechanism of the novel lncRNA RPL34-AS1 in the development and progression of ESCC. METHODS: The expression level of RPL34-AS1 in ESCC tissues and cell lines was determined by RT-qPCR. Functional experiments in vitro and in vivo were employed to explore the effects of RPL34-AS1 on tumor growth in ESCC cells. Mechanistically, fluorescence in situ hybridization (FISH), bioinformatics analyses, luciferase reporter assay, RNA immunoprecipitation (RIP) assay and western blot assays were used to detect the regulatory relationship between RPL34-AS1, miR-575 and ACAA2. RESULTS: RPL34-AS1 was significantly down-regulated in ESCC tissues and cells, which was negatively correlated with overall survival in ESCC patients. Functionally, upregulation of RPL34-AS1 dramatically suppressed ESCC cell proliferation, colony formation, invasion and migration in vitro, whereas knockdown of RPL34-AS1 elicited the opposite function. Consistently, overexpression of RPL34-AS1 inhibited tumor growth in vivo. Mechanistically, RPL34-AS1 acted as a competing endogenous RNA (ceRNA) of miR-575 to relieve the repressive effect of miR-575 on its target ACAA2, then suppressed the tumorigenesis of ESCC. CONCLUSIONS: Our results reveal a role for RPL34-AS1 in ESCC tumorigenesis and may provide a strategy for using RPL34-AS1 as a potential biomarker and an effect target for patients with ESCC.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , MicroRNAs , RNA Longo não Codificante , Humanos , Acetil-CoA C-Aciltransferase , Biomarcadores , Carcinogênese/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Progressão da Doença , Neoplasias Esofágicas/patologia , Carcinoma de Células Escamosas do Esôfago/patologia , Regulação Neoplásica da Expressão Gênica , Hibridização in Situ Fluorescente , MicroRNAs/genética , MicroRNAs/metabolismo , Processos Neoplásicos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo
14.
Clin Exp Pharmacol Physiol ; 49(12): 1334-1341, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36066385

RESUMO

Imatinib, an inhibitor of tyrosine kinase, shows remarkable efficacy in chronic myeloid leukaemia (CML). Autophagy protects tumour cells against chemotherapeutic stimulation and contributes to imatinib resistance in CML. Kinesin family member 23 (KIF23) is involved in cytokinesis and associated with autophagy. The role of KIF23 in autophagy-induced imatinib resistance in CML was investigated. First, to induce drug resistance, CML cells were exposed to increasing concentrations of imatinib. The concentration of imatinib resistance in CML cells was screened through upregulation of 50% inhibitory concentration (IC50 ) values. KIF23 was elevated in imatinib-resistant tissues and cells of CML. Second, knockdown of KIF23 reduced IC50 values of imatinib-resistant CML cells to imatinib. Moreover, silence of KIF23 also suppressed cell proliferation and promoted apoptosis of imatinib-resistant CML cells. Third, immunofluorescence analysis showed that the number of LC3 bright spots in imatinib-resistant CML cells was reduced by silence of KIF23. Knockdown of KIF23 upregulated p62 expression and downregulated the expression ratio of LC3-II to LC3-I in imatinib-resistant CML cells. Last, silence of KIF23 decreased nuclear ß-catenin and increased cytoplasmic ß-catenin in imatinib-resistant CML cells. Activator of Wnt/ß-catenin attenuated KIF23 silence-induced increase of apoptosis and decrease of autophagy in imatinib-resistant CML cells. In conclusion, loss of KIF23 repressed autophagy-induced imatinib resistance in CML cells through inactivation of Wnt/ß-catenin pathway.


Assuntos
Antineoplásicos , Leucemia Mielogênica Crônica BCR-ABL Positiva , Humanos , Antineoplásicos/farmacologia , Apoptose , Autofagia , beta Catenina , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Mesilato de Imatinib/farmacologia , Células K562 , Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , Proteínas Associadas aos Microtúbulos , Via de Sinalização Wnt
15.
Front Oncol ; 12: 914692, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35814454

RESUMO

Prostate cancer is a leading malignancy in the male population globally. N6-methylation of adenosine (m6A) is the most prevalent mRNA modification and plays an essential role in various biological processes in vivo. However, the potential roles of m6A in metastatic prostate cancer are largely unknown. In this study, we evaluated and identified two m6A modification patterns based on 21 m6A regulators in four public metastatic prostate cancer datasets. Different modification patterns correlated with distinct molecular characteristics. According to m6A-associated genes, we constructed a prognostic model, called m6Ascore, to predict the outcomes of patients with metastatic prostate cancer. We found that high m6A score level was related to dismal prognosis and characterized by higher cell cycle, DNA repair and mismatch repair pathway score. In vitro experiments confirmed that upregulation of METTL14, an m6A writer, enhanced the invasion, metastasis, and sensitivity of prostate cancer cells to poly (ADP-ribose) polymerase inhibitor. Conversely, down-regulation of potential target genes of m6A had the opposite effect. Finally, we validated that a higher m6A score was associated with a worse prognosis and a higher Gleason score in The Cancer Genome Atlas Program (TCGA) cohort. This work illustrated the nonnegligible role of m6A modification in multiple biological processes of metastatic prostate cancer. Evaluating the m6A risk scores of individual tumours will guide more effective judgement of prognosis as well as treatments for metastatic prostate cancer in clinical practice.

16.
Environ Int ; 167: 107423, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35908391

RESUMO

Health risks caused by crucial environmental carcinogens N-nitrosamines triggered ubiquitous attention. As the liver exerted vital function through metabolic process, lipid metabolism disorders have been confirmed as potential drivers for toxicological effects, and the mechanisms of lipid regulation related to hepatotoxicity induced by N-nitrosamines remained largely unclear. In this study, we comprehensively explored the disturbance of hepatic lipid homeostasis in mice induced by nitrosamines. The results implied that nitrosamines exposure induced hepatotoxicity accompanied by liver injury, inflammatory infiltration, and hepatic edema. Lipidomics profiling analysis indicated the decreased levels of phosphatidic acids (PA), phosphatidylcholines (PC), phosphatidylethanolamines (PE), lyso-phosphatidylcholines (LPC), lyso-phosphatidylethanolamines (LPE), diacylglycerols (DAG) and triacylglycerols (TAG), the elevation of ceramides (Cer) and decomposition of free fatty acids (FFA) in high-dose nitrosamines exposure group. Importantly, nitrosamines exposure promoted fatty acid oxidation (FAO) by facilitating fatty acid uptake and decomposition, together with the upregulation of genes associated with FAO accompanied by the activation of inflammatory cytokines TNF-α, IL-1ß and NLRP3. Furthermore, fatty acid translocase CD36-mediated fatty acid oxidation was correlated with the enhancement of oxidative stress in the liver caused by nitrosamines exposure. Overall, our results contributed to the new strategies to interpret the early toxic effects of nitrosamines exposure.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Transtornos do Metabolismo dos Lipídeos , Nitrosaminas , Animais , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Ácidos Graxos/metabolismo , Metabolismo dos Lipídeos , Transtornos do Metabolismo dos Lipídeos/metabolismo , Fígado , Camundongos , Camundongos Endogâmicos ICR , Nitrosaminas/toxicidade , Fosfatidilcolinas/metabolismo , Fosfatidilcolinas/farmacologia , Fosfatidiletanolaminas/metabolismo , Fosfatidiletanolaminas/farmacologia
17.
Mol Med Rep ; 26(1)2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35621139

RESUMO

Ambient fine particulate matter (PM) serves an important role in the development of cardiovascular disease, including atherosclerosis. Antioxidant N­acetyl cysteine (NAC) has protective effects in the cardiovascular system. However, it is unknown if NAC prevents PM­potentiated atherosclerosis in hyperlipidemia. Low­density lipoprotein (LDL) receptor knockout mice were pretreated with 1 mg/ml NAC in drinking water for 1 week and continued to receive NAC, high­fat diet and intranasal instillation of PM for 1 week or 6 months. Blood plasma was collected for lipid profile, oxidized (ox­)LDL, blood reactive oxygen species (ROS) and inflammatory cytokine (TNF­α, IL­1ß and IL­6) measurement. Blood cells were harvested for endothelial progenitor cell (EPC) population and intracellular ROS analysis. Murine aorta was isolated for atherosclerotic plaque ratio calculation. NAC treatment maintained circulating EPC level and significantly decreased blood ox­LDL and ROS, inflammatory cytokines, mononuclear and EPC intracellular ROS levels as well as aortic plaque ratio. NAC prevented PM­potentiated atherosclerosis by inhibiting plasma ROS­induced ox­LDL elevation, mononuclear cell and EPC intracellular ROS­induced circulating EPC reduction and inflammatory cytokine production.


Assuntos
Aterosclerose , Células Progenitoras Endoteliais , Acetilcisteína/farmacologia , Animais , Aterosclerose/tratamento farmacológico , Lipoproteínas LDL/farmacologia , Camundongos , Material Particulado/toxicidade , Espécies Reativas de Oxigênio
18.
J Appl Toxicol ; 42(10): 1651-1661, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35437791

RESUMO

Nitrosamines were a class of important environmental carcinogens associated with digestive tract neoplasms. As the early toxic effect of nitrosamines, inflammatory response participated in the malignant transformation of cells and promoted the occurrence and development of tumors. However, the role of NLRP3 inflammasome in the nitrosamines-induced inflammatory response was unclear. In this study, the human esophageal epithelial cells (Het-1A) were used to explore potential mechanisms of the activation of NLRP3 inflammasome under co-exposure to nine nitrosamines commonly found in drinking water at the doses of 0, 4, 20, 100, 500, and 2500 ng/mL. The results showed that nitrosamines stimulated activation of the NLRP3 inflammasome and induced cellular oxidative damage in a dose-dependent manner. Pretreatment of reactive oxygen species scavenger N-acetyl-L-cysteine (NAC), particularly mitochondrial reactive oxygen species (mtROS) scavengers Mito-TEMPO, effectively inhibited the activation of NLRP3 inflammasome, suggesting that nitrosamines could mediate the activation of NLRP3 inflammasome via mtROS. Furthermore, we found that nitrosamines co-exposure also promoted cell pyroptosis through the NLRP3/caspase-1/GSDMD pathway, which was demonstrated by adding the caspase-1 inhibitor Z-YVAD-FMK and constructing NLRP3 downregulated Het-1A cell line. This study revealed the underlying mechanism of the activation of NLRP3 inflammasome initiated by nitrosamines co-exposure and provided new perspectives on the toxic effects of nitrosamines.


Assuntos
Inflamassomos , Nitrosaminas , Humanos , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR , Nitrosaminas/toxicidade , Piroptose/fisiologia , Espécies Reativas de Oxigênio/metabolismo
19.
Front Bioeng Biotechnol ; 10: 823619, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35299644

RESUMO

Background: The aim of this study was to identify prognostic markers for esophageal squamous cell carcinoma (ESCC) and build an effective prognostic nomogram for ESCC. Methods: A total of 365 patients with ESCC from three medical centers were divided into four cohorts. In the discovery phase of the study, we analyzed transcriptional data from 179 cancer tissue samples and identified nine marker genes using edgeR and rbsurv packages. In the training phase, penalized Cox regression was used to select the best marker genes and clinical characteristics in the 179 samples. In the verification phase, these marker genes and clinical characteristics were verified by internal validation cohort (n = 58) and two external cohorts (n = 81, n = 105). Results: We constructed and verified a nomogram model based on multiple clinicopathologic characteristics and gene expression of a patient cohort undergoing esophagectomy and adjuvant radiochemotherapy. The predictive accuracy for 4-year overall survival (OS) indicated by the C-index was 0.75 (95% CI, 0.72-0.78), which was statistically significantly higher than that of the American Joint Committee on Cancer (AJCC) seventh edition (0.65). Furthermore, we found two marker genes (TM9SF1, PDZK1IP) directly related to the OS of esophageal cancer. Conclusion: The nomogram presented in this study can accurately and impersonally predict the prognosis of ESCC patients after partial resection of the esophagus. More research is required to determine whether it can be applied to other patient populations. Moreover, we found two marker genes directly related to the prognosis of ESCC, which will provide a basis for future research.

20.
Pharmazie ; 77(2): 48-53, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35209963

RESUMO

Psoriasis is a complex chronic skin inflammatory disease characterized by abnormal proliferation, differentiation of keratinocytes and infiltration of lymphocytes and neutrophils. The tripeptide KdPT, structurally derived from the C-terminal amino acid of alpha-melanocyte-stimulating hormone, has shown a significant anti-inflammatory effect on mild-to-moderate active ulcerative colitis in previous reports. In this research, we investigated whether KdPT could consistently ameliorate disease in a mouse model of imiquimod (IMQ)-induced psoriasis by inhibiting proliferation and inflammation response. We demonstrated that KdPT in vitro significantly inhibited the proliferation of human keratinocytes and endothelial cells, and also downgraded the expression of inflammatory factors in LPS-induced RAW264.7, including IL-6, TNF-α and NO. In vivo, KdPT attenuates the severity of IMQ-induced psoriasis-like phenotype in mice. Such an effect was achieved by downregulating the expression of the inflammatory cytokines interleukin (IL)-6, TNF-α, and the proliferation marker Ki67. These results suggested that KdPT might be useful in the treatment for psoriasis.


Assuntos
Psoríase , Fator de Necrose Tumoral alfa , Animais , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Proliferação de Células , Citocinas , Modelos Animais de Doenças , Células Endoteliais , Imiquimode/toxicidade , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Interleucina-6/farmacologia , Queratinócitos , Camundongos , Camundongos Endogâmicos BALB C , Psoríase/induzido quimicamente , Psoríase/tratamento farmacológico , Pele
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA