Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Food Chem ; 460(Pt 2): 140579, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39126740

RESUMO

Hyperspectral imaging (HSI) provides opportunity for non-destructively detecting bioactive compounds contents of tea leaves and high detection accuracy require extracting effective features from the complex hyperspectral data. In this paper, we proposed a feature wavelength refinement method called interval band selecting-competitive adaptive reweighted sampling-fusing (IBS-CARS-Fusing) to extract feature wavelengths from visible-near-infrared (VNIR) and short-wave-near-infrared (SWIR) hyperspectral images. Combined with the proposed IBS-CARS-Fusing method, a kernel ridge regression (KRR) model was established to predict the contents of bioactive compounds including chlorophyll a, chlorophyll b, carotenoids, tea polyphenols, and amino acids in Dancong tea. It was revealed that the IBS-CARS-Fusing method can improve Rp2 of KRR model for these bioactive compounds by 4.77%, 4.60%, 6.74%, 15.52%, and 13.10%, respectively, and Rp2 of the model reached high values of 0.9500, 0.9481, 0.8946, 0.8882, and 0.8622. Additionally, a leaf compound mass per area thermal map was used to visualize the spatial distribution of the compounds.

2.
Foods ; 13(13)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38998596

RESUMO

Reasonable application of nitrogen fertilizer can improve the yield and quality of tea. This study used Jin Xuan as the tested variety and applied nitrogen fertilizer at rates of 0 kg/ha (N0), 150 kg/ha (N150), 300 kg/ha (N300), and 450 kg/ha (N450) in the summer and autumn seasons to analyze the effects of nitrogen application on the quality components and gene expression of tea leaves. The results showed that the N150 treatment significantly increased total polyphenols (TP), total catechins (TC), and caffeine contents, with the most significant increase observed in the content of six monomers of catechins (EGCG, ECG, EGC, GCG, GC, and EC) in the summer. The N300 treatment significantly increased TP and AA contents in the autumn while decreasing TC content. Additionally, the N300 treatment significantly increased caffeine and theanine contents in the autumn. Notably, the N300 treatment significantly increased both summer and autumn tea yields. Multivariate statistical analysis showed that TPs, AAs, TCs, EGC, and caffeine were key factors affecting the quality of Jin Xuan. Furthermore, the N150 treatment upregulated the expression of the phenylalanine ammonia-lyase (PAL) gene, which may increase the accumulation of catechins. In conclusion, it is recommended to apply 150 kg/ha of nitrogen fertilizer in the summer and 300 kg/ha of nitrogen fertilizer in the autumn. This recommendation provides a theoretical basis for improving the quality and yield of tea leaves in summer and autumn.

3.
Mater Today Bio ; 25: 100984, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38356962

RESUMO

Blunting the tumor's stress-sensing ability is an effective strategy for controlling tumor adaptive survival and metastasis. Here, we have designed a cyclically amplified nano-energy interference device based on lipid nanoparticles (LNP), focused on altering cellular energy metabolism. This innovative nano device efficiently targets and monitors the tumor's status while simultaneously inhibiting mitochondrial respiration, biogenesis and ribosome production. To this end, we first identified azelaic acid (AA), a binary acid capable of disrupting the mitochondrial respiratory chain. Upon encapsulation in LNP and linkage to mitochondrial-targeting molecules, this disruptive effect is further augmented. Consequently, tumors exhibit a substantial upregulation of the glycolytic pathway, intensifying their glucose demand and worsening the tumor's energy-deprived microenvironment. Then, the glucose analog, 2-Deoxy-D-glucose (2-DG), linked to the LNP, efficiently targets tumors and competitively inhibits the tumor's normal glucose uptake. The synergetic results of combining AA with 2-DG induce comprehensive energy deficiency within tumors, blocking the generation of energy-sensitive ribosomes. Ultimately, the disruption of both mitochondria and ribosomes depletes energy supply and new protein-generating capacity, weakening tumor's ability to adapt to environmental stress and thereby inhibiting growth and metastasis. Comprehensively, this nano-energy interference device, by controlling the tumor's stress-sensing ability, provides a novel therapeutic strategy for refractory tumors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA