Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Gut Microbes ; 16(1): 2356642, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38769708

RESUMO

Adherent-invasive Escherichia coli (AIEC) strain LF82, isolated from patients with Crohn's disease, invades gut epithelial cells, and replicates in macrophages contributing to chronic inflammation. In this study, we found that RstAB contributing to the colonization of LF82 in a mouse model of chronic colitis by promoting bacterial replication in macrophages. By comparing the transcriptomes of rstAB mutant- and wild-type when infected macrophages, 83 significant differentially expressed genes in LF82 were identified. And we identified two possible RstA target genes (csgD and asr) among the differentially expressed genes. The electrophoretic mobility shift assay and quantitative real-time PCR confirmed that RstA binds to the promoters of csgD and asr and activates their expression. csgD deletion attenuated LF82 intracellular biofilm formation, and asr deletion reduced acid tolerance compared with the wild-type. Acidic pH was shown by quantitative real-time PCR to be the signal sensed by RstAB to activate the expression of csgD and asr. We uncovered a signal transduction pathway whereby LF82, in response to the acidic environment within macrophages, activates transcription of the csgD to promote biofilm formation, and activates transcription of the asr to promote acid tolerance, promoting its replication within macrophages and colonization of the intestine. This finding deepens our understanding of the LF82 replication regulation mechanism in macrophages and offers new perspectives for further studies on AIEC virulence mechanisms.


Assuntos
Aderência Bacteriana , Biofilmes , Infecções por Escherichia coli , Proteínas de Escherichia coli , Escherichia coli , Regulação Bacteriana da Expressão Gênica , Macrófagos , Macrófagos/microbiologia , Animais , Camundongos , Escherichia coli/genética , Escherichia coli/patogenicidade , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Biofilmes/crescimento & desenvolvimento , Infecções por Escherichia coli/microbiologia , Humanos , Concentração de Íons de Hidrogênio , Virulência , Colite/microbiologia , Doença de Crohn/microbiologia , Modelos Animais de Doenças , Transdução de Sinais , Ácidos/metabolismo
2.
Cell Rep ; 43(4): 114051, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38564334

RESUMO

Uropathogenic Escherichia coli (UPEC) is the most common causative agent of urinary tract infection (UTI). UPEC invades bladder epithelial cells (BECs) via fusiform vesicles, escapes into the cytosol, and establishes biofilm-like intracellular bacterial communities (IBCs). Nucleoside-diphosphate kinase (NDK) is secreted by pathogenic bacteria to enhance virulence. However, whether NDK is involved in UPEC pathogenesis remains unclear. Here, we find that the lack of ndk impairs the colonization of UPEC CFT073 in mouse bladders and kidneys owing to the impaired ability of UPEC to form IBCs. Furthermore, we demonstrate that NDK inhibits caspase-1-dependent pyroptosis by consuming extracellular ATP, preventing superficial BEC exfoliation, and promoting IBC formation. UPEC utilizes the reactive oxygen species (ROS) sensor OxyR to indirectly activate the regulator integration host factor, which then directly activates ndk expression in response to intracellular ROS. Here, we reveal a signaling transduction pathway that UPEC employs to inhibit superficial BEC exfoliation, thus facilitating acute UTI.


Assuntos
Caspase 1 , Infecções por Escherichia coli , Núcleosídeo-Difosfato Quinase , Piroptose , Infecções Urinárias , Escherichia coli Uropatogênica , Escherichia coli Uropatogênica/patogenicidade , Animais , Infecções Urinárias/microbiologia , Infecções Urinárias/patologia , Camundongos , Caspase 1/metabolismo , Núcleosídeo-Difosfato Quinase/metabolismo , Núcleosídeo-Difosfato Quinase/genética , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/metabolismo , Infecções por Escherichia coli/patologia , Espécies Reativas de Oxigênio/metabolismo , Camundongos Endogâmicos C57BL , Humanos , Feminino , Bexiga Urinária/microbiologia , Bexiga Urinária/patologia , Células Epiteliais/microbiologia , Células Epiteliais/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Transdução de Sinais
3.
Front Endocrinol (Lausanne) ; 15: 1338465, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38495785

RESUMO

Objective: Multiple observational studies have demonstrated an association between type 2 diabetes mellitus (T2DM) and chronic liver diseases (CLDs). However, the causality of T2DM on CLDs remained unknown in various ethnic groups. Methods: We obtained instrumental variables for T2DM and conducted a two-sample mendelian randomization (MR) study to examine the causal effect on nonalcoholic fatty liver disease (NAFLD), hepatocellular carcinoma (HCC), viral hepatitis, hepatitis B virus (HBV) infection, and hepatitis C virus (HCV) infection risk in Europeans and East Asians. The primary analysis utilized the inverse variance weighting (IVW) technique to evaluate the causal relationship between T2DM and CLDs. In addition, we conducted a series of rigorous analyses to bolster the reliability of our MR results. Results: In Europeans, we found that genetic liability to T2DM has been linked with increased risk of NAFLD (IVW : OR =1.3654, 95% confidence interval [CI], 1.2250-1.5219, p=1.85e-8), viral hepatitis (IVW : OR =1.1173, 95%CI, 1.0271-1.2154, p=0.0098), and a suggestive positive association between T2DM and HCC (IVW : OR=1.2671, 95%CI, 1.0471-1.5333, p=0.0150), HBV (IVW : OR=1.1908, 95% CI, 1.0368-1.3677, p=0.0134). No causal association between T2DM and HCV was discovered. Among East Asians, however, there was a significant inverse association between T2DM and the proxies of NAFLD (ALT: IVW OR=0.9752, 95%CI 0.9597-0.9909, p=0.0021; AST: IVW OR=0.9673, 95%CI, 0.9528-0.9821, p=1.67e-5), and HCV (IVW: OR=0.9289, 95%CI, 0.8852-0.9747, p=0.0027). Notably, no causal association was found between T2DM and HCC, viral hepatitis, or HBV. Conclusion: Our MR analysis revealed varying causal associations between T2DM and CLDs in East Asians and Europeans. Further research is required to investigate the potential mechanisms in various ethnic groups, which could yield new insights into early screening and prevention strategies for CLDs in T2DM patients.


Assuntos
Carcinoma Hepatocelular , Diabetes Mellitus Tipo 2 , Hepatite B , Hepatite C , Neoplasias Hepáticas , Hepatopatia Gordurosa não Alcoólica , Humanos , Carcinoma Hepatocelular/etiologia , Carcinoma Hepatocelular/genética , Hepatopatia Gordurosa não Alcoólica/epidemiologia , Hepatopatia Gordurosa não Alcoólica/genética , Diabetes Mellitus Tipo 2/epidemiologia , Diabetes Mellitus Tipo 2/genética , Reprodutibilidade dos Testes , Neoplasias Hepáticas/etiologia , Neoplasias Hepáticas/genética , Hepacivirus
4.
Gut Microbes ; 16(1): 2316932, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38356294

RESUMO

Mitochondrial dynamics are critical in cellular energy production, metabolism, apoptosis, and immune responses. Pathogenic bacteria have evolved sophisticated mechanisms to manipulate host cells' mitochondrial functions, facilitating their proliferation and dissemination. Salmonella enterica serovar Typhimurium (S. Tm), an intracellular foodborne pathogen, causes diarrhea and exploits host macrophages for survival and replication. However, S. Tm-associated mitochondrial dynamics during macrophage infection remain poorly understood. In this study, we showed that within macrophages, S. Tm remodeled mitochondrial fragmentation to facilitate intracellular proliferation mediated by Salmonella invasion protein A (SipA), a type III secretion system effector encoded by Salmonella pathogenicity island 1. SipA directly targeted mitochondria via its N-terminal mitochondrial targeting sequence, preventing excessive fragmentation and the associated increase in mitochondrial reactive oxygen species, loss of mitochondrial membrane potential, and release of mitochondrial DNA and cytochrome c into the cytosol. Macrophage replication assays and animal experiments showed that mitochondria and SipA interact to facilitate intracellular replication and pathogenicity of S. Tm. Furthermore, we showed that SipA delayed mitochondrial fragmentation by indirectly inhibiting the recruitment of cytosolic dynamin-related protein 1, which mediates mitochondrial fragmentation. This study revealed a novel mechanism through which S. Tm manipulates host mitochondrial dynamics, providing insights into the molecular interplay that facilitates S. Tm adaptation within host macrophages.


Assuntos
Microbioma Gastrointestinal , Salmonella typhimurium , Animais , Salmonella typhimurium/metabolismo , Proteína Estafilocócica A/genética , Proteína Estafilocócica A/metabolismo , Sorogrupo , Dinâmica Mitocondrial , Proteínas de Bactérias/metabolismo , Macrófagos/metabolismo , Proliferação de Células
5.
J Sci Food Agric ; 103(15): 7721-7738, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37439182

RESUMO

BACKGROUND: Nonalcoholic fatty liver disease (NAFLD) is the most common cause of liver cirrhosis and cancer. Lonicerae flos polysaccharides (LPs) have been shown to be effective in treating metabolic diseases; however, the therapeutic effects and underlying molecular mechanisms of LPs in NAFLD remain unclear. PURPOSE: The objective of this study was to investigate the morphological characterization of Lonicerae flos polysaccharides (LPs) and the mechanism of LPs in relieving NAFLD. METHODS: The morphology of LPs was observed using atomic force microscopy (AFM), X-ray diffraction (XRD), thermal weight (TG), and thermal weight derivative (DTG); NAFLD mice were treated with LPs at the same time as they were induced with a Western diet, and then the indexes related to glycolipid metabolism, fibrosis, inflammation, and autophagy in the serum and liver of the mice were detected. RESULTS: The atomic force microscope analysis results indicated that the LPs displayed sugar-chain aggregates, exhibited an amorphous structure, and were relatively stable in thermal cracking at 150 °C. It was also found that LPs exerted therapeutic effects in NAFLD. The LPs prevented high-fat and -cholesterol diet-induced NAFLD progression by regulating glucose metabolism dysregulation, insulin resistance, lipid accumulation, inflammation, fibrosis, and autophagy. Adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) inhibitor compound C abrogated LP-induced hepatoprotection in mice with NAFLD. The LPs further treated NAFLD by reshaping the structure of the gut microbiota, in which Desulfovibrio bacteria plays a key roles. CONCLUSION: Lonicerae flos polysaccharides exert protective effects against NAFLD in mice by improving the structure of the intestinal flora and activating the AMPK signaling pathway. © 2023 Society of Chemical Industry.


Assuntos
Microbioma Gastrointestinal , Hepatopatia Gordurosa não Alcoólica , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/metabolismo , Lipopolissacarídeos , Proteínas Quinases Ativadas por AMP/metabolismo , Fígado/metabolismo , Metabolismo dos Lipídeos , Inflamação/metabolismo , Polissacarídeos/farmacologia , Polissacarídeos/metabolismo , Fibrose , Adenosina/metabolismo , Adenosina/farmacologia , Adenosina/uso terapêutico , Dieta Hiperlipídica/efeitos adversos , Camundongos Endogâmicos C57BL
6.
Ecotoxicol Environ Saf ; 230: 113174, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34999342

RESUMO

This study aimed to investigate the structure characteristics Lonicera flos polysaccharides (LP) and the protective effects of LP on cyclophosphamide-induced immunosuppression in mice. The results showed the yield and purity of LP was 1.41% and 94.15%, the molecular weight was 53 kDa, and composed of arabinose, rhamnose, ribose, xylose, mannose, fructose, galactose and glucose; and LP had typical polysaccharide structural characteristics via ultraviolet and Fourier transform infrared (FTIR) spectroscopy, 1H NMR and 13C NMR spectra, and scanning electron microscopy (SEM) analyses. Furthermore, LP obviously alleviated the injury of spleen and thymus; significantly promoted Interleukin-2 (IL-2), IL-6, tumor necrosis factor α (TNF-α), immunoglobulin (IgA, IgG and IgM) secretion; and improved the richness of gut microbiota and the contents of short-chain fatty acids (SCFAs) in immunosuppressive mice. Taken together, these results suggested that LP possessed strong protective effect on cyclophosphamide-induced immunosuppression in mice via modulating gut microbiota.

7.
Am J Chin Med ; 49(4): 863-881, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33829966

RESUMO

Ischemic stroke is one of the major diseases with high morbidity, mortality, and disability rate all over the world. Chinese herb-derived active components would provide valuable candidate compounds for ischemic stroke therapy. Paeoniflorin (PF) is an active ingredient from Paeoniae Radix which possesses neurovascular effect after ischemia. However, so far, few studies are reported on the efficacy and mechanism of PF from angiogenesis aspects. Results from our in vitro studies showed that the ability for proliferation, migration, and tube formation in bone marrow-derived endothelial progenitor cells (BM-EPCs) was promoted by coculturing with PF (100 [Formula: see text]M). Furthermore, to investigate the angiogenic effects of PF in vivo, we constructed an ischemic stroke model in rats and found that PF could reduce cerebral infarction, alleviate pathological injury, and increase the secretion of pro-angiogenic factors and cerebral vascular density after intraperitonially administration of 40 mg ⋅ kg[Formula: see text] ⋅ day[Formula: see text] for 14 days. Up-regulating the expression of VEGF/VEGF-R2 might be the mechanism of PF's angiogenic action. In conclusion, the present study provides evidence that PF is an active monomer of Traditional Chinese Medicine which shows angiogenic actions on endothelial progenitor cells and in ischemic stroke rat model.


Assuntos
Indutores da Angiogênese/farmacologia , Células Progenitoras Endoteliais/efeitos dos fármacos , Glucosídeos/farmacologia , AVC Isquêmico/tratamento farmacológico , Monoterpenos/farmacologia , Animais , Modelos Animais de Doenças , Masculino , Ratos , Ratos Sprague-Dawley , Regulação para Cima , Fator A de Crescimento do Endotélio Vascular/metabolismo
8.
Entropy (Basel) ; 22(2)2020 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-33285997

RESUMO

Since the cloud radio access network (C-RAN) transmits information signals by jointly transmission, the multiple copies of information signals might be eavesdropped on. Therefore, this paper studies the resource allocation algorithm for secure energy optimization in a downlink C-RAN, via jointly designing base station (BS) mode, beamforming and artificial noise (AN) given imperfect channel state information (CSI) of information receivers (IRs) and eavesdrop receivers (ERs). The considered resource allocation design problem is formulated as a nonlinear programming problem of power minimization under the quality of service (QoS) for each IR, the power constraint for each BS, and the physical layer security (PLS) constraints for each ER. To solve this non-trivial problem, we first adopt smooth ℓ 0 -norm approximation and propose a general iterative difference of convex (IDC) algorithm with provable convergence for a difference of convex programming problem. Then, a three-stage algorithm is proposed to solve the original problem, which firstly apply the iterative difference of convex programming with semi-definite relaxation (SDR) technique to provide a roughly (approximately) sparse solution, and then improve the sparsity of the solutions using a deflation based post processing method. The effectiveness of the proposed algorithm is validated with extensive simulations for power minimization in secure downlink C-RANs.

9.
Quant Imaging Med Surg ; 10(9): 1748-1762, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32879854

RESUMO

BACKGROUND: MRI acceleration using deep learning (DL) convolutional neural networks (CNNs) is a novel technique with great promise. Increasing the number of convolutional layers may allow for more accurate image reconstruction. Studies on evaluating the diagnostic interchangeability of DL reconstructed knee magnetic resonance (MR) images are scarce. The purpose of this study was to develop a deep CNN (DCNN) with an optimal number of layers for accelerating knee magnetic resonance imaging (MRI) acquisition by 6-fold and to test the diagnostic interchangeability and image quality of nonaccelerated images versus images reconstructed with a 15-layer DCNN or 3-layer CNN. METHODS: For the feasibility portion of this study, 10 patients were randomly selected from the Osteoarthritis Initiative (OAI) cohort. For the interchangeability portion of the study, 40 patients were randomly selected from the OAI cohort. Three readers assessed meniscal and anterior cruciate ligament (ACL) tears and cartilage defects using DCNN, CNN, and nonaccelerated images. Image quality was subjectively graded as nondiagnostic, poor, acceptable, or excellent. Interchangeability was tested by comparing the frequency of agreement when readers used both accelerated and nonaccelerated images to frequency of agreement when readers only used nonaccelerated images. A noninferiority margin of 0.10 was used to ensure type I error ≤5% and power ≥80%. A logistic regression model using generalized estimating equations was used to compare proportions; 95% confidence intervals (CIs) were constructed. RESULTS: DCNN and CNN images were interchangeable with nonaccelerated images for all structures, with excess disagreement values ranging from -2.5% [95% CI: (-6.1, 1.1)] to 3.0% [95% CI: (-0.1, 6.1)]. The quality of DCNN images was graded higher than that of CNN images but less than that of nonaccelerated images [excellent/acceptable quality: DCNN, 95% of cases (114/120); CNN, 60% (72/120); nonaccelerated, 97.5% (117/120)]. CONCLUSIONS: Six-fold accelerated knee images reconstructed with a DL technique are diagnostically interchangeable with nonaccelerated images and have acceptable image quality when using a 15-layer CNN.

10.
Zhongguo Zhong Yao Za Zhi ; 40(13): 2674-8, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26697698

RESUMO

The study focused on the therapeutic efficacy of Tibetan medicines on cerebral ischemia. The combined medication methods and administration habits in clinic for more than 10 years were simulated. Three typical Tibetan medicines, i.e., 25-Herb Shanhu pill, Wishful-Treasure pill and 20-Herb Chenxiang pill, were administered to the animal model of permanent middle cerebral artery occlusion in the morning, noon and evening, respectively. On the second day after the final administration, the activity of serum oxidative stress marker SOD and the content of MDA were evaluated. Infarct volumes were quantified through TTC staining. Inflammatory reaction maker NF-kappaB p65 gene and apoptosis. makers Bax and Cyct were selected to study the molecular mechanism of combined herbs with the immunohistochemistry technique. According to the result, the respective combination of 25-Herb Shanhu pill, Wishful-Treasure pill and 20-Herb Chenxiang pill in the morning, noon and evening showed unique advantages in reducing the damage of oxidative stress, infarct volumes, encephaledema caused by ischemia, inflammatory factor aggregation and inhibiting apoptosis, with consistent therapeutic efficacies in clinic.


Assuntos
Isquemia Encefálica/tratamento farmacológico , Medicina Tradicional Tibetana , Animais , Isquemia Encefálica/metabolismo , Peroxidação de Lipídeos , Masculino , Ratos , Superóxido Dismutase/metabolismo , Fatores de Tempo , Fator de Transcrição RelA/fisiologia
11.
Bioorg Med Chem Lett ; 24(2): 679-84, 2014 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-24365157

RESUMO

Tumor angiogenesis is a complicated process based upon a sequence of interactions between tumor and vessel endothelial cells. Tumor conditioned medium has been widely used to stimulate endothelial cells in vitro angiogenesis. This work was aimed to investigate the effects of gold nanoparticles (GNPs) on angiogenesis in hepatic carcinoma-conditioned endothelial cells. Human umbilical vein endothelial cells (HUVECs) were cultured with conditioned medium (CM) from the human hepatocarcinoma cell line HepG2 (HepG2-CM), and then treated with different concentrations of GNPs. The effects of GNPs on the viability, migration and active VEGF level of HUVECs were investigated by MTT assay, wound healing assay and transwell chamber assay, and ELISA assay, respectively. The data showed that GNPs significantly inhibited HUVECs proliferation and migration induced by HepG2-CM, and also reduced the levels of active VEGF in the co-culture system. Then, the alterations in morphology and ultrastructure of HUVECs detected by atomic force microscopy (AFM) showed that there appeared obvious pseudopodia, larger membrane particle sizes and much rougher surface in HUVECs after HepG2-CM treatment, which were all reversed after GNPs treatment. Changes in cytoskeleton of HUVECs determined by immunocytochemistry demonstrated that GNPs treatment remarkably inhibited the activation effect of HepG2-CM on HUVECs, which was associated with the disruption of actin filaments induced by GNPs. This study indicates that GNPs can significantly inhibit HepG2-CM activated endothelial cell proliferation and migration through down-regulation of VEGF activity and disruption of cell morphology, revealing the potential applications of GNPs as antiangiogenic agent for the treatment of hepatic carcinoma.


Assuntos
Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Ouro/farmacologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Neoplasias Hepáticas Experimentais , Nanopartículas Metálicas , Animais , Movimento Celular/fisiologia , Técnicas de Cocultura/métodos , Ouro/uso terapêutico , Células Hep G2 , Células Endoteliais da Veia Umbilical Humana/fisiologia , Humanos , Neoplasias Hepáticas Experimentais/patologia
12.
Bioorg Med Chem Lett ; 23(23): 6296-303, 2013 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-24140445

RESUMO

Selenium nanoparticles (Se NPs) have been served as promising materials for biomedical applications, especially for cancer treatment. The anti-cancer effects of Se NPs against cancer cells have been widely studied in recent years, but whether Se NPs can induce the changes of cell membrane bio-mechanical properties in cancer cells still remain unexplored. In this Letter, we prepared Se NPs for investigating the intracellular localization of Se NPs in MCF-7 cells and determined the effects of Se NPs on apoptosis and necrosis in MCF-7 cells. Especially, we reported for the first time about the effects of Se NPs on the bio-mechanical properties of cancer cells and found that Se NPs could remarkably decrease the adhesion force and Young's modulus of MCF-7 cells. To further understand the potential mechanisms about how Se NPs affect the bio-mechanical properties of MCF-7 cells, we also investigated the expression of CD44 molecules, the structure and the amounts of F-actin. The results indicated that the decreased adhesion force between AFM tip and cell membrane was partially due to the changes of membrane molecules induced by Se NPs, such as the down-regulation of trans-membrane CD44 molecules. Additionally, the decrease of Young's modulus of MCF-7 cells was due to the dis-organization and down-regulation of F-actin induced by Se NPs. These results collectively suggested that cell membrane was of vital importance in Se NPs induced toxicity in cancer cells, which could be served as a potential target for cancer treatment by Se NPs.


Assuntos
Actinas/metabolismo , Nanopartículas/química , Nanopartículas/uso terapêutico , Selênio/química , Selênio/farmacologia , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Humanos , Receptores de Hialuronatos/biossíntese , Lisossomos/química , Lisossomos/metabolismo , Células MCF-7 , Microscopia de Força Atômica
13.
Appl Microbiol Biotechnol ; 97(3): 1051-62, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22945264

RESUMO

Selenium nanoparticles (Se NPs) have been recognized as promising materials for biomedical applications. To prepare Se NPs which contained cancer targeting methods and to clarify the cellular localization and cytotoxicity mechanisms of these Se NPs against cancer cells, folic acid protected/modified selenium nanoparticles (FA-Se NPs) were first prepared by a one-step method. Some morphologic and spectroscopic methods were obtained to prove the successfully formation of FA-Se NPs while free folate competitive inhibition assay, microscope, and several biological methods were used to determine the in vitro uptake, subcellular localization, and cytotoxicity mechanism of FA-Se NPs in MCF-7 cells. The results indicated that the 70-nm FA-Se NPs were internalized by MCF-7 cells through folate receptor-mediated endocytosis and targeted to mitochondria located regions through endocytic vesicles transporting. Then, the FA-Se NPs entered into mitochondria; triggered the mitochondria-dependent apoptosis of MCF-7 cells which involved oxidative stress, Ca(2)+ stress changes, and mitochondrial dysfunction; and finally caused the damage of mitochondria. FA-Se NPs released from broken mitochondria were transported into nucleus and further into nucleolus which then induced MCF-7 cell cycle arrest. In addition, FA-Se NPs could induce cytoskeleton disorganization and induce MCF-7 cell membrane morphology alterations. These results collectively suggested that FA-Se NPs could be served as potential therapeutic agents and organelle-targeted drug carriers in cancer therapy.


Assuntos
Antineoplásicos/toxicidade , Ácido Fólico/metabolismo , Nanopartículas/toxicidade , Selênio/toxicidade , Antineoplásicos/metabolismo , Apoptose , Membrana Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Citoesqueleto/efeitos dos fármacos , Endocitose , Humanos , Células MCF-7 , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Selênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA